Red Clover (Trifolium pratense) and Zigzag Clover (T. medium) - A Picture of Genomic Similarities and Differences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29922311
PubMed Central
PMC5996420
DOI
10.3389/fpls.2018.00724
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, centromeric repeats, comparative analysis, sequencing, zigzag clover karyotype,
- Publikační typ
- časopisecké články MeSH
The genus clover (Trifolium sp.) is one of the most economically important genera in the Fabaceae family. More than 10 species are grown as manure plants or forage legumes. Red clover's (T. pratense) genome size is one of the smallest in the Trifolium genus, while many clovers with potential breeding value have much larger genomes. Zigzag clover (T. medium) is closely related to the sequenced red clover; however, its genome is approximately 7.5x larger. Currently, almost nothing is known about the architecture of this large genome and differences between these two clover species. We sequenced the T. medium genome (2n = 8x = 64) with ∼23× coverage and managed to partially assemble 492.7 Mbp of its genomic sequence. A thorough comparison between red clover and zigzag clover sequencing reads resulted in the successful validation of 7 T. pratense- and 45 T. medium-specific repetitive elements. The newly discovered repeats led to the set-up of the first partial T. medium karyotype. Newly discovered red clover and zigzag clover tandem repeats were summarized. The structure of centromere-specific satellite repeat resembling that of T. repens was inferred in T. pratense. Two repeats, TrM300 and TrM378, showed a specific localization into centromeres of a half of all zigzag clover chromosomes; TrM300 on eight chromosomes and TrM378 on 24 chromosomes. A comparison with the red clover draft sequence was also used to mine more than 105,000 simple sequence repeats (SSRs) and 1,170,000 single nucleotide variants (SNVs). The presented data obtained from the sequencing of zigzag clover represent the first glimpse on the genomic sequence of this species. Centromeric repeats indicated its allopolyploid origin and naturally occurring homogenization of the centromeric repeat motif was somehow prevented. Using various repeats, highly uniform 64 chromosomes were separated into eight types of chromosomes. Zigzag clover genome underwent substantial chromosome rearrangements and cannot be counted as a true octoploid. The resulting data, especially the large number of predicted SSRs and SNVs, may have great potential for further research of the legume family and for rapid advancements in clover breeding.
Agricultural Research Ltd Troubsko Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Ansari H. A., Ellison N. W., Griffiths A. G., Williams W. M. (2004). A lineage-specific centromeric satellite sequence in the genus Trifolium. Chromosome Res. 12 357–367. 10.1023/B:CHRO.0000034099.19570.b7 PubMed DOI
Ashrafi H., Hill T., Stoffel K., Kozik A., Yao J., Chin-Wo S. R., et al. (2012). De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 13:571. 10.1186/1471-2164-13-571 PubMed DOI PMC
Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27 573–580. 10.1093/nar/27.2.573 PubMed DOI PMC
Cidade F. W., Vigna B. B., de Souza F. H., Valls J. F. M., Dall’Agnol M., Zucchi M. I., et al. (2013). Genetic variation in polyploid forage grass: assessing the molecular genetic variability in the Paspalum genus. BMC Genet. 14:50. 10.1186/1471-2156-14-50 PubMed DOI PMC
da Maia L. C., Palmieri D. A., de Souza V. Q., Kopp M. M., de Carvalho F. I. F., Costa de Oliveira A. (2008). SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics 2008:412696. 10.1155/2008/412696 PubMed DOI PMC
De Vega J. J., Ayling S., Hegarty M., Kudrna D., Goicoechea J. L., Ergon Å.,et al. (2015). Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 5:17394. 10.1038/srep17394 PubMed DOI PMC
