Genome-wide analysis of repeat diversity across the family Musaceae
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24932725
PubMed Central
PMC4059648
DOI
10.1371/journal.pone.0098918
PII: PONE-D-14-13148
Knihovny.cz E-zdroje
- MeSH
- banánovníkovité klasifikace genetika MeSH
- DNA rostlinná analýza genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- molekulární evoluce MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND: The banana family (Musaceae) includes genetically a diverse group of species and their diploid and polyploid hybrids that are widely cultivated in the tropics. In spite of their socio-economic importance, the knowledge of Musaceae genomes is basically limited to draft genome assemblies of two species, Musa acuminata and M. balbisiana. Here we aimed to complement this information by analyzing repetitive genome fractions of six species selected to represent various phylogenetic groups within the family. RESULTS: Low-pass sequencing of M. acuminata, M. ornata, M. textilis, M. beccarii, M. balbisiana, and Ensete gilletii genomes was performed using a 454/Roche platform. Sequence reads were subjected to analysis of their overall intra- and inter-specific similarities and, all major repeat families were quantified using graph-based clustering. Maximus/SIRE and Angela lineages of Ty1/copia long terminal repeat (LTR) retrotransposons and the chromovirus lineage of Ty3/gypsy elements were found to make up most of highly repetitive DNA in all species (14-34.5% of the genome). However, there were quantitative differences and sequence variations detected for classified repeat families as well as for the bulk of total repetitive DNA. These differences were most pronounced between species from different taxonomic sections of the Musaceae family, whereas pairs of closely related species (M. acuminata/M. ornata and M. beccarii/M. textilis) shared similar populations of repetitive elements. CONCLUSIONS: This study provided the first insight into the composition and sequence variation of repetitive parts of Musaceae genomes. It allowed identification of repetitive sequences specific for a single species or a group of species that can be utilized as molecular markers in breeding programs and generated computational resources that will be instrumental in repeat masking and annotation in future genome assembly projects.
Zobrazit více v PubMed
Cheesman EE (2008) Classification of the Bananas: The Genus Musa L.
Risterucci A, Hippolyte I, Perrier X (2009) Development and assessment of Diversity Arrays Technology for high-throughput DNA analyses in Musa . Theor Appl Genet 119: 1093–1103. PubMed
Loh JP, Kiew R, Set O, Gan LH, Gan YY (2000) Amplified fragment length polymorphism fingerprinting of 16 banana cultivars (Musa cvs.). Mol Phylogenet Evol 17: 360–366. PubMed
Wong C (2001) Genetic diversity of the wild banana Musa acuminata Colla in Malaysia as evidenced by AFLP. Ann Bot 88: 1017–1025.
Ruangsuttapha S, Eimert K, Schröder M-B, Silayoi B, Denduangboripant J, et al. (2007) Molecular phylogeny of banana cultivars from Thailand based on HAT-RAPD markers. Genet Resour Crop Evol 54: 1565–1572.
Li L-F, Häkkinen M, Yuan Y-M, Hao G, Ge X-J (2010) Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa . Mol Phylogenet Evol 57: 1–10. PubMed
Christelová P, Valárik M, Hřibová E, Van den Houwe I, Channelière S, et al. (2011) A platform for efficient genotyping in Musa using microsatellite markers. AoB Plants 2011: plr024. PubMed PMC
Hřibová E, Čížková J, Christelová P, Taudien S, de Langhe E, et al. (2011) The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS One 6: e17863. PubMed PMC
Häkkinen M (2013) Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon 62: 809–813.
Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc London, Bot 55: 302–312.
Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100: 1073–1084. PubMed PMC
Simmonds NW (1956) Botanical results of the banana collecting expedition 1954–5. Kew Bull 3: 463–489.
Cheesman EE (1950) Classification of the bananas. III: Critical notes on species. Kew Bull 5: 27–28.
