• This record comes from PubMed

Red Clover (Trifolium pratense) and Zigzag Clover (T. medium) - A Picture of Genomic Similarities and Differences

. 2018 ; 9 () : 724. [epub] 20180605

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The genus clover (Trifolium sp.) is one of the most economically important genera in the Fabaceae family. More than 10 species are grown as manure plants or forage legumes. Red clover's (T. pratense) genome size is one of the smallest in the Trifolium genus, while many clovers with potential breeding value have much larger genomes. Zigzag clover (T. medium) is closely related to the sequenced red clover; however, its genome is approximately 7.5x larger. Currently, almost nothing is known about the architecture of this large genome and differences between these two clover species. We sequenced the T. medium genome (2n = 8x = 64) with ∼23× coverage and managed to partially assemble 492.7 Mbp of its genomic sequence. A thorough comparison between red clover and zigzag clover sequencing reads resulted in the successful validation of 7 T. pratense- and 45 T. medium-specific repetitive elements. The newly discovered repeats led to the set-up of the first partial T. medium karyotype. Newly discovered red clover and zigzag clover tandem repeats were summarized. The structure of centromere-specific satellite repeat resembling that of T. repens was inferred in T. pratense. Two repeats, TrM300 and TrM378, showed a specific localization into centromeres of a half of all zigzag clover chromosomes; TrM300 on eight chromosomes and TrM378 on 24 chromosomes. A comparison with the red clover draft sequence was also used to mine more than 105,000 simple sequence repeats (SSRs) and 1,170,000 single nucleotide variants (SNVs). The presented data obtained from the sequencing of zigzag clover represent the first glimpse on the genomic sequence of this species. Centromeric repeats indicated its allopolyploid origin and naturally occurring homogenization of the centromeric repeat motif was somehow prevented. Using various repeats, highly uniform 64 chromosomes were separated into eight types of chromosomes. Zigzag clover genome underwent substantial chromosome rearrangements and cannot be counted as a true octoploid. The resulting data, especially the large number of predicted SSRs and SNVs, may have great potential for further research of the legume family and for rapid advancements in clover breeding.

See more in PubMed

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. PubMed DOI

Ansari H. A., Ellison N. W., Griffiths A. G., Williams W. M. (2004). A lineage-specific centromeric satellite sequence in the genus PubMed DOI

Ashrafi H., Hill T., Stoffel K., Kozik A., Yao J., Chin-Wo S. R., et al. (2012). PubMed DOI PMC

Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. PubMed DOI PMC

Cidade F. W., Vigna B. B., de Souza F. H., Valls J. F. M., Dall’Agnol M., Zucchi M. I., et al. (2013). Genetic variation in polyploid forage grass: assessing the molecular genetic variability in the PubMed DOI PMC

da Maia L. C., Palmieri D. A., de Souza V. Q., Kopp M. M., de Carvalho F. I. F., Costa de Oliveira A. (2008). SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. PubMed DOI PMC

De Vega J. J., Ayling S., Hegarty M., Kudrna D., Goicoechea J. L., Ergon Å.,et al. (2015). Red clover ( PubMed DOI PMC

Dellaporta S. L., Wood J., Hicks J. B. (1983). A plant DNA minipreparation: version II. DOI

Dluhošová J., Řepková J., Jakešová H., Nedělník J. (2016). Impact of interspecific hybridization of DOI

Dolezel J., Bartos J., Voglmayr H., Greilhuber J. (2003). Nuclear DNA content and genome size of trout and human. PubMed DOI

Ellison N. W., Liston A., Steiner J. J., Williams W. M., Taylor N. L. (2006). Molecular phylogenetics of the clover genus ( PubMed DOI

Gong Z., Wu Y., Koblízková A., Torres G. A., Wang K., Iovene M., et al. (2012). Repeatless and repeat-based centromeres in potato: implications for centromere evolution. PubMed DOI PMC

Hawkins J. S., Kim H., Nason J. D., Wing R. A., Wendel J. F. (2006). Differential lineage-specific amplification of transposable elements is responsible for genome size variation in PubMed DOI PMC

