Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement

. 2006 Jun ; 173 (2) : 1047-56. [epub] 20060403

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid16585134
Odkazy

PubMed 16585134
PubMed Central PMC1526492
DOI 10.1534/genetics.106.056259
PII: genetics.106.056259
Knihovny.cz E-zdroje

Amplification and eventual elimination of dispersed repeats, especially those of the retroelement origin, account for most of the profound size variability observed among plant genomes. In most higher plants investigated so far, differential accumulation of various families of elements contributes to these differences. Here we report the identification of giant Ty3/gypsy-like retrotransposons from the legume plant Vicia pannonica, which alone make up approximately 38% of the genome of this species. These retrotransposons have structural features of the Ogre elements previously identified in the genomes of pea and Medicago. These features include extreme size (25 kb), the presence of an extra ORF upstream of the gag-pol region, and a putative intron dividing the prot and rt coding sequences. The Ogre elements are evenly dispersed on V. pannonica chromosomes except for terminal regions containing satellite repeats, their individual copies show extraordinary sequence similarity, and at least part of them are transcriptionally active, which suggests their recent amplification. Similar elements were also detected in several other Vicia species but in most cases in significantly lower numbers. However, there was no obvious correlation of the abundance of Ogre sequences with the genome size of these species.

Zobrazit více v PubMed

Altschul, S. F., T. L. Madden, A. A. Schaffer, J. H. Zhang, Z. Zhang et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. PubMed PMC

Arumuganathan, K., and E. D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208–218.

AsanteAppiah, E., and A. M. Skalka, 1997. A metal-induced conformational change and activation of HIV-1 integrase. J. Biol. Chem. 272: 16196–16205. PubMed

Bennett, M. D., and I. J. Leitch, 2004. Plant DNA C-Values Database (release 3.0). http://www.rbgkew.org.uk/cval/homepage.html.

Bennett, M. D., and I. J. Leitch, 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann. Bot. 95: 45–90. PubMed PMC

Burd, C. G., and G. Dreyfuss, 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621. PubMed

Chantret, N., J. Salse, F. Sabot, S. Rahman, A. Bellec et al., 2005. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17: 1033–1045. PubMed PMC

Chooi, W. Y., 1971. Comparison of DNA of six Vicia species by method of DNA-DNA hybridization. Genetics 68: 213–230. PubMed PMC

Davies, J. F., Z. Hostomska, Z. Hostomsky, S. R. Jordan and D. A. Matthews, 1991. Crystal-structure of the ribonuclease-H domain of HIV-1 reverse-transcriptase. Science 252: 88–95. PubMed

Dellaporta, S. L., J. Wood and J. B. Hicks, 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.

Devos, K. M., J. K. M. Brown and J. L. Bennetzen, 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12: 1075–1079. PubMed PMC

Ding, J. P., K. Das, Y. Hsiou, S. G. Sarafianos, A. D. Clark et al., 1998. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 angström resolution. J. Mol. Biol. 284: 1095–1111. PubMed

Feschotte, C., N. Jiang and S. R. Wessler, 2002. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3: 329–341. PubMed

Flavell, R. B., M. D. Bennett, J. B. Smith and D. B. Smith, 1974. Genome size and proportion of repeated nucleotide-sequence DNA in plants. Biochem. Genet. 12: 257–269. PubMed

Gualberti, G., J. Doležel, J. Macas and S. Lucretti, 1996. Preparation of pea (Pisum sativum L.) chromosome and nucleus suspensions from single root tips. Theor. Appl. Genet. 92: 744–751. PubMed

Hebsgaard, S. M., P. G. Korning, N. Tolstrup, J. Engelbrecht, P. Rouze et al., 1996. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 24: 3439–3452. PubMed PMC

Hill, P., D. Burford, D. M. A. Martin and A. J. Flavell, 2005. Retrotransposon populations of Vicia species with varying genome size. Mol. Genet. Genomics 273: 371–381. PubMed

Hirochika, H., A. Fukuchi and F. Kikuchi, 1992. Retrotransposon families in rice. Mol. Gen. Genet. 233: 209–216. PubMed

Hirochika, H., H. Okamoto and T. Kakutani, 2000. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12: 357–368. PubMed PMC

Ingham, L. D., W. W. Hanna, J. W. Baier and L. C. Hannah, 1993. Origin of the main class of repetitive DNA within selected Pennisetum species. Mol. Gen. Genet. 238: 350–356. PubMed

