Red Clover (Trifolium pratense) and Zigzag Clover (T. medium) - A Picture of Genomic Similarities and Differences
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
29922311
PubMed Central
PMC5996420
DOI
10.3389/fpls.2018.00724
Knihovny.cz E-resources
- Keywords
- FISH, centromeric repeats, comparative analysis, sequencing, zigzag clover karyotype,
- Publication type
- Journal Article MeSH
The genus clover (Trifolium sp.) is one of the most economically important genera in the Fabaceae family. More than 10 species are grown as manure plants or forage legumes. Red clover's (T. pratense) genome size is one of the smallest in the Trifolium genus, while many clovers with potential breeding value have much larger genomes. Zigzag clover (T. medium) is closely related to the sequenced red clover; however, its genome is approximately 7.5x larger. Currently, almost nothing is known about the architecture of this large genome and differences between these two clover species. We sequenced the T. medium genome (2n = 8x = 64) with ∼23× coverage and managed to partially assemble 492.7 Mbp of its genomic sequence. A thorough comparison between red clover and zigzag clover sequencing reads resulted in the successful validation of 7 T. pratense- and 45 T. medium-specific repetitive elements. The newly discovered repeats led to the set-up of the first partial T. medium karyotype. Newly discovered red clover and zigzag clover tandem repeats were summarized. The structure of centromere-specific satellite repeat resembling that of T. repens was inferred in T. pratense. Two repeats, TrM300 and TrM378, showed a specific localization into centromeres of a half of all zigzag clover chromosomes; TrM300 on eight chromosomes and TrM378 on 24 chromosomes. A comparison with the red clover draft sequence was also used to mine more than 105,000 simple sequence repeats (SSRs) and 1,170,000 single nucleotide variants (SNVs). The presented data obtained from the sequencing of zigzag clover represent the first glimpse on the genomic sequence of this species. Centromeric repeats indicated its allopolyploid origin and naturally occurring homogenization of the centromeric repeat motif was somehow prevented. Using various repeats, highly uniform 64 chromosomes were separated into eight types of chromosomes. Zigzag clover genome underwent substantial chromosome rearrangements and cannot be counted as a true octoploid. The resulting data, especially the large number of predicted SSRs and SNVs, may have great potential for further research of the legume family and for rapid advancements in clover breeding.
Agricultural Research Ltd Troubsko Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
See more in PubMed
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. PubMed DOI
Ansari H. A., Ellison N. W., Griffiths A. G., Williams W. M. (2004). A lineage-specific centromeric satellite sequence in the genus PubMed DOI
Ashrafi H., Hill T., Stoffel K., Kozik A., Yao J., Chin-Wo S. R., et al. (2012). PubMed DOI PMC
Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. PubMed DOI PMC
Cidade F. W., Vigna B. B., de Souza F. H., Valls J. F. M., Dall’Agnol M., Zucchi M. I., et al. (2013). Genetic variation in polyploid forage grass: assessing the molecular genetic variability in the PubMed DOI PMC
da Maia L. C., Palmieri D. A., de Souza V. Q., Kopp M. M., de Carvalho F. I. F., Costa de Oliveira A. (2008). SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. PubMed DOI PMC
De Vega J. J., Ayling S., Hegarty M., Kudrna D., Goicoechea J. L., Ergon Å.,et al. (2015). Red clover ( PubMed DOI PMC
Dellaporta S. L., Wood J., Hicks J. B. (1983). A plant DNA minipreparation: version II. DOI
Dluhošová J., Řepková J., Jakešová H., Nedělník J. (2016). Impact of interspecific hybridization of DOI
Dolezel J., Bartos J., Voglmayr H., Greilhuber J. (2003). Nuclear DNA content and genome size of trout and human. PubMed DOI
Ellison N. W., Liston A., Steiner J. J., Williams W. M., Taylor N. L. (2006). Molecular phylogenetics of the clover genus ( PubMed DOI