Hu T. T., Pattyn P., Bakker E. G., Cao J., Cheng J.-F., Clark R. M., et al. (2011). The PubMed DOI PMC

Huang X., Madan A. (1999). CAP3: a DNA sequence assembly program. PubMed DOI PMC

Isobe S. N., Hisano H., Sato S., Hirakawa H., Okumura K., Shirasawa K., et al. (2012). Comparative genetic mapping and discovery of linkage disequilibrium across linkage groups in white clover ( PubMed DOI PMC

Ištvánek J., Dluhošová J., Dluhoš P., Pátková L., Nedělník J., Řepková J. (2017). Gene classification and mining of molecular markers useful in red clover ( PubMed DOI PMC

Ištvánek J., Jaros M., Krenek A., Řepková J. (2014). Genome assembly and annotation for red clover ( PubMed DOI

Jakešová H., Hampel D., Řepková J., Nedělník J. (2014). Evaluation of feeding characteristics in variety Pramedi – interspecific hybrid

Jakešová H., Řepková J., Hampel D., Čechová L., Hofbauer J. (2011). Variation of morphological and agronomic traits in hybrids of DOI

Jurka J., Kapitonov V. V., Pavlicek A., Klonowski P., Kohany O., Walichiewicz J. (2005). Repbase Update, a database of eukaryotic repetitive elements. PubMed DOI

Kao W. C., Chan A. H., Song Y. S. (2011). Echo: a reference-free short-read error correction algorithm. PubMed DOI PMC

Kibbe W. A. (2007). OligoCalc: an online oligonucleotide properties calculator. PubMed DOI PMC

Kirov I., Divashuk M., Van Laere K., Soloviev A., Khrustaleva L. (2014). An easy “SteamDrop” method for high quality plant chromosome preparation. PubMed DOI PMC

Kopecký D., Loureiro J., Zwierzykowski Z., Ghesquière M., Dolezel J. (2006). Genome constitution and evolution in PubMed DOI

Kraaijeveld K. (2010). Genome size and species diversification. PubMed DOI PMC

Kubis S., Schmidt T., Heslop-Harrison J. S. (1998). Repetitive DNA elements as a major component of plant genomes. DOI

Li H., Durbin R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/Map format and SAMtools. PubMed DOI PMC

Macas J., Mészáros T., Nouzová M. (2002). PlantSat: a specialized database for plant satellite repeats. PubMed DOI

Macas J., Neumann P., Novák P., Jiang J. (2010). Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. PubMed DOI

McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., et al. (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. PubMed DOI PMC

Mehrotra S., Goyal V. (2014). Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. PubMed DOI PMC

Neumann P., Koblízková A., Navrátilová A., Macas J. (2006). Significant expansion of PubMed DOI PMC

Novaes E., Drost D. R., Farmerie W. G., Pappas G. J., Grattapaglia D., Sederoff R. R., et al. (2008). High-throughput gene and SNP discovery in PubMed DOI PMC

Novák P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. PubMed DOI PMC

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. PubMed DOI

Owczarzy R., Tataurov A. V., Wu Y., Manthey J. A., McQuisten K. A., Almabrazi H. G., et al. (2008). IDT SciTools: a suite for analysis and design of nucleic acid oligomers. PubMed DOI PMC

Piednoël M., Aberer A. J., Schneeweiss G. M., Macas J., Novak P., Gundlach H., et al. (2012). Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. PubMed DOI PMC

Piegu B., Guyot R., Picault N., Roulin A., Sanyal A., Saniyal A., et al. (2006). Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in PubMed DOI PMC

Plohl M., Meštrović N., Mravinac B. (2014). Centromere identity from the DNA point of view. PubMed DOI PMC

Qi L. L., Ma G. J., Long Y. M., Hulke B. S., Gong L., Markell S. G. (2015). Relocation of a rust resistance gene R 2 and its marker-assisted gene pyramiding in confection sunflower ( PubMed DOI

Řepková J., Dreiseitl A., Lízal P., Kyjovská Z., Teturová K., Psotková R., et al. (2006a). Identification of resistance genes against powdery mildew in four accessions of DOI