Jarret RL, Gawel N, Whittemore A, Sharrock S (1992) RFLP-based phylogeny of Musa species in Papua New Guinea. Theor Appl Genet 84: 579–584. PubMed
Carreel F (1994) Etude de la diversité des bananiers (genre Musa) à l'aide des marquers RFLP Institut National Agronomique, Paris-Grignon, France.
Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36: 351–357.
Bartoš J, Alkhimova O, Doleželová M, De Langhe E, Doležel J (2005) Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenet Genome Res 109: 50–57. PubMed
Hřibová E, Doleželová M, Town CD, Macas J, Doležel J (2007) Isolation and characterization of the highly repeated fraction of the banana genome. Cytogenet Genome Res 119: 268–274. PubMed
Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, et al. (2010) Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10: 204. PubMed PMC
D'Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, et al. (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488: 213–217. PubMed
Ellis TH, Poyser SJ, Knox MR, Vershinin A V, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260: 9–19. PubMed
Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98: 704–711.
Purugganan MD, Wessler SR (1995) Transposon signatures: species-specific molecular markers that utilize a class of multiple-copy nuclear DNA. Mol Ecol 4: 265–270. PubMed
Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11: 378. PubMed PMC
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29: 792–793. PubMed
Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, et al. (2013) “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids.”. BMC Genomics 14: 683. PubMed PMC
Čížková J, Hřibová E, Humplíková L, Christelová P, Suchánková P, et al. (2013) Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS One 8: e54808. PubMed PMC
Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2: 231–239. PubMed
Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, et al. (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2: 4. PubMed PMC
Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, et al. (2011) Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia . PLoS One 6: e27335. PubMed PMC
Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien M-A, et al. (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28: 2843–2854. PubMed
Heckmann S, Macas J, Kumke K, Fuchs J, Schubert V, et al. (2013) The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J 73: 555–565. PubMed
Pagan HJT, Macas J, Novák P, McCulloch ES, Stevens RD, et al. (2012) Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol 4: 575–585. PubMed PMC
Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macas J, et al. (2012) Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci U S A 109: 13343–13346. PubMed PMC
Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, et al. (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8: e1002777. PubMed PMC
Gong Z, Wu Y, Koblížková A, Torres GA, Wang K, et al. (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24: 3559–3574. PubMed PMC
Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, et al. (2012) The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J 72: 142–153. PubMed
Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians . Genome Biol Evol 3: 219–229. PubMed PMC
Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, et al. (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza . BMC Evol Biol 7: 152. PubMed PMC
Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463–467. PubMed
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. (2010) The genome of the domesticated apple (Malus×domestica Borkh.). Nat Genet 42: 833–839. PubMed
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556. PubMed
Wang Y, Fan G, Liu Y, Sun F, Shi C, et al. (2013) The sacred lotus genome provides insights into the evolution of flowering plants. Plant J 76: 557–567. PubMed
Neumann P, Koblížková A, Navrátilová A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173: 1047–1056. PubMed PMC
Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium . Genome Res 16: 1252–1261. PubMed PMC
Christelová P, Valárik M, Hřibová E, De Langhe E, Doležel J (2011) A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Evol Biol 11: 103. PubMed PMC
Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novák P, et al. (2012) Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 29: 3601–3611. PubMed PMC
Zhang H-B, Zhao X, Ding X, Paterson AH, Wing RA (1995) Preparation of megabase-size DNA from plant nuclei. Plant J 7: 175–184.
Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, et al. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39: 960–968. PubMed
Smit A, Hubley R, Green P (1996) RepeatMasker Open-3.0.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed
Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 12: 543–548. PubMed
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780. PubMed PMC
Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26: 1641–1650. PubMed PMC
Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21: 1129–1164.
Advances in the Molecular Cytogenetics of Bananas, Family Musaceae
Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)
SRA
ERX047938, ERX047939, ERX047940, ERX047941, ERX047942, ERX047943, ERX047944