In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae

. 2015 ; 10 (11) : e0143424. [epub] 20151125

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26606051

The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

Zobrazit více v PubMed

Thomas CA. The genetic organization of chromosomes. Annu Rev Genet. 1971;5: 237–256. PubMed

Britten RJ, Kohne DE. Repeated Sequences in DNA. Science. 1968;161: 529–540. 10.1126/science.161.3841.529 PubMed DOI

Flavell RB, Bennett MD, Smith JB, Smith DB. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974;12: 257–69. PubMed

Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65: 505–30. 10.1146/annurev-arplant-050213-035811 PubMed DOI

Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc. 2001;76: 65–101. 10.1111/j.1469-185X.2000.tb00059.x PubMed DOI

Michael TP. Plant genome size variation: Bloating and purging DNA. Briefings Funct Genomics Proteomics. 2014;13: 308–317. 10.1093/bfgp/elu005 PubMed DOI

Kidwell M, Lisch D. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution. 2001;55: 1–24. 10.1111/j.0014-3820.2001.tb01268.x PubMed DOI

Lynch M, Conery JS. The origins of genome complexity. Science. 2003;302: 1401–1404. 10.1126/science.1089370 PubMed DOI

Oliver KR, Greene WK. Transposable elements: powerful facilitators of evolution. BioEssays. 2009;31: 703–14. 10.1002/bies.200800219 PubMed DOI

Linquist S, Saylor B, Cottenie K, Elliott TA, Kremer SC, Gregory TR. Distinguishing ecological from evolutionary approaches to transposable elements. Biol Rev Camb Philos Soc. 2013;88: 573–84. 10.1111/brv.12017 PubMed DOI

Fleischmann A, Michael T, Rivadavia F, Wang W, Temsch E, Greilhuber J, et al. Evolution of genome size and chromosome numbers in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot. 2014;114: 1651–1663. 10.1093/aob/mcu189 PubMed DOI PMC

Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Bot J Linn Soc. 2010;164: 10–15.

Ingham LD, Hanna WW, Baier JW, Hannah LC. Origin of the main class of repetitive DNA within selected Pennisetum species. Mol Gen Genet. 1993;238: 350–6. PubMed

Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novak P, Neumann P, et al. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol. 2015;208: 596–607. 10.1111/nph.13471 PubMed DOI PMC

Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians . Genome Biol Evol. 2011;3: 219–229. 10.1093/gbe/evr008 PubMed DOI PMC

Novák P, Hřibová E, Neumann P, Koblížková A, Doležel J, Macas J. Genome-wide analysis of repeat diversity across the family Musaceae. PLoS One. 2014;9: e98918 10.1371/journal.pone.0098918 PubMed DOI PMC

Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, et al. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol. 2012;29: 3601–11. 10.1093/molbev/mss168 PubMed DOI PMC

Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B. Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia . PLoS One. 2011;6: e27335 10.1371/journal.pone.0027335 PubMed DOI PMC

Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula . BMC Genomics. 2007;8: 427 10.1186/1471-2164-8-427 PubMed DOI PMC

Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Saniyal A, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16: 1262–9. 10.1101/gr.5290206 PubMed DOI PMC

Neumann P, Koblížková A, Navrátilová A, Macas J. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173: 1047–56. 10.1534/genetics.106.056259 PubMed DOI PMC

Devos KM, Brown JKM, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis . Genome Res. 2002;12: 1075–9. 10.1101/gr.132102 PubMed DOI PMC

Hawkins JS, Proulx SR, Rapp RA, Wendel JF. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci U S A. 2009;106: 17811–6. 10.1073/pnas.0904339106 PubMed DOI PMC

Renny-Byfield S, Chester M, Kovarík A, Le Comber SC, Grandbastien M-A, Deloger M, et al. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol. 2011;28: 2843–2854. 10.1093/molbev/msr112 PubMed DOI

Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol. 2014;201: 1484–1497. 10.1111/nph.12617 PubMed DOI

Weiss-Schneeweiss H, Leitch AR, McCann J, Jang T-S, Macas J. Employing next generation sequencing to explore the repeat landscape of the plant genome In: Hörandl E, Appelhans M, editors. Next Generation Sequencing in Plant Systematics. Regnum Vegetabile 157. Königstein, Germany: Koeltz Scientific Books; 2015.

Cai Z, Liu H, He Q, Pu M, Chen J, Lai J, et al. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genomics. 2014;15: 1025 10.1186/1471-2164-15-1025 PubMed DOI PMC

Camacho JPM, Ruiz-Ruano FJ, Martín-Blázquez R, López-León MD, Cabrero J, Lorite P, et al. A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs. Chromosoma. 2014;124: 263–275. 10.1007/s00412-014-0499-0 PubMed DOI

García G, Ríos N, Gutiérrez V. Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae). Genetica. 2015;143: 353–360. 10.1007/s10709-015-9834-5 PubMed DOI

Pagan HJT, Macas J, Novak P, McCulloch ES, Stevens RD, Ray DA. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol. 2012;4: 575–585. 10.1093/gbe/evs038 PubMed DOI PMC

Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11: 378 10.1186/1471-2105-11-378 PubMed DOI PMC

Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29: 792–793. 10.1093/bioinformatics/btt054 PubMed DOI

Bennett M, Leitch I. Plant DNA C-values Database. In: Release 6.0 [Internet]. 2012 p. http://data.kew.org/cvalues/. Available: http://data.kew.org/cvalues/

Schaefer H, Hechenleitner P, Santos-Guerra A, de Sequeira MM, Pennington RT, Kenicer G, et al. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol Biol. 2012;12: 250 10.1186/1471-2148-12-250 PubMed DOI PMC

Nouzová M, Neumann P, Navrátilová A, Galbraith DW, Macas J. Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol Biol. 2001;45: 229–44. 10.1023/A:1006408119740 PubMed DOI

Navrátilová A, Neumann P, Macas J. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann Bot. 2003;91: 921–6. 10.1093/aob/mcg099 PubMed DOI PMC

Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, Chocholová E, et al. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8: e1002777 10.1371/journal.pgen.1002777 PubMed DOI PMC

Macas J, Navrátilová A, Mészáros T. Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes. Chromosoma. 2003;112: 152–8. 10.1007/s00412-003-0255-3 PubMed DOI

Trávníček P, Eliášová A, Suda J. The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over last four decades. Preslia. 2010;82: 149–163.

Greilhuber J, Doležel J, Lysák MA, Bennett MD. The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot. 2005;95: 255–260. 10.1093/aob/mci019 PubMed DOI PMC

Steinbauerová V, Neumann P, Novák P, Macas J. A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons. Genetica. 2012; 1543–1555. 10.1007/s10709-012-9654-9 PubMed DOI

Macas J, Neumann P. Ogre elements—a distinct group of plant Ty3/gypsy-like retrotransposons. Gene. 2007;390: 108–16. 10.1016/j.gene.2006.08.007 PubMed DOI

Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39: D70–4. 10.1093/nar/gkq1061 PubMed DOI PMC

Wicker T, Keller B. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 2007;17: 1072–81. 10.1101/gr.6214107 PubMed DOI PMC

El Baidouri M, Panaud O. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol Evol. 2013;5: 954–65. 10.1093/gbe/evt025 PubMed DOI PMC

Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006;16: 1252–61. 10.1101/gr.5282906 PubMed DOI PMC

Estep MC, DeBarry JD, Bennetzen JL. The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity (Edinb). 2013;110: 194–204. 10.1038/hdy.2012.99 PubMed DOI PMC

Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, Collura K, et al. Transposable element distribution, abundance and role in genome size variation in the genus Oryza . BMC Evol Biol. 2007;7: 152 10.1186/1471-2148-7-152 PubMed DOI PMC

Kelly LJ, Leitch AR, Fay MF, Renny-Byfield S, Pellicer J, Macas J, et al. Why size really matters when sequencing plant genomes. Plant Ecol Divers. 2012;5: 415–425. 10.1080/17550874.2012.716868 DOI

Kelly LJ, Leitch IJ. Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res. 2011; 939–953. 10.1007/s10577-011-9246-z PubMed DOI

Klemme S, Banaei-Moghaddam AM, Macas J, Wicker T, Novák P, Houben A. High-copy sequences reveal distinct evolution of the rye B chromosome. New Phytol. 2013;199: 550–558. 10.1111/nph.12289 PubMed DOI

Gong Z, Wu Y, Koblížková A, Torres GA, Wang K, Iovene M, et al. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell. 2012;24: 3559–74. 10.1105/tpc.112.100511 PubMed DOI PMC

Aird D, Ross MG, Chen W-S, Danielsson M, Fennell T, Russ C, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12: R18 10.1186/gb-2011-12-2-r18 PubMed DOI PMC

Macas J, Mészáros T, Nouzová M. PlantSat: a specialized database for plant satellite repeats. Bioinformatics. 2002;18: 28–35. 10.1093/bioinformatics/18.1.28 PubMed DOI

Macas J, Požárková D, Navrátilová A, Nouzová M, Neumann P. Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Gen Genet. 2000;263: 741–51. 10.1007/s004380000245 PubMed DOI

Kejnovský E, Hawkins JS, Feschotte C. Plant Transposable Elements: Biology and Evolution Wendel et al(eds): Plant Genome Diversity. 2012. pp. 17–34. 10.1007/978-3-7091-1130-7 DOI

Ågren JA, Greiner S, Johnson MT, Wright SI. No evidence that sex and transposable elements drive genome size variation in evening primroses. Evolution (N Y). 2015;69: 1053–1062. 10.1101/007161 PubMed DOI

Ågren JA, Wang W, Koenig D, Neuffer B, Weigel D, Wright SI. Mating system shifts and transposable element evolution in the plant genus Capsella . BMC Genomics. 2014;15: 602 10.1186/1471-2164-15-602 PubMed DOI PMC

Lockton S, Gaut BS. The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata . BMC Evol Biol. 2010;10: 10 10.1186/1471-2148-10-10 PubMed DOI PMC

Steinbauerová V, Neumann P, Macas J. Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre. Mol Genet Genomics. 2008;280: 427–36. 10.1007/s00438-008-0376-8 PubMed DOI PMC

Ištvánek J, Jaroš M, Křenek A, Řepková J. Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). Am J Bot. 2014;101: 327–37. 10.3732/ajb.1300340 PubMed DOI

Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol. 2013;5: 1886–901. 10.1093/gbe/evt141 PubMed DOI PMC

Hemleben V, Kovařík A, Torres-Ruiz RA, Volkov RA, Beridze T. Plant highly repeated satellite DNA: Molecular evolution, distribution and use for identification of hybrids. Syst Biodivers. 2007;5: 277–289. 10.1017/S147720000700240X DOI

Smýkal P, Kalendar R, Ford R, Macas J, Griga M. Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity (Edinb). 2009;103: 157–67. 10.1038/hdy.2009.45 PubMed DOI

Zuccolo A, Scofield DG, De Paoli E, Morgante M. The Ty1-copia LTR retroelement family PARTC is highly conserved in conifers over 200MY of evolution. Gene. 2015;568: 89–99. 10.1016/j.gene.2015.05.028 PubMed DOI

Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2: 2233–44. 10.1038/nprot.2007.310 PubMed DOI

Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA In: Crissman HA, Darzynkiewicz Z, editors. Methods in Cell Biology. Academic Press, New York; 1990. pp. 105–110. 10.1016/S0091-679X(08)60516-6 PubMed DOI

Doležel J, Doleželová M, Novák FJ. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant. 1994;36: 351–357. 10.1007/BF02920930 DOI

Lysák MA, Doležel J. Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia. 1998;51: 123–132. 10.1080/00087114.1998.10589127 DOI

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot. 1998;82: 17–26. 10.1093/oxfordjournals.aob.a010312 DOI

Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytom Part A. 2003;51: 127–128. 10.1002/cyto.a.10013 PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. PubMed

Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19: 651–652. 10.1093/bioinformatics/btg034 PubMed DOI

Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41: 95–98. citeulike-article-id:691774

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19: 1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI

Nylander JAA. MrModeltest v2. 2004. p. Program distributed by the author.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Contrasting distributions and expression