Irifune, K., K. Hirai, J. Zheng, R. Tanaka and H. Morikawa, 1995. Nucleotide-sequence of a highly repeated DNA-sequence and its chromosomal localization in Allium fistulosum. Theor. Appl. Genet. 90: 312–316. PubMed

Jackson, J. P., A. M. Lindroth, X. F. Cao and S. E. Jacobsen, 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556–560. PubMed

Kato, A., K. Yakura and S. Tanifuji, 1984. Sequence analysis of Vicia faba repeated DNA, the FokI repeat element. Nucleic Acids Res. 12: 6415–6426. PubMed PMC

Kentner, E. K., M. L. Arnold and S. R. Wessler, 2003. Characterization of high-copy-number retrotransposons from the large genomes of the Louisiana Iris species and their use as molecular markers. Genetics 164: 685–697. PubMed PMC

Kumar, A., and J. L. Bennetzen, 1999. Plant retrotransposons. Annu. Rev. Genet 33: 479–532. PubMed

Kumar, A., S. R. Pearce, K. McLean, G. Harrison, J. S. Heslop-Harrison et al., 1997. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100: 205–217. PubMed

Leitch, A. R., T. Schwarzacher, D. Jackson and I. J. Leitch, 1994. In situ Hybridization. BIOS Scientific, Oxford.

Liu, Z. L., F. P. Han, M. Tan, X. H. Shan, Y. Z. Dong et al., 2004. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor. Appl. Genet. 109: 200–209. PubMed

Lowe, T. M., and S. R. Eddy, 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955–964. PubMed PMC

Ma, J. X., K. M. Devos and J. L. Bennetzen, 2004. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 14: 860–869. PubMed PMC

Macas, J., D. Požárková, A. Navrátilová, M. Nouzová and P. Neumann, 2000. Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol. Gen. Genet. 263: 741–751. PubMed

Macas, J., T. Mészáros and M. Nouzová, 2002. PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18: 28–35. PubMed

Maignan, S., J. P. Guilloteau, Q. Zhou-Liu, C. Clement-Mella and V. Mikol, 1998. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J. Mol. Biol. 282: 359–368. PubMed

Malik, H. S., and T. H. Eickbush, 2001. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 11: 1187–1197. PubMed

Marchler-Bauer, A., J. B. Anderson, C. DeWeese-Scott, N. D. Fedorova, L. Y. Geer et al., 2003. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res. 31: 383–387. PubMed PMC

Martinez-Izquierdo, J. A., J. Garcia-Martinez and C. M. Vicient, 1997. What makes Grande1 retrotransposon different? Genetica 100: 15–28. PubMed

Meyers, B. C., S. V. Tingley and M. Morgante, 2001. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 11: 1660–1676. PubMed PMC

Muniz, L. M., A. Cuadrado, N. Jouve and J. M. Gonzalez, 2001. The detection, cloning, and characterisation of WIS 2–1A retrotransposon-like sequences in Triticum aestivum L. and × Triticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44: 979–989. PubMed

Navrátilová, A., P. Neumann and J. Macas, 2003. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann. Bot. 91: 921–926. PubMed PMC

Neumann, P., M. Nouzová and J. Macas, 2001. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 44: 716–728. PubMed

Neumann, P., D. Požárková and J. Macas, 2003. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol. Biol. 53: 399–410. PubMed

Neumann, P., D. Požárková, A. Koblížková and J. Macas, 2005. PIGY, a new plant envelope-class LTR retrotransposon. Mol. Genet. Genomics 273: 43–53. PubMed

Nouzová, M., P. Neumann, A. Navrátilová, D. W. Galbraith and J. Macas, 2001. Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol. Biol. 45: 229–244. PubMed

Pearce, S. R., G. Harrison, P. J. S. Heslop-Harrison, A. J. Flavell and A. Kumar, 1997. Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome 40: 617–625. PubMed

Pearce, S. R., G. Harrison, D. T. Li, J. S. Heslop-Harrison, A. Kumar et al., 1996. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol. Gen. Genet. 250: 305–315. PubMed

Pearson, W. R., and D. J. Lipman, 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448. PubMed PMC

Peterson-Burch, B. D., D. Nettleton and D. F. Voytas, 2004. Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol. 5: R78. PubMed PMC

Raina, S. N., and H. Rees, 1983. DNA variation between and within chromosome complements of Vicia species. Heredity 51: 335–346.

Rice, P., I. Longden and A. Bleasby, 2000. EMBOSS: the European Molecular Biology open software suite. Trends Genet. 16: 276–277. PubMed

Sanger, F., D. Nicklen and A. R. Coulson, 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467. PubMed PMC

SanMiguel, P., and J. L. Bennetzen, 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82: 37–44.

SanMiguel, P., A. Tikhonov, Y. K. Jin, N. Motchoulskaia, D. Zakharov et al., 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768. PubMed

Shirasu, K., A. H. Schulman, T. Lahaye and P. Schulze-Lefert, 2000. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10: 908–915. PubMed PMC

Skalka, A. M., 1989. Retroviral proteases:first glimpses at the anatomy of a processing machine. Cell 56: 911–913. PubMed

Sonnhammer, E. L. L., and R. Durbin, 1995. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167: GC1–GC10. PubMed

Staden, R., 1996. The Staden sequence analysis package. Mol. Biotechnol. 5: 233–241. PubMed

Thompson, J. D., D. G. Higgins and T. J. Gibson, 1994. Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680. PubMed PMC

Timmons, L., 2002. The long and short of siRNAs. Mol. Cell 10: 435–437. PubMed

Vicient, C. M., R. Kalendar and A. H. Schulman, 2001. Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res. 11: 2041–2049. PubMed PMC

Vitte, C., and O. Panaud, 2003. Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol. Biol. Evol. 20: 528–540. PubMed

Wicker, T., N. Stein, L. Albar, C. Feuillet, E. Schlagenhauf et al., 2001. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26: 307–316. PubMed

Wicker, T., N. Yahiaoui, R. Guyot, E. Schlagenhauf, Z. D. Liu et al., 2003. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15: 1186–1197. PubMed PMC

Wicker, T., W. Zimmermann, D. Perovic, A. H. Paterson, M. Ganal et al., 2005. A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J. 41: 184–194. PubMed

Wright, D. A., and D. F. Voytas, 2002. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12: 122–131. PubMed PMC

Xiong, Y., and T. H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse-transcriptase sequences. EMBO J. 9: 3353–3362. PubMed PMC

Zhang, X. Y., and S. R. Wessler, 2004. Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc. Natl. Acad. Sci. USA 101: 5589–5594. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus

. 2023 Feb 16 ; 14 (1) : 876. [epub] 20230216

Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)

. 2021 Nov 19 ; 10 (11) : . [epub] 20211119

Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats

. 2020 Jan ; 101 (2) : 484-500. [epub] 20191103

Red Clover (Trifolium pratense) and Zigzag Clover (T. medium) - A Picture of Genomic Similarities and Differences

. 2018 ; 9 () : 724. [epub] 20180605

From Mendel's discovery on pea to today's plant genetics and breeding : Commemorating the 150th anniversary of the reading of Mendel's discovery

. 2016 Dec ; 129 (12) : 2267-2280. [epub] 20161007

In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae

. 2015 ; 10 (11) : e0143424. [epub] 20151125

Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size

. 2015 Oct ; 208 (2) : 596-607. [epub] 20150608

Genome-wide analysis of repeat diversity across the family Musaceae

. 2014 ; 9 (6) : e98918. [epub] 20140616

Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa

. 2013 ; 5 (4) : 769-82.

Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris

. 2012 ; 7 (2) : e31898. [epub] 20120229

A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons

. 2011 Dec ; 139 (11-12) : 1543-55. [epub] 20120429

Next generation sequencing-based analysis of repetitive DNA in the model dioecious [corrected] plant Silene latifolia

. 2011 ; 6 (11) : e27335. [epub] 20111109

Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies

. 2011 Feb ; 107 (2) : 255-68. [epub] 20101214

Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre

. 2008 Nov ; 280 (5) : 427-36. [epub] 20080902

Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes

. 2008 ; 16 (7) : 961-76. [epub] 20081015

An interspecific hybrid as a tool to study phylogenetic relationships in plants using the GISH technique

. 2007 ; 15 (8) : 1051-9. [epub] 20071211

Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

. 2007 Nov 21 ; 8 () : 427. [epub] 20071121

Zobrazit více v PubMed

GENBANK
AY936172

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...