A reference genome for pea provides insight into legume genome evolution

. 2019 Sep ; 51 (9) : 1411-1422. [epub] 20190902

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31477930
Odkazy

PubMed 31477930
DOI 10.1038/s41588-019-0480-1
PII: 10.1038/s41588-019-0480-1
Knihovny.cz E-zdroje

We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.

Agroécologie AgroSup Dijon INRA Université Bourgogne Franche Comté Bourgogne Université Bourgogne Franche Comté Dijon France

Biology Centre Czech Academy of Sciences České Budějovice Czech Republic

Centre for Crop and Disease Management Curtin University Bentley Western Australia Australia

Centre for Crop and Disease Management School of Molecular and Life Science Curtin University Bentley Western Australia Australia

Crop Development Centre Department of Plant Sciences University of Saskatchewan Saskatoon Saskatchewan Canada

Department of Horticulture Washington State University Pullman WA USA

Department of Plant Breeding IFZ Research Centre for Biosystems Land Use and Nutrition Justus Liebig University Giessen Germany

Etude du Polymorphisme des Génomes Végétaux INRA Université Paris Saclay Evry France

Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Université Evry Université Paris Saclay Evry France

Genoscope Institut François Jacob CEA Université Paris Saclay Evry France

GQE Le Moulon INRA University of Paris Sud CNRS AgroParisTech Université Paris Saclay Gif sur Yvette France

Institute of Experimental Botany Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc Czech Republic

Institute of Plant Sciences Paris Saclay INRA CNRS University of Paris Sud University of Evry University Paris Diderot Sorbonne Paris Cite University of Paris Saclay Orsay France

School of Agriculture and Environment University of Western Australia Perth Western Australia Australia

School of Biological Sciences and Institute of Agriculture University of Western Australia Perth Western Australia Australia

School of Biological Sciences University of Auckland Auckland New Zealand

UMR 1095 Génétique Diversité Ecophysiologie des Céréales INRA Université Clermont Auvergne Clermont Ferrand France

URGI INRA Université Paris Saclay Versailles France

USDA Agricultural Research Service Pullman WA USA

Zobrazit více v PubMed

Burstin, J., Gallardo, K., Mir, R. R., Varshney, R. K. & Duc, G. Improving protein content and nutrition quality, in Biology and Breeding of Food Legumes (eds Pratap, A. & Kumar, J.) 314–328 (CAB International, 2011).

Guillon, F. & Champ, M. M.-J. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br. J. Nutr. 88, S293–S306 (2002). PubMed

Dahl, W. J., Foster, L. M. & Tyler, R. T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 108, S3–S10 (2012). PubMed

Foschia, M., Horstmann, S. W., Arendt, E. K. & Zannini, E. Legumes as functional ingredients in gluten-free bakery and pasta products. Ann. Rev. Food Sci. Technol. 8, 75–96 (2017).

Nemecek, T. et al. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 28, 380–393 (2008).

Crews, T. E. & Peoples, M. B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 102, 279–297 (2004).

Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018). PubMed

Zohary, D. & Hopf, M. Domestication of Plants in the Old World (Oxford Univ. Press, Oxford, 2000).

Doležel, J. et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. 82, 17–26 (1998).

Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011). PubMed PMC

Sato, S. et al. Genome structure of the legume, Lotus japonicus. DNA Res. 15, 227–239 (2008). PubMed PMC

Schmutz, J. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010). PubMed

Mendel, G. Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865. Abhandlungen, 3–47 (1866).

Ellis, T. H. N., Hofer, J. M. I., Timmerman-Vaughan, G. M., Coyne, C. J. & Hellens, R. P. Mendel, 150 years on. Trends Plant Sci. 16, 590–596 (2011). PubMed

Tayeh, N. et al. Genomic tools in pea breeding programs: status and perspectives. Front. Plant Sci. 6, 1037 (2015). PubMed PMC

Ellis, T. H. N. & Poyser, S. J. An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol. 153, 17–25 (2002).

Flavell, R. B., Bennett, M. D., Smith, J. B. & Smith, D. B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 12, 257–269 (1974). PubMed

Murray, M. G., Peters, D. L. & Thompson, W. F. Ancient repeated sequences in the pea and mung bean genomes and implications for genome evolution. J. Mol. Evol. 17, 31–42 (1981).

Macas, J. et al. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One 10, e0143424 (2015). PubMed PMC

Hammarlund, C. & Håkansson, A. Parallelism of chromosome ring formation, sterility and linkage in Pisum. Hereditas 14, 97–98 (1930).

Sansome, E. Segmental interchange lines in Pisum sativum. Nature 139, 113 (1937).

Lamm, R. & Miravalle, R. J. A translocation tester set in Pisum. Hereditas 45, 417–440 (1959).