Dellaporta S. L., Wood J., Hicks J. B. (1983). A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1 19–21. 10.1007/BF02712670 DOI
Dluhošová J., Řepková J., Jakešová H., Nedělník J. (2016). Impact of interspecific hybridization of T. pratense x T. medium and backcrossing on genetic variability of progeny. Czech J. Genet. Plant Breed. 52 125–131. 10.17221/115/2016-CJGPB DOI
Dolezel J., Bartos J., Voglmayr H., Greilhuber J. (2003). Nuclear DNA content and genome size of trout and human. Cytometry A 51 127–128. 10.1002/cyto.a.10013 PubMed DOI
Ellison N. W., Liston A., Steiner J. J., Williams W. M., Taylor N. L. (2006). Molecular phylogenetics of the clover genus (Trifolium-Leguminosae). Mol. Phylogenet. Evol. 39 688–705. 10.1016/j.ympev.2006.01.004 PubMed DOI
Gong Z., Wu Y., Koblízková A., Torres G. A., Wang K., Iovene M., et al. (2012). Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24 3559–3574. 10.1105/tpc.112.100511 PubMed DOI PMC
Hawkins J. S., Kim H., Nason J. D., Wing R. A., Wendel J. F. (2006). Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16 1252–1261. 10.1101/gr.5282906 PubMed DOI PMC
Hu T. T., Pattyn P., Bakker E. G., Cao J., Cheng J.-F., Clark R. M., et al. (2011). The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43 476–481. 10.1038/ng.807 PubMed DOI PMC
Huang X., Madan A. (1999). CAP3: a DNA sequence assembly program. Genome Res. 9 868–877. 10.1101/gr.9.9.868 PubMed DOI PMC
Isobe S. N., Hisano H., Sato S., Hirakawa H., Okumura K., Shirasawa K., et al. (2012). Comparative genetic mapping and discovery of linkage disequilibrium across linkage groups in white clover (Trifolium repens L.). G3 3 607–617. 10.1534/g3.112.002600 PubMed DOI PMC
Ištvánek J., Dluhošová J., Dluhoš P., Pátková L., Nedělník J., Řepková J. (2017). Gene classification and mining of molecular markers useful in red clover (Trifolium pratense) breeding. Front. Plant Sci. 8:367. 10.3389/fpls.2017.00367 PubMed DOI PMC
Ištvánek J., Jaros M., Krenek A., Řepková J. (2014). Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). Am. J. Bot. 101 327–337. 10.3732/ajb.1300340 PubMed DOI
Jakešová H., Hampel D., Řepková J., Nedělník J. (2014). Evaluation of feeding characteristics in variety Pramedi – interspecific hybrid Trifolium pratense × Trifolium medium. Úroda 12 183–186.
Jakešová H., Řepková J., Hampel D., Čechová L., Hofbauer J. (2011). Variation of morphological and agronomic traits in hybrids of Trifolium pratense × T. medium and a comparison with the parental species. Czech J. Genet. Plant Breed. 47 28–36. 10.17221/2/2011-CJGPB DOI
Jurka J., Kapitonov V. V., Pavlicek A., Klonowski P., Kohany O., Walichiewicz J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110 462–467. 10.1186/s13100-015-0041-9 PubMed DOI
Kao W. C., Chan A. H., Song Y. S. (2011). Echo: a reference-free short-read error correction algorithm. Genome Res. 21 1181–1192. 10.1101/gr.111351.110 PubMed DOI PMC
Kibbe W. A. (2007). OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35 W43–W46. 10.1093/nar/gkm234 PubMed DOI PMC
Kirov I., Divashuk M., Van Laere K., Soloviev A., Khrustaleva L. (2014). An easy “SteamDrop” method for high quality plant chromosome preparation. Mol. Cytogenet. 7:21. 10.1186/1755-8166-7-21 PubMed DOI PMC
Kopecký D., Loureiro J., Zwierzykowski Z., Ghesquière M., Dolezel J. (2006). Genome constitution and evolution in Lolium x Festuca hybrid cultivars (Festulolium). Theor. Appl. Genet. 113 731–742. 10.1007/s00122-006-0341-z PubMed DOI
Kraaijeveld K. (2010). Genome size and species diversification. Evol. Biol. 37 227–233. 10.1007/s11692-010-9093-4 PubMed DOI PMC
Kubis S., Schmidt T., Heslop-Harrison J. S. (1998). Repetitive DNA elements as a major component of plant genomes. Ann. Bot. 82(Suppl. 1), 45–55. 10.1006/anbo.1998.0779 DOI
Li H., Durbin R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26 589–595. 10.1093/bioinformatics/btp698 PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/Map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Macas J., Mészáros T., Nouzová M. (2002). PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18 28–35. 10.1093/bioinformatics/18.1.2 PubMed DOI