Gong Z., Wu Y., Koblízková A., Torres G. A., Wang K., Iovene M., et al. (2012). Repeatless and repeat-based centromeres in potato: implications for centromere evolution. PubMed DOI PMC
Hawkins J. S., Kim H., Nason J. D., Wing R. A., Wendel J. F. (2006). Differential lineage-specific amplification of transposable elements is responsible for genome size variation in PubMed DOI PMC
Hu T. T., Pattyn P., Bakker E. G., Cao J., Cheng J.-F., Clark R. M., et al. (2011). The PubMed DOI PMC
Huang X., Madan A. (1999). CAP3: a DNA sequence assembly program. PubMed DOI PMC
Isobe S. N., Hisano H., Sato S., Hirakawa H., Okumura K., Shirasawa K., et al. (2012). Comparative genetic mapping and discovery of linkage disequilibrium across linkage groups in white clover ( PubMed DOI PMC
Ištvánek J., Dluhošová J., Dluhoš P., Pátková L., Nedělník J., Řepková J. (2017). Gene classification and mining of molecular markers useful in red clover ( PubMed DOI PMC
Ištvánek J., Jaros M., Krenek A., Řepková J. (2014). Genome assembly and annotation for red clover ( PubMed DOI
Jakešová H., Hampel D., Řepková J., Nedělník J. (2014). Evaluation of feeding characteristics in variety Pramedi – interspecific hybrid
Jakešová H., Řepková J., Hampel D., Čechová L., Hofbauer J. (2011). Variation of morphological and agronomic traits in hybrids of DOI
Jurka J., Kapitonov V. V., Pavlicek A., Klonowski P., Kohany O., Walichiewicz J. (2005). Repbase Update, a database of eukaryotic repetitive elements. PubMed DOI
Kao W. C., Chan A. H., Song Y. S. (2011). Echo: a reference-free short-read error correction algorithm. PubMed DOI PMC
Kibbe W. A. (2007). OligoCalc: an online oligonucleotide properties calculator. PubMed DOI PMC
Kirov I., Divashuk M., Van Laere K., Soloviev A., Khrustaleva L. (2014). An easy “SteamDrop” method for high quality plant chromosome preparation. PubMed DOI PMC
Kopecký D., Loureiro J., Zwierzykowski Z., Ghesquière M., Dolezel J. (2006). Genome constitution and evolution in PubMed DOI
Kraaijeveld K. (2010). Genome size and species diversification. PubMed DOI PMC
Kubis S., Schmidt T., Heslop-Harrison J. S. (1998). Repetitive DNA elements as a major component of plant genomes. DOI
Li H., Durbin R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/Map format and SAMtools. PubMed DOI PMC
Macas J., Mészáros T., Nouzová M. (2002). PlantSat: a specialized database for plant satellite repeats. PubMed DOI
Macas J., Neumann P., Novák P., Jiang J. (2010). Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. PubMed DOI
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., et al. (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. PubMed DOI PMC
Mehrotra S., Goyal V. (2014). Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. PubMed DOI PMC
Neumann P., Koblízková A., Navrátilová A., Macas J. (2006). Significant expansion of PubMed DOI PMC
Novaes E., Drost D. R., Farmerie W. G., Pappas G. J., Grattapaglia D., Sederoff R. R., et al. (2008). High-throughput gene and SNP discovery in PubMed DOI PMC
Novák P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. PubMed DOI
Owczarzy R., Tataurov A. V., Wu Y., Manthey J. A., McQuisten K. A., Almabrazi H. G., et al. (2008). IDT SciTools: a suite for analysis and design of nucleic acid oligomers. PubMed DOI PMC
Piednoël M., Aberer A. J., Schneeweiss G. M., Macas J., Novak P., Gundlach H., et al. (2012). Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. PubMed DOI PMC
Piegu B., Guyot R., Picault N., Roulin A., Sanyal A., Saniyal A., et al. (2006). Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in PubMed DOI PMC
Plohl M., Meštrović N., Mravinac B. (2014). Centromere identity from the DNA point of view. PubMed DOI PMC
Qi L. L., Ma G. J., Long Y. M., Hulke B. S., Gong L., Markell S. G. (2015). Relocation of a rust resistance gene R 2 and its marker-assisted gene pyramiding in confection sunflower ( PubMed DOI
Řepková J., Dreiseitl A., Lízal P., Kyjovská Z., Teturová K., Psotková R., et al. (2006a). Identification of resistance genes against powdery mildew in four accessions of DOI
Řepková J., Jungmannová B., Jakešová H. (2006b). Identification of barriers to interspecific crosses in the genus DOI
Řepková J., Nedbálková B., Holub P. (1991). Regeneration of plants from zygotic embryos after interspecific hybridization within the genus
Řepková J., Nedělník J. (2014). Modern methods for genetic improvement of DOI
Sato S., Nakamura Y., Kaneko T., Asamizu E., Kato T., Nakao M., et al. (2008). Genome structure of the legume, PubMed DOI PMC
Schmutz J., Cannon S. B., Schlueter J., Ma J., Mitros T., Nelson W., et al. (2010). Genome sequence of the palaeopolyploid soybean. PubMed DOI
Schwarzacher T., Leitch A. R., Bennett M. D., Heslop-Harrison J. S. (1989). DOI
Simpson J., Wong K., Jackman S., Schein J., Jones S., Birol I. (2009). ABySS: a parallel assembler for short read sequence data. PubMed DOI PMC
Soldánová M., Ištvánek J., Řepková J., Dreiseitl A. (2013). Newly discovered genes for resistance to powdery mildew in the subtelomeric region of the short arm of barley chromosome 7H. DOI
Sonnhammer E. L., Durbin R. (1995). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. PubMed DOI
Taylor N. L., Quesenberry K. H. (1996). DOI
Tenaillon M. I., Hufford M. B., Gaut B. S., Ross-Ibarra J. (2011). Genome size and transposable element content as determined by high-throughput sequencing in maize and PubMed DOI PMC
Torales S. L., Rivarola M., Pomponio M. F., Gonzalez S., Acuña C. V., Fernández P., et al. (2013). De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species PubMed DOI PMC
Ueno S., Le Provost G., Léger V., Klopp C., Noirot C., Frigerio J.-M., et al. (2010). Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. PubMed DOI PMC
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3–new capabilities and interfaces. PubMed DOI PMC
Varshney R. K., Chen W., Li Y., Bharti A. K., Saxena R. K., Schlueter J. A., et al. (2012). Draft genome sequence of pigeonpea ( PubMed DOI
Varshney R. K., Song C., Saxena R. K., Azam S., Yu S., Sharpe A. G., et al. (2013). Draft genome sequence of chickpea ( PubMed DOI
Víquez-Zamora M., Vosman B., van de Geest H., Bovy A., Visser R. G. F., Finkers R., et al. (2013). Tomato breeding in the genomics era: insights from a SNP array. PubMed DOI PMC
Vižintin L., Javornik B., Bohanec B. (2006). Genetic characterization of selected DOI
Wang G., Zhang X., Jin W. (2009). An overview of plant centromeres. PubMed DOI
Wang L., Zeng Z., Zhang W., Jiang J. (2014). Three potato centromeres are associated with distinct haplotypes with or without megabase-sized satellite repeat arrays. PubMed DOI PMC
Watson L. E., Sayed-Ahmed H., Badr A. (2000). Molecular phylogeny of old world DOI
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. PubMed DOI PMC
Younas M., Xiao Y., Cai D., Yang W., Ye W., Wu J., et al. (2012). Molecular characterization of oilseed rape accessions collected from multi continents for exploitation of potential heterotic group through SSR markers. PubMed DOI
Young N. D., Debellé F., Oldroyd G. E. D., Geurts R., Cannon S. B., Udvardi M. K., et al. (2011). The PubMed DOI PMC
Yu H., Xie W., Li J., Zhou F., Zhang Q. (2014). A whole-genome SNP array (RICE6K) for genomic breeding in rice. PubMed DOI
Zalapa J. E., Cuevas H., Zhu H., Steffan S., Senalik D., Zeldin E., et al. (2012). Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. PubMed DOI
Zhang H.-B., Zhao X., Ding X., Paterson A. H., Wing R. A. (1995). Preparation of megabase-size DNA from plant nuclei. DOI
Zhao N., Yu X., Jie Q., Li H., Li H., Hu J., et al. (2013). A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweet potato. DOI
Zuccolo A., Sebastian A., Talag J., Yu Y., Kim H., Collura K., et al. (2007). Transposable element distribution, abundance and role in genome size variation in the genus PubMed DOI PMC
Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)
Variation in Ribosomal DNA in the Genus Trifolium (Fabaceae)