Gali, K. K. et al. Development of a sequence-based reference physical map of pea (Pisum sativum L.). Front. Plant Sci. 10, 323 (2019). PubMed PMC

Neumann, P., Pozárková, D., Vrána, J., Doležel, J. & Macas, J. Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res. 10, 63–71 (2002). PubMed

Tayeh, N. et al. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high density, high resolution consensus genetic map. Plant J. 84, 1257–1273 (2015). PubMed

Neumann, P. et al. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 8, e1002777 (2012). PubMed PMC

Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I. Genome size diversity and its impact on the evolution of land plants. Genes 9, 88 (2018). PMC

Bennett, M. C. & Leitch, I. J. Plant DNA C-values Database release 6.0 (FAIRsharing.org, 2012); https://doi.org/10.25504/FAIRsharing.7qexb2

Hane, J. K. et al. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnol. J. 15, 318–330 (2017). PubMed

Blixt, S. Mutation genetics in Pisum. Agric. Hort. Genet. 30, 1–293 (1972).

Cannon, S. et al. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol. Biol. Evol. 32, 193–210 (2015). PubMed

Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003). PubMed

Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 54, 575–594 (2005). PubMed

Li, S. F. et al. Chromosome evolution in connection with repetitive sequences and epigenetics in plants. Genes 8, 290 (2017). PMC

De Vega, J. J. et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 5, 17394 (2015). PubMed PMC

Lee, C., Yu, D., Choi, H. K. & Kim, R. W. Reconstruction of a composite comparative map composed of ten legume genomes. Genes Genom. 39, 111–119 (2017).

Kamphuis, L. G. et al. The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration. New Phytol. 174, 299–303 (2007). PubMed

Ben-Ze'ev, N. & Zohary, D. Species relationships in the genus Pisum L. Isr. J. Bot. 22, 73–91 (1973).

Neumann, P., Nouzová, M. & Macas, J. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 44, 716–728 (2001). PubMed

Ladizinsky, G. & Abbo, S. (eds.) The Pisum genus. in The Search for Wild Relatives of Cool Season Legumes 55–68 (Springer, 2015).

Kosterin, O. E. & Bogdanova, V. S. Reciprocal compatibility within the genus Pisum L. as studied in F

Davis, P. H. in Flora of Turkey and the East Aegean Islands Vol. 3 (ed P. H. Davis) 370–373 (Edinburgh Univ., 1970).

Weeden, N. F. Domestication of pea (Pisum sativum L.): the case of the Abyssinicum pea. Front. Plant Sci. 9, 515 (2018). PubMed PMC

Pagani, L. et al. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am. J. Hum. Genet. 91, 83–96 (2012). PubMed PMC

Gabriel, I. et al. Variation in seed protein digestion of different pea (Pisum sativum L.) genotypes by cecectomized broiler chickens: 1. Endogenous amino acid losses, true digestibility and in vitro hydrolysis of proteins. Livest. Sci. 113, 251–261 (2008).

Rubio, L. A. et al. Characterization of pea (Pisum sativum) seed protein fractions. J. Sci. Food Agric. 94, 280–287 (2014). PubMed

Bourgeois, M. et al. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 9, 254–271 (2009). PubMed

Casey, R. & Domoney, C. in Seed Proteins (eds Shewry, P. R. & Casey, R.) 171–208 (Kluwer Academic Publishers, 1999).

Yoshino, M., Nagamatsu, A., Tsutsumi, K. I. & Kanazawa, A. The regulatory function of the upstream sequence of the β-conglycinin α subunit gene in seed-specific transcription is associated with the presence of the RY sequence. Genes Genet. Syst. 81, 135–141 (2006). PubMed

Yamamoto, S., Nishihara, M., Morikawa, H., Yamauchi, D. & Minamikawa, T. Promoter analysis of seed storage protein genes from Canavalia gladiata DC. Plant Mol. Biol. 27, 729–741 (1995). PubMed

Bourgeois, M. et al. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 11, 1581–1594 (2011). PubMed

Smýkal, P. et al. Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci. Rep. 7, 17384 (2017). PubMed PMC

Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012). PubMed PMC

Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

Madoui, M.-A. et al. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with whole genome profiling PubMed PMC

van Oeveren, J. et al. Sequence-based physical mapping of complex genomes by whole genome rofiling. Genome Res. 21, 618–625 (2011). PubMed PMC

Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317 (2010). PubMed

Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010). PubMed PMC

Bayer, P. E. et al. High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theor. Appl. Genet. 128, 1039–1047 (2015). PubMed

Tang, H. et al. ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol. 16, 3 (2015). PubMed PMC

Tang, H. et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 27, 312 (2014).

Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PloS One 6, e16526 (2011). PubMed PMC

Quesneville, H. et al. Combined evidence annotation of transposable elements in genome sequences. PLoS Comput. Biol. 1, e22 (2005). PMC

Hoede, C. et al. PASTEC: an automatic transposable element classification tool. PLoS ONE 9, e91929 (2014). PubMed PMC

Jamilloux, V., Daron, J., Choulet, F. & Quesneville, H. De novo annotation of transposable elements: tackling the fat genome issue. Proc. IEEE 105, 474–481 (2107).

