A reference genome for pea provides insight into legume genome evolution
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31477930
DOI
10.1038/s41588-019-0480-1
PII: 10.1038/s41588-019-0480-1
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- Fabaceae klasifikace genetika MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- genomika MeSH
- hrách setý genetika MeSH
- lokus kvantitativního znaku * MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- referenční standardy MeSH
- regulace genové exprese u rostlin MeSH
- repetitivní sekvence nukleových kyselin MeSH
- rostlinné proteiny genetika MeSH
- sekvenování celého genomu MeSH
- zásobní proteiny semen genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
- zásobní proteiny semen MeSH
We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.
Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Centre for Crop and Disease Management Curtin University Bentley Western Australia Australia
Department of Horticulture Washington State University Pullman WA USA
Etude du Polymorphisme des Génomes Végétaux INRA Université Paris Saclay Evry France
Genoscope Institut François Jacob CEA Université Paris Saclay Evry France
School of Biological Sciences University of Auckland Auckland New Zealand
Zobrazit více v PubMed
Burstin, J., Gallardo, K., Mir, R. R., Varshney, R. K. & Duc, G. Improving protein content and nutrition quality, in Biology and Breeding of Food Legumes (eds Pratap, A. & Kumar, J.) 314–328 (CAB International, 2011).
Guillon, F. & Champ, M. M.-J. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br. J. Nutr. 88, S293–S306 (2002). PubMed
Dahl, W. J., Foster, L. M. & Tyler, R. T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 108, S3–S10 (2012). PubMed
Foschia, M., Horstmann, S. W., Arendt, E. K. & Zannini, E. Legumes as functional ingredients in gluten-free bakery and pasta products. Ann. Rev. Food Sci. Technol. 8, 75–96 (2017).
Nemecek, T. et al. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 28, 380–393 (2008).
Crews, T. E. & Peoples, M. B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 102, 279–297 (2004).
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018). PubMed
Zohary, D. & Hopf, M. Domestication of Plants in the Old World (Oxford Univ. Press, Oxford, 2000).
Doležel, J. et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. 82, 17–26 (1998).
Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011). PubMed PMC
Sato, S. et al. Genome structure of the legume, Lotus japonicus. DNA Res. 15, 227–239 (2008). PubMed PMC
Schmutz, J. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010). PubMed
Mendel, G. Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865. Abhandlungen, 3–47 (1866).
Ellis, T. H. N., Hofer, J. M. I., Timmerman-Vaughan, G. M., Coyne, C. J. & Hellens, R. P. Mendel, 150 years on. Trends Plant Sci. 16, 590–596 (2011). PubMed
Tayeh, N. et al. Genomic tools in pea breeding programs: status and perspectives. Front. Plant Sci. 6, 1037 (2015). PubMed PMC
Ellis, T. H. N. & Poyser, S. J. An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol. 153, 17–25 (2002).
Flavell, R. B., Bennett, M. D., Smith, J. B. & Smith, D. B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 12, 257–269 (1974). PubMed
Murray, M. G., Peters, D. L. & Thompson, W. F. Ancient repeated sequences in the pea and mung bean genomes and implications for genome evolution. J. Mol. Evol. 17, 31–42 (1981).
Macas, J. et al. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One 10, e0143424 (2015). PubMed PMC
Hammarlund, C. & Håkansson, A. Parallelism of chromosome ring formation, sterility and linkage in Pisum. Hereditas 14, 97–98 (1930).
Sansome, E. Segmental interchange lines in Pisum sativum. Nature 139, 113 (1937).
Lamm, R. & Miravalle, R. J. A translocation tester set in Pisum. Hereditas 45, 417–440 (1959).
Gali, K. K. et al. Development of a sequence-based reference physical map of pea (Pisum sativum L.). Front. Plant Sci. 10, 323 (2019). PubMed PMC
Neumann, P., Pozárková, D., Vrána, J., Doležel, J. & Macas, J. Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res. 10, 63–71 (2002). PubMed
Tayeh, N. et al. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high density, high resolution consensus genetic map. Plant J. 84, 1257–1273 (2015). PubMed
Neumann, P. et al. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 8, e1002777 (2012). PubMed PMC
Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I. Genome size diversity and its impact on the evolution of land plants. Genes 9, 88 (2018). PMC
Bennett, M. C. & Leitch, I. J. Plant DNA C-values Database release 6.0 (FAIRsharing.org, 2012); https://doi.org/10.25504/FAIRsharing.7qexb2
Hane, J. K. et al. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnol. J. 15, 318–330 (2017). PubMed
Blixt, S. Mutation genetics in Pisum. Agric. Hort. Genet. 30, 1–293 (1972).
Cannon, S. et al. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol. Biol. Evol. 32, 193–210 (2015). PubMed
Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003). PubMed
Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 54, 575–594 (2005). PubMed
Li, S. F. et al. Chromosome evolution in connection with repetitive sequences and epigenetics in plants. Genes 8, 290 (2017). PMC
De Vega, J. J. et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 5, 17394 (2015). PubMed PMC
Lee, C., Yu, D., Choi, H. K. & Kim, R. W. Reconstruction of a composite comparative map composed of ten legume genomes. Genes Genom. 39, 111–119 (2017).
Kamphuis, L. G. et al. The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration. New Phytol. 174, 299–303 (2007). PubMed
Ben-Ze'ev, N. & Zohary, D. Species relationships in the genus Pisum L. Isr. J. Bot. 22, 73–91 (1973).
Neumann, P., Nouzová, M. & Macas, J. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 44, 716–728 (2001). PubMed
Ladizinsky, G. & Abbo, S. (eds.) The Pisum genus. in The Search for Wild Relatives of Cool Season Legumes 55–68 (Springer, 2015).
Kosterin, O. E. & Bogdanova, V. S. Reciprocal compatibility within the genus Pisum L. as studied in F
Davis, P. H. in Flora of Turkey and the East Aegean Islands Vol. 3 (ed P. H. Davis) 370–373 (Edinburgh Univ., 1970).
Weeden, N. F. Domestication of pea (Pisum sativum L.): the case of the Abyssinicum pea. Front. Plant Sci. 9, 515 (2018). PubMed PMC
Pagani, L. et al. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am. J. Hum. Genet. 91, 83–96 (2012). PubMed PMC
Gabriel, I. et al. Variation in seed protein digestion of different pea (Pisum sativum L.) genotypes by cecectomized broiler chickens: 1. Endogenous amino acid losses, true digestibility and in vitro hydrolysis of proteins. Livest. Sci. 113, 251–261 (2008).
Rubio, L. A. et al. Characterization of pea (Pisum sativum) seed protein fractions. J. Sci. Food Agric. 94, 280–287 (2014). PubMed
Bourgeois, M. et al. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 9, 254–271 (2009). PubMed
Casey, R. & Domoney, C. in Seed Proteins (eds Shewry, P. R. & Casey, R.) 171–208 (Kluwer Academic Publishers, 1999).
Yoshino, M., Nagamatsu, A., Tsutsumi, K. I. & Kanazawa, A. The regulatory function of the upstream sequence of the β-conglycinin α subunit gene in seed-specific transcription is associated with the presence of the RY sequence. Genes Genet. Syst. 81, 135–141 (2006). PubMed
Yamamoto, S., Nishihara, M., Morikawa, H., Yamauchi, D. & Minamikawa, T. Promoter analysis of seed storage protein genes from Canavalia gladiata DC. Plant Mol. Biol. 27, 729–741 (1995). PubMed
Bourgeois, M. et al. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 11, 1581–1594 (2011). PubMed
Smýkal, P. et al. Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci. Rep. 7, 17384 (2017). PubMed PMC
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012). PubMed PMC
Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).
Madoui, M.-A. et al. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with whole genome profiling PubMed PMC
van Oeveren, J. et al. Sequence-based physical mapping of complex genomes by whole genome rofiling. Genome Res. 21, 618–625 (2011). PubMed PMC
Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317 (2010). PubMed
Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010). PubMed PMC
Bayer, P. E. et al. High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theor. Appl. Genet. 128, 1039–1047 (2015). PubMed
Tang, H. et al. ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol. 16, 3 (2015). PubMed PMC
Tang, H. et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 27, 312 (2014).
Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PloS One 6, e16526 (2011). PubMed PMC
Quesneville, H. et al. Combined evidence annotation of transposable elements in genome sequences. PLoS Comput. Biol. 1, e22 (2005). PMC
Hoede, C. et al. PASTEC: an automatic transposable element classification tool. PLoS ONE 9, e91929 (2014). PubMed PMC
Jamilloux, V., Daron, J., Choulet, F. & Quesneville, H. De novo annotation of transposable elements: tackling the fat genome issue. Proc. IEEE 105, 474–481 (2107).
Novák, P., Neumann, P. & Macas, J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11, 378 (2010). PubMed PMC
Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013). PubMed
Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007). PubMed
Keller, O. et al. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 6, 757–763 (2011).
Solovyev, V. et al. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7, S10 (2006). PubMed PMC
Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005). PubMed PMC
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC
Alves-Carvalho, S. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 84, 1–19 (2015). PubMed
Turo, C. J. Genomic Analysis of Fungal Species Causing Ascochyta Blight in Field Pea. PhD thesis, Curtin Univ. (2016).
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotech. 33, 290 (2015).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). PubMed PMC
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008). PubMed PMC
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
The UniProt Consortium. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 39, D214–D219 (2011).
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014). PubMed PMC
Cock, P. J. A., Grüning, B. A., Paszkiewicz, K. & Pritchard, L. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. Peer J. 1, e167 (2013). PubMed
Foissac, S. et al. Genome annotation in plants and fungi: EuGene as a model platform. Curr. Bioinf. 3, 87–97 (2008).
Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017). PubMed
Lelandais-Brière, C. et al. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21, 2780–2796 (2009). PubMed PMC
Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015). PubMed PMC
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014). PubMed
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC
Bonnal, R. J. P. et al. Biogem: an effective tool-based approach for scaling up open source software development in bioinformatics. Bioinformatics 28, 1035–1037 (2012). PubMed PMC
Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725–736 (1994).
Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000). PubMed
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
Vanneste, K., de Peer, Van & Maere, Y. S. Inference of genome duplications from age distributions revisited. Mol. Biol. Evol. 30, 177–190 (2013). PubMed
Pont, C. et al. Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biol. 20, 29 (2019). PubMed PMC
Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 47, 438–446 (2015).
Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotech. 31, 240–246 (2013).
Singh, N. K. et al. The first draft of the pigeonpea genome sequence. J. Plant Biochem. Biotechnol. 21, 98–112 (2012). PubMed
Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707–713 (2014). PubMed
Kang, Y. J. et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 5, 5443 (2014). PubMed PMC
Kang, Y. J. et al. Draft genome sequence of adzuki bean Vigna angularis. Sci. Rep. 5, 8069 (2015). PubMed PMC
Siol, M. et al. Patterns of genetic structure and linkage disequilibrium in a large collection of pea germplasm. G3: Genes, Genomes, Genet. 7, 2461–2471 (2017).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed PMC
Cingolani, P. et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 3, 35 (2012). PubMed PMC
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). PubMed PMC
Purcell, S. et al. PLINK: A Tool Set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). PubMed PMC
Nguyen, L. T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014). PubMed PMC
Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed PMC
Hoang, D. T. et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017). PMC
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 4, 3 e47 (2015).
Sedlazeck, F. J., Rescheneder, P. & Von Haeseler, A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013). PubMed
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2013). PubMed PMC
Gallardo, K. et al. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds evidence for metabolic specialization of maternal and filial tissues. Mol. Cell. Proteomics 6, 2165–2179 (2007). PubMed
A chromosome-scale reference genome of grasspea (Lathyrus sativus)
Sexy ways: approaches to studying plant sex chromosomes
Flow Cytometric Analysis and Sorting of Plant Chromosomes
Flow Sorting-Assisted Optical Mapping
Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale
Chromosome analysis and sorting