Macas J., Neumann P., Novák P., Jiang J. (2010). Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics 26 2101–2108. 10.1093/bioinformatics/btq343 PubMed DOI
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., et al. (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20 1297–1303. 10.1101/gr.107524.110 PubMed DOI PMC
Mehrotra S., Goyal V. (2014). Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics 12 164–171. 10.1016/j.gpb.2014.07.003 PubMed DOI PMC
Neumann P., Koblízková A., Navrátilová A., Macas J. (2006). Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173 1047–1056. 10.1534/genetics.106.056259 PubMed DOI PMC
Novaes E., Drost D. R., Farmerie W. G., Pappas G. J., Grattapaglia D., Sederoff R. R., et al. (2008). High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312. 10.1186/1471-2164-9-312 PubMed DOI PMC
Novák P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378. 10.1186/1471-2105-11-378 PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29 792–793. 10.1093/bioinformatics/btt054 PubMed DOI
Owczarzy R., Tataurov A. V., Wu Y., Manthey J. A., McQuisten K. A., Almabrazi H. G., et al. (2008). IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 36 W163–W169. 10.1093/nar/gkn198 PubMed DOI PMC
Piednoël M., Aberer A. J., Schneeweiss G. M., Macas J., Novak P., Gundlach H., et al. (2012). Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol. Biol. Evol. 29 3601–3611. 10.1093/molbev/mss168 PubMed DOI PMC
Piegu B., Guyot R., Picault N., Roulin A., Sanyal A., Saniyal A., et al. (2006). Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16 1262–1269. 10.1101/gr.5290206 PubMed DOI PMC
Plohl M., Meštrović N., Mravinac B. (2014). Centromere identity from the DNA point of view. Chromosoma 123 313–325. 10.1007/s00412-014-0462-0 PubMed DOI PMC
Qi L. L., Ma G. J., Long Y. M., Hulke B. S., Gong L., Markell S. G. (2015). Relocation of a rust resistance gene R 2 and its marker-assisted gene pyramiding in confection sunflower (Helianthus annuus L.). Theor. Appl. Genet. 128 477–488. 10.1007/s00122-014-2446-0 PubMed DOI
Řepková J., Dreiseitl A., Lízal P., Kyjovská Z., Teturová K., Psotková R., et al. (2006a). Identification of resistance genes against powdery mildew in four accessions of Hordeum vulgare ssp. spontaneum. Euphytica 151 23–30. 10.1007/s10681-006-9109-4 DOI
Řepková J., Jungmannová B., Jakešová H. (2006b). Identification of barriers to interspecific crosses in the genus Trifolium. Euphytica 151 39–48. 10.1007/s10681-006-9126-3 DOI
Řepková J., Nedbálková B., Holub P. (1991). Regeneration of plants from zygotic embryos after interspecific hybridization within the genus Trifolium and electrophoretic evaluation of hybrids. Sci. Stud. OSEVA Res. Inst. Fodd. Plants Troubsko 12 7–14.
Řepková J., Nedělník J. (2014). Modern methods for genetic improvement of Trifolium pratense. Czech J. Genet. Plant Breed. 50 92–99. 10.17221/139/2013-CJGPB DOI
Sato S., Nakamura Y., Kaneko T., Asamizu E., Kato T., Nakao M., et al. (2008). Genome structure of the legume, Lotus japonicus. DNA Res. 15 227–239. 10.1093/dnares/dsn008 PubMed DOI PMC
Schmutz J., Cannon S. B., Schlueter J., Ma J., Mitros T., Nelson W., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463 178–183. 10.1038/nature08670 PubMed DOI
Schwarzacher T., Leitch A. R., Bennett M. D., Heslop-Harrison J. S. (1989). In situ localization of parental genomes in a wide hybrid. Ann. Bot. 64 315–324. 10.1093/oxfordjournals.aob.a087847 DOI
Simpson J., Wong K., Jackman S., Schein J., Jones S., Birol I. (2009). ABySS: a parallel assembler for short read sequence data. Genome Res. 19 1117–1123. 10.1101/gr.089532.108 PubMed DOI PMC
Soldánová M., Ištvánek J., Řepková J., Dreiseitl A. (2013). Newly discovered genes for resistance to powdery mildew in the subtelomeric region of the short arm of barley chromosome 7H. Czech J. Genet. Plant Breed. 49 95–102. 10.17221/33/2013-CJGPB DOI
Sonnhammer E. L., Durbin R. (1995). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167 GC1–GC10. 10.1016/0378-1119(95)00714-8 PubMed DOI
Taylor N. L., Quesenberry K. H. (1996). Red Clover Science. Dordrecht: Kluwer Academy Publishing; 10.1007/978-94-015-8692-4 DOI
Tenaillon M. I., Hufford M. B., Gaut B. S., Ross-Ibarra J. (2011). Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol. Evol. 3 219–229. 10.1093/gbe/evr008 PubMed DOI PMC
Torales S. L., Rivarola M., Pomponio M. F., Gonzalez S., Acuña C. V., Fernández P., et al. (2013). De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba. BMC Genomics 14:705. 10.1186/1471-2164-14-705 PubMed DOI PMC
Ueno S., Le Provost G., Léger V., Klopp C., Noirot C., Frigerio J.-M., et al. (2010). Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC Genomics 11:650. 10.1186/1471-2164-11-650 PubMed DOI PMC
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3–new capabilities and interfaces. Nucleic Acids Res. 40:e115. 10.1093/nar/gks596 PubMed DOI PMC
Varshney R. K., Chen W., Li Y., Bharti A. K., Saxena R. K., Schlueter J. A., et al. (2012). Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 30 83–89. 10.1038/nbt.2022 PubMed DOI
Varshney R. K., Song C., Saxena R. K., Azam S., Yu S., Sharpe A. G., et al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31 240–246. 10.1038/nbt.2491 PubMed DOI
Víquez-Zamora M., Vosman B., van de Geest H., Bovy A., Visser R. G. F., Finkers R., et al. (2013). Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics 14:354. 10.1186/1471-2164-14-354 PubMed DOI PMC
Vižintin L., Javornik B., Bohanec B. (2006). Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci. 170 859–866. 10.1016/j.plantsci.2005.12.007 DOI
Wang G., Zhang X., Jin W. (2009). An overview of plant centromeres. J. Genet. Genomics 36 529–537. 10.1016/S1673-8527(08)60144-7 PubMed DOI
Wang L., Zeng Z., Zhang W., Jiang J. (2014). Three potato centromeres are associated with distinct haplotypes with or without megabase-sized satellite repeat arrays. Genetics 196 397–401. 10.1534/genetics.113.160135 PubMed DOI PMC
Watson L. E., Sayed-Ahmed H., Badr A. (2000). Molecular phylogeny of old world Trifolium (Fabaceae), based on plastid and nuclear markers. Plant Syst. Evol. 224 153–171. 10.1007/BF00986340 DOI
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. 10.1186/1471-2105-13-134 PubMed DOI PMC
Younas M., Xiao Y., Cai D., Yang W., Ye W., Wu J., et al. (2012). Molecular characterization of oilseed rape accessions collected from multi continents for exploitation of potential heterotic group through SSR markers. Mol. Biol. Rep. 39 5105–5113. 10.1007/s11033-011-1306-0 PubMed DOI
Young N. D., Debellé F., Oldroyd G. E. D., Geurts R., Cannon S. B., Udvardi M. K., et al. (2011). The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480 520–524. 10.1038/nature10625 PubMed DOI PMC
Yu H., Xie W., Li J., Zhou F., Zhang Q. (2014). A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol. J. 12 28–37. 10.1111/pbi.12113 PubMed DOI
Zalapa J. E., Cuevas H., Zhu H., Steffan S., Senalik D., Zeldin E., et al. (2012). Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am. J. Bot. 99 193–208. 10.3732/ajb.1100394 PubMed DOI
Zhang H.-B., Zhao X., Ding X., Paterson A. H., Wing R. A. (1995). Preparation of megabase-size DNA from plant nuclei. Plant J. 7 175–184. 10.1046/j.1365-313X.1995.07010175.x DOI
Zhao N., Yu X., Jie Q., Li H., Li H., Hu J., et al. (2013). A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweet potato. Mol. Breed. 32 807–820. 10.1007/s11032-013-9908-y DOI
Zuccolo A., Sebastian A., Talag J., Yu Y., Kim H., Collura K., et al. (2007). Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol. Biol. 7:152. 10.1186/1471-2148-7-152 PubMed DOI PMC
Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)
Variation in Ribosomal DNA in the Genus Trifolium (Fabaceae)