Řepková J., Jungmannová B., Jakešová H. (2006b). Identification of barriers to interspecific crosses in the genus DOI

Řepková J., Nedbálková B., Holub P. (1991). Regeneration of plants from zygotic embryos after interspecific hybridization within the genus

Řepková J., Nedělník J. (2014). Modern methods for genetic improvement of DOI

Sato S., Nakamura Y., Kaneko T., Asamizu E., Kato T., Nakao M., et al. (2008). Genome structure of the legume, PubMed DOI PMC

Schmutz J., Cannon S. B., Schlueter J., Ma J., Mitros T., Nelson W., et al. (2010). Genome sequence of the palaeopolyploid soybean. PubMed DOI

Schwarzacher T., Leitch A. R., Bennett M. D., Heslop-Harrison J. S. (1989). DOI

Simpson J., Wong K., Jackman S., Schein J., Jones S., Birol I. (2009). ABySS: a parallel assembler for short read sequence data. PubMed DOI PMC

Soldánová M., Ištvánek J., Řepková J., Dreiseitl A. (2013). Newly discovered genes for resistance to powdery mildew in the subtelomeric region of the short arm of barley chromosome 7H. DOI

Sonnhammer E. L., Durbin R. (1995). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. PubMed DOI

Taylor N. L., Quesenberry K. H. (1996). DOI

Tenaillon M. I., Hufford M. B., Gaut B. S., Ross-Ibarra J. (2011). Genome size and transposable element content as determined by high-throughput sequencing in maize and PubMed DOI PMC

Torales S. L., Rivarola M., Pomponio M. F., Gonzalez S., Acuña C. V., Fernández P., et al. (2013). De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species PubMed DOI PMC

Ueno S., Le Provost G., Léger V., Klopp C., Noirot C., Frigerio J.-M., et al. (2010). Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. PubMed DOI PMC

Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3–new capabilities and interfaces. PubMed DOI PMC

Varshney R. K., Chen W., Li Y., Bharti A. K., Saxena R. K., Schlueter J. A., et al. (2012). Draft genome sequence of pigeonpea ( PubMed DOI

Varshney R. K., Song C., Saxena R. K., Azam S., Yu S., Sharpe A. G., et al. (2013). Draft genome sequence of chickpea ( PubMed DOI

Víquez-Zamora M., Vosman B., van de Geest H., Bovy A., Visser R. G. F., Finkers R., et al. (2013). Tomato breeding in the genomics era: insights from a SNP array. PubMed DOI PMC

Vižintin L., Javornik B., Bohanec B. (2006). Genetic characterization of selected DOI

Wang G., Zhang X., Jin W. (2009). An overview of plant centromeres. PubMed DOI

Wang L., Zeng Z., Zhang W., Jiang J. (2014). Three potato centromeres are associated with distinct haplotypes with or without megabase-sized satellite repeat arrays. PubMed DOI PMC

Watson L. E., Sayed-Ahmed H., Badr A. (2000). Molecular phylogeny of old world DOI

Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. PubMed DOI PMC

Younas M., Xiao Y., Cai D., Yang W., Ye W., Wu J., et al. (2012). Molecular characterization of oilseed rape accessions collected from multi continents for exploitation of potential heterotic group through SSR markers. PubMed DOI

Young N. D., Debellé F., Oldroyd G. E. D., Geurts R., Cannon S. B., Udvardi M. K., et al. (2011). The PubMed DOI PMC

Yu H., Xie W., Li J., Zhou F., Zhang Q. (2014). A whole-genome SNP array (RICE6K) for genomic breeding in rice. PubMed DOI

Zalapa J. E., Cuevas H., Zhu H., Steffan S., Senalik D., Zeldin E., et al. (2012). Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. PubMed DOI

Zhang H.-B., Zhao X., Ding X., Paterson A. H., Wing R. A. (1995). Preparation of megabase-size DNA from plant nuclei. DOI

Zhao N., Yu X., Jie Q., Li H., Li H., Hu J., et al. (2013). A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweet potato. DOI

Zuccolo A., Sebastian A., Talag J., Yu Y., Kim H., Collura K., et al. (2007). Transposable element distribution, abundance and role in genome size variation in the genus PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...