Novák, P., Neumann, P. & Macas, J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11, 378 (2010). PubMed PMC

Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013). PubMed

Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007). PubMed

Keller, O. et al. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 6, 757–763 (2011).

Solovyev, V. et al. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7, S10 (2006). PubMed PMC

Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005). PubMed PMC

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC

Alves-Carvalho, S. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 84, 1–19 (2015). PubMed

Turo, C. J. Genomic Analysis of Fungal Species Causing Ascochyta Blight in Field Pea. PhD thesis, Curtin Univ. (2016).

Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotech. 33, 290 (2015).

Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). PubMed PMC

Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008). PubMed PMC

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

The UniProt Consortium. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 39, D214–D219 (2011).

Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014). PubMed PMC

Cock, P. J. A., Grüning, B. A., Paszkiewicz, K. & Pritchard, L. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. Peer J. 1, e167 (2013). PubMed

Foissac, S. et al. Genome annotation in plants and fungi: EuGene as a model platform. Curr. Bioinf. 3, 87–97 (2008).

Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017). PubMed

Lelandais-Brière, C. et al. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21, 2780–2796 (2009). PubMed PMC

Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015). PubMed PMC

Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014). PubMed

Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC

Bonnal, R. J. P. et al. Biogem: an effective tool-based approach for scaling up open source software development in bioinformatics. Bioinformatics 28, 1035–1037 (2012). PubMed PMC

Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725–736 (1994).

Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000). PubMed

Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

Vanneste, K., de Peer, Van & Maere, Y. S. Inference of genome duplications from age distributions revisited. Mol. Biol. Evol. 30, 177–190 (2013). PubMed

Pont, C. et al. Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biol. 20, 29 (2019). PubMed PMC

Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 47, 438–446 (2015).

Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotech. 31, 240–246 (2013).

Singh, N. K. et al. The first draft of the pigeonpea genome sequence. J. Plant Biochem. Biotechnol. 21, 98–112 (2012). PubMed

Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707–713 (2014). PubMed

Kang, Y. J. et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 5, 5443 (2014). PubMed PMC

Kang, Y. J. et al. Draft genome sequence of adzuki bean Vigna angularis. Sci. Rep. 5, 8069 (2015). PubMed PMC

Siol, M. et al. Patterns of genetic structure and linkage disequilibrium in a large collection of pea germplasm. G3: Genes, Genomes, Genet. 7, 2461–2471 (2017).

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed PMC

Cingolani, P. et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 3, 35 (2012). PubMed PMC

Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). PubMed PMC

Purcell, S. et al. PLINK: A Tool Set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). PubMed PMC

Nguyen, L. T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014). PubMed PMC

Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed PMC

Hoang, D. T. et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017). PMC

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 4, 3 e47 (2015).

Sedlazeck, F. J., Rescheneder, P. & Von Haeseler, A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013). PubMed

Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2013). PubMed PMC

Gallardo, K. et al. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds evidence for metabolic specialization of maternal and filial tissues. Mol. Cell. Proteomics 6, 2165–2179 (2007). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A chromosome-scale reference genome of grasspea (Lathyrus sativus)

. 2024 Sep 27 ; 11 (1) : 1035. [epub] 20240927

First insight into the genomes of the Pulmonaria officinalis group (Boraginaceae) provided by repeatome analysis and comparative karyotyping

. 2024 Sep 13 ; 24 (1) : 859. [epub] 20240913

Sexy ways: approaches to studying plant sex chromosomes

. 2024 Sep 11 ; 75 (17) : 5204-5219.

Involvement of Abscisic Acid in Transition of Pea (Pisum sativum L.) Seeds from Germination to Post-Germination Stages

. 2024 Jan 11 ; 13 (2) : . [epub] 20240111

Flow Cytometric Analysis and Sorting of Plant Chromosomes

Flow Sorting-Assisted Optical Mapping

Salicylic Acid Treatment and Its Effect on Seed Yield and Seed Molecular Composition of Pisum sativum under Abiotic Stress

. 2023 Mar 13 ; 24 (6) : . [epub] 20230313

Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus

. 2023 Feb 16 ; 14 (1) : 876. [epub] 20230216

Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes

. 2023 Feb ; 19 (2) : e1010633. [epub] 20230203

The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies

. 2022 Nov 22 ; 63 (11) : 1554-1572.

Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale

. 2022 Sep 21 ; 23 (19) : . [epub] 20220921

Telomeres and Their Neighbors

. 2022 Sep 16 ; 13 (9) : . [epub] 20220916

The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences-Implications for Evolution and Biological Regulation

. 2022 Jul 30 ; 23 (15) : . [epub] 20220730

Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers

. 2022 Mar 16 ; 23 (6) : . [epub] 20220316

Chromosome analysis and sorting

. 2021 Apr ; 99 (4) : 328-342. [epub] 20210221

Genome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum L.)

. 2019 ; 10 () : 1538. [epub] 20191126

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace