Stretching the rules: monocentric chromosomes with multiple centromere domains

. 2012 ; 8 (6) : e1002777. [epub] 20120621

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22737088
Odkazy

PubMed 22737088
PubMed Central PMC3380829
DOI 10.1371/journal.pgen.1002777
PII: PGENETICS-D-12-00460
Knihovny.cz E-zdroje

The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function.

Zobrazit více v PubMed

Jiang JM, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends Plant Sci. 2003;8:570–575. PubMed

Malik HS, Henikoff S. Major evolutionary transitions in centromere complexity. Cell. 2009;138:1067–1082. PubMed

Black BE, Bassett EA. The histone variant CENP-A and centromere specification. Curr Opin Cell Biol. 2008;20:91–100. PubMed

Sullivan BA, Karpen GH. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol. 2004;11:1076–1083. PubMed PMC

Ribeiro SA, Vagnarelli P, Dong Y, Hori T, McEwen BF, et al. A super-resolution map of the vertebrate kinetochore. Proc Natl Acad Sci U S A. 2010;107:10484–10489. PubMed PMC

Marshall OJ, Marshall AT, Choo KH. Three-dimensional localization of CENP-A suggests a complex higher order structure of centromeric chromatin. J Cell Biol. 2008;183:1193–1202. PubMed PMC

Heckmann S, Schroeder-Reiter E, Kumke K, Ma L, Nagaki K, et al. Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet Genome Res. 2011;134:220–228. PubMed

Nagaki K, Murata M. Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res. 2005;13:195–203. PubMed

Dernburg AF. Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol. 2001;153:F33–38. PubMed PMC

Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427–427. PubMed PMC

Plohl M, Luchetti A, Mestrovic N, Mantovani B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008;409:72–82. PubMed

Kawabe A, Nasuda S, Charlesworth D. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics. 2006;174:2021–2032. PubMed PMC

Monen J, Maddox PS, Hyndman F, Oegema K, Desai A. Differential role of CENP-A in the segregation of holocentric C-elegans chromosomes during meiosis and mitosis. Nature Cell Biol. 2005;7:1248–1255. PubMed

Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A. 2011;108:E498–505. PubMed PMC

Moraes IC, Lermontova I, Schubert I. Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. Plant Mol Biol. 2011;75:253–261. PubMed

Malik HS. The centromere-drive hypothesis: a simple basis for centromere complexity. Prog Mol Subcell Biol. 2009;48:33–52. PubMed

Binarova P, Hause B, Dolezel J, Draber P. Association of gamma-tubulin with kinetochore/centromeric region of plant chromosomes. Plant J. 1998;14:751–757.

ten Hoopen R, Manteuffel R, Dolezel J, Malysheva L, Schubert I. Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma. 2000;109:482–489. PubMed

Pepper DA, Brinkley BR. Localization of tubulin in the mitotic apparatus of mammalian cells by immunofluorescence and immunoelectron microscopy. Chromosoma. 1977;60:223–235. PubMed

Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378–378. PubMed PMC

Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2:4. PubMed PMC

Hall AE, Keith KC, Hall SE, Copenhaver GP, Preuss D. The rapidly evolving field of plant centromeres. Current Opin Plant Biol. 2004;7:108–114. PubMed

Zhang W, Friebe B, Gill BS, Jiang J. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma. 2010;119:553–563. PubMed

Higgins AW, Gustashaw KM, Willard HF. Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res. 2005;13:745–762. PubMed

Dawe RK, Henikoff S. Centromeres put epigenetics in the driver's seat. Trends Biochem Sci. 2006;31:662–669. PubMed

McFarlane RJ, Humphrey TC. A role for recombination in centromere function. Trends Genet. 2010;26:209–213. PubMed

Nagaki K, Kashihara K, Murata M. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell. 2005;17:1886–1893. PubMed PMC

Barlow PW, Nevin D. Quantitative karyology of some species of Luzula. Plant Syst Evol. 1976;125:77–86.

C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282:2012–2018. PubMed

Haizel T, Lim YK, Leitch AR, Moore G. Molecular analysis of holocentric centromeres of Luzula species. Cytogenet Genome Res. 2005;109:134–143. PubMed

Lee HR, Zhang W, Langdon T, Jin W, Yan H, et al. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A. 2005;102:11793–11798. PubMed PMC

Talbert PB, Bayes JJ, Henikoff S. Evolution of centromeres and kinetochores: A two-part fugue. In: De Wulf P, Earnshaw WC, editors. The kinetochore: from molecular discoveries to cancer therapy. New York: Springer; 2009. pp. 193–229.

Neumann P, Požárková D, Vrána J, Doležel J, Macas J. Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res. 2002;10:63–71. PubMed

Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms - 583 new estimates. Ann Botany. 1997;80:169–196.

Neumann P, Lysák M, Doležel J, Macas J. Isolation of chromosomes from Pisum sativum L. hairy root cultures and their analysis by flow cytometry. Plant Sci. 1998;137:205–215.

Prufer K, Stenzel U, Dannemann M, Green RE, Lachmann M, et al. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics. 2008;24:1530–1531. PubMed PMC

Schroeder-Reiter E, Sanei M, Houben A, Wanner G. Current SEM techniques for de- and re-construction of centromeres to determine 3D CENH3 distribution in barley mitotic chromosomes. J Microsc. 2012;246:96–106. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Core promoterome of barley embryo

. 2024 Dec ; 23 () : 264-277. [epub] 20231205

KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants

. 2024 Feb 26 ; 32 (1) : 3. [epub] 20240226

Injection-based hairy root induction and plant regeneration techniques in Brassicaceae

. 2024 Feb 17 ; 20 (1) : 29. [epub] 20240217

Holocentromeres can consist of merely a few megabase-sized satellite arrays

. 2023 Jun 13 ; 14 (1) : 3502. [epub] 20230613

Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes

. 2023 Feb ; 19 (2) : e1010633. [epub] 20230203

Investigating the Origin and Evolution of Polyploid Trifolium medium L. Karyotype by Comparative Cytogenomic Methods

. 2023 Jan 04 ; 12 (2) : . [epub] 20230104

The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences-Implications for Evolution and Biological Regulation

. 2022 Jul 30 ; 23 (15) : . [epub] 20220730

Prospects of telomere-to-telomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome

. 2022 Jul ; 20 (7) : 1373-1386. [epub] 20220407

Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)

. 2021 Nov 19 ; 10 (11) : . [epub] 20211119

Centromere size scales with genome size across Eukaryotes

. 2021 Oct 06 ; 11 (1) : 19811. [epub] 20211006

Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae

. 2020 Aug 01 ; 37 (8) : 2341-2356.

Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture

. 2020 May 15 ; 21 (10) : . [epub] 20200515

A reference genome for pea provides insight into legume genome evolution

. 2019 Sep ; 51 (9) : 1411-1422. [epub] 20190902

Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum

. 2019 Feb 09 ; 20 (3) : . [epub] 20190209

Mitotic Spindle Attachment to the Holocentric Chromosomes of Cuscuta europaea Does Not Correlate With the Distribution of CENH3 Chromatin

. 2019 ; 10 () : 1799. [epub] 20200124

Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing

. 2018 Apr 11 ; 8 (1) : 5838. [epub] 20180411

TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads

. 2017 Jul 07 ; 45 (12) : e111.

Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species

. 2017 Mar ; 126 (2) : 325-335. [epub] 20160919

Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive

. 2016 Dec ; 118 (7) : 1347-1352. [epub] 20160910

Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)

. 2016 May 26 ; 16 (1) : 120. [epub] 20160526

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...