Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
16585134
PubMed Central
PMC1526492
DOI
10.1534/genetics.106.056259
PII: genetics.106.056259
Knihovny.cz E-zdroje
- MeSH
- amplifikace genu MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- Fabaceae genetika MeSH
- genom rostlinný * MeSH
- genová dávka MeSH
- hybridizace in situ fluorescenční MeSH
- introny MeSH
- konzervovaná sekvence MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce MeSH
- retroelementy genetika MeSH
- rostlinné proteiny genetika MeSH
- sekvence nukleotidů MeSH
- vikev genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy MeSH
- rostlinné proteiny MeSH
Amplification and eventual elimination of dispersed repeats, especially those of the retroelement origin, account for most of the profound size variability observed among plant genomes. In most higher plants investigated so far, differential accumulation of various families of elements contributes to these differences. Here we report the identification of giant Ty3/gypsy-like retrotransposons from the legume plant Vicia pannonica, which alone make up approximately 38% of the genome of this species. These retrotransposons have structural features of the Ogre elements previously identified in the genomes of pea and Medicago. These features include extreme size (25 kb), the presence of an extra ORF upstream of the gag-pol region, and a putative intron dividing the prot and rt coding sequences. The Ogre elements are evenly dispersed on V. pannonica chromosomes except for terminal regions containing satellite repeats, their individual copies show extraordinary sequence similarity, and at least part of them are transcriptionally active, which suggests their recent amplification. Similar elements were also detected in several other Vicia species but in most cases in significantly lower numbers. However, there was no obvious correlation of the abundance of Ogre sequences with the genome size of these species.
Zobrazit více v PubMed
Altschul, S. F., T. L. Madden, A. A. Schaffer, J. H. Zhang, Z. Zhang et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. PubMed PMC
Arumuganathan, K., and E. D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208–218.
AsanteAppiah, E., and A. M. Skalka, 1997. A metal-induced conformational change and activation of HIV-1 integrase. J. Biol. Chem. 272: 16196–16205. PubMed
Bennett, M. D., and I. J. Leitch, 2004. Plant DNA C-Values Database (release 3.0). http://www.rbgkew.org.uk/cval/homepage.html.
Bennett, M. D., and I. J. Leitch, 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann. Bot. 95: 45–90. PubMed PMC
Burd, C. G., and G. Dreyfuss, 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621. PubMed
Chantret, N., J. Salse, F. Sabot, S. Rahman, A. Bellec et al., 2005. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17: 1033–1045. PubMed PMC
Chooi, W. Y., 1971. Comparison of DNA of six Vicia species by method of DNA-DNA hybridization. Genetics 68: 213–230. PubMed PMC
Davies, J. F., Z. Hostomska, Z. Hostomsky, S. R. Jordan and D. A. Matthews, 1991. Crystal-structure of the ribonuclease-H domain of HIV-1 reverse-transcriptase. Science 252: 88–95. PubMed
Dellaporta, S. L., J. Wood and J. B. Hicks, 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.
Devos, K. M., J. K. M. Brown and J. L. Bennetzen, 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12: 1075–1079. PubMed PMC
Ding, J. P., K. Das, Y. Hsiou, S. G. Sarafianos, A. D. Clark et al., 1998. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 angström resolution. J. Mol. Biol. 284: 1095–1111. PubMed
Feschotte, C., N. Jiang and S. R. Wessler, 2002. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3: 329–341. PubMed
Flavell, R. B., M. D. Bennett, J. B. Smith and D. B. Smith, 1974. Genome size and proportion of repeated nucleotide-sequence DNA in plants. Biochem. Genet. 12: 257–269. PubMed
Gualberti, G., J. Doležel, J. Macas and S. Lucretti, 1996. Preparation of pea (Pisum sativum L.) chromosome and nucleus suspensions from single root tips. Theor. Appl. Genet. 92: 744–751. PubMed
Hebsgaard, S. M., P. G. Korning, N. Tolstrup, J. Engelbrecht, P. Rouze et al., 1996. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 24: 3439–3452. PubMed PMC
Hill, P., D. Burford, D. M. A. Martin and A. J. Flavell, 2005. Retrotransposon populations of Vicia species with varying genome size. Mol. Genet. Genomics 273: 371–381. PubMed
Hirochika, H., A. Fukuchi and F. Kikuchi, 1992. Retrotransposon families in rice. Mol. Gen. Genet. 233: 209–216. PubMed
Hirochika, H., H. Okamoto and T. Kakutani, 2000. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12: 357–368. PubMed PMC
Ingham, L. D., W. W. Hanna, J. W. Baier and L. C. Hannah, 1993. Origin of the main class of repetitive DNA within selected Pennisetum species. Mol. Gen. Genet. 238: 350–356. PubMed
Irifune, K., K. Hirai, J. Zheng, R. Tanaka and H. Morikawa, 1995. Nucleotide-sequence of a highly repeated DNA-sequence and its chromosomal localization in Allium fistulosum. Theor. Appl. Genet. 90: 312–316. PubMed
Jackson, J. P., A. M. Lindroth, X. F. Cao and S. E. Jacobsen, 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556–560. PubMed
Kato, A., K. Yakura and S. Tanifuji, 1984. Sequence analysis of Vicia faba repeated DNA, the FokI repeat element. Nucleic Acids Res. 12: 6415–6426. PubMed PMC
Kentner, E. K., M. L. Arnold and S. R. Wessler, 2003. Characterization of high-copy-number retrotransposons from the large genomes of the Louisiana Iris species and their use as molecular markers. Genetics 164: 685–697. PubMed PMC
Kumar, A., and J. L. Bennetzen, 1999. Plant retrotransposons. Annu. Rev. Genet 33: 479–532. PubMed
Kumar, A., S. R. Pearce, K. McLean, G. Harrison, J. S. Heslop-Harrison et al., 1997. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100: 205–217. PubMed
Leitch, A. R., T. Schwarzacher, D. Jackson and I. J. Leitch, 1994. In situ Hybridization. BIOS Scientific, Oxford.
Liu, Z. L., F. P. Han, M. Tan, X. H. Shan, Y. Z. Dong et al., 2004. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor. Appl. Genet. 109: 200–209. PubMed
Lowe, T. M., and S. R. Eddy, 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955–964. PubMed PMC
Ma, J. X., K. M. Devos and J. L. Bennetzen, 2004. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 14: 860–869. PubMed PMC
Macas, J., D. Požárková, A. Navrátilová, M. Nouzová and P. Neumann, 2000. Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol. Gen. Genet. 263: 741–751. PubMed
Macas, J., T. Mészáros and M. Nouzová, 2002. PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18: 28–35. PubMed
Maignan, S., J. P. Guilloteau, Q. Zhou-Liu, C. Clement-Mella and V. Mikol, 1998. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J. Mol. Biol. 282: 359–368. PubMed
Malik, H. S., and T. H. Eickbush, 2001. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 11: 1187–1197. PubMed
Marchler-Bauer, A., J. B. Anderson, C. DeWeese-Scott, N. D. Fedorova, L. Y. Geer et al., 2003. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res. 31: 383–387. PubMed PMC
Martinez-Izquierdo, J. A., J. Garcia-Martinez and C. M. Vicient, 1997. What makes Grande1 retrotransposon different? Genetica 100: 15–28. PubMed
Meyers, B. C., S. V. Tingley and M. Morgante, 2001. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 11: 1660–1676. PubMed PMC
Muniz, L. M., A. Cuadrado, N. Jouve and J. M. Gonzalez, 2001. The detection, cloning, and characterisation of WIS 2–1A retrotransposon-like sequences in Triticum aestivum L. and × Triticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44: 979–989. PubMed
Navrátilová, A., P. Neumann and J. Macas, 2003. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann. Bot. 91: 921–926. PubMed PMC
Neumann, P., M. Nouzová and J. Macas, 2001. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 44: 716–728. PubMed
Neumann, P., D. Požárková and J. Macas, 2003. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol. Biol. 53: 399–410. PubMed
Neumann, P., D. Požárková, A. Koblížková and J. Macas, 2005. PIGY, a new plant envelope-class LTR retrotransposon. Mol. Genet. Genomics 273: 43–53. PubMed
Nouzová, M., P. Neumann, A. Navrátilová, D. W. Galbraith and J. Macas, 2001. Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol. Biol. 45: 229–244. PubMed
Pearce, S. R., G. Harrison, P. J. S. Heslop-Harrison, A. J. Flavell and A. Kumar, 1997. Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome 40: 617–625. PubMed
Pearce, S. R., G. Harrison, D. T. Li, J. S. Heslop-Harrison, A. Kumar et al., 1996. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol. Gen. Genet. 250: 305–315. PubMed
Pearson, W. R., and D. J. Lipman, 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448. PubMed PMC
Peterson-Burch, B. D., D. Nettleton and D. F. Voytas, 2004. Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol. 5: R78. PubMed PMC
Raina, S. N., and H. Rees, 1983. DNA variation between and within chromosome complements of Vicia species. Heredity 51: 335–346.
Rice, P., I. Longden and A. Bleasby, 2000. EMBOSS: the European Molecular Biology open software suite. Trends Genet. 16: 276–277. PubMed
Sanger, F., D. Nicklen and A. R. Coulson, 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467. PubMed PMC
SanMiguel, P., and J. L. Bennetzen, 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82: 37–44.
SanMiguel, P., A. Tikhonov, Y. K. Jin, N. Motchoulskaia, D. Zakharov et al., 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768. PubMed
Shirasu, K., A. H. Schulman, T. Lahaye and P. Schulze-Lefert, 2000. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10: 908–915. PubMed PMC
Skalka, A. M., 1989. Retroviral proteases:first glimpses at the anatomy of a processing machine. Cell 56: 911–913. PubMed
Sonnhammer, E. L. L., and R. Durbin, 1995. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167: GC1–GC10. PubMed
Staden, R., 1996. The Staden sequence analysis package. Mol. Biotechnol. 5: 233–241. PubMed
Thompson, J. D., D. G. Higgins and T. J. Gibson, 1994. Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680. PubMed PMC
Timmons, L., 2002. The long and short of siRNAs. Mol. Cell 10: 435–437. PubMed
Vicient, C. M., R. Kalendar and A. H. Schulman, 2001. Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res. 11: 2041–2049. PubMed PMC
Vitte, C., and O. Panaud, 2003. Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol. Biol. Evol. 20: 528–540. PubMed
Wicker, T., N. Stein, L. Albar, C. Feuillet, E. Schlagenhauf et al., 2001. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26: 307–316. PubMed
Wicker, T., N. Yahiaoui, R. Guyot, E. Schlagenhauf, Z. D. Liu et al., 2003. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15: 1186–1197. PubMed PMC
Wicker, T., W. Zimmermann, D. Perovic, A. H. Paterson, M. Ganal et al., 2005. A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J. 41: 184–194. PubMed
Wright, D. A., and D. F. Voytas, 2002. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12: 122–131. PubMed PMC
Xiong, Y., and T. H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse-transcriptase sequences. EMBO J. 9: 3353–3362. PubMed PMC
Zhang, X. Y., and S. R. Wessler, 2004. Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc. Natl. Acad. Sci. USA 101: 5589–5594. PubMed PMC
Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)
Genome-wide analysis of repeat diversity across the family Musaceae
A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons
GENBANK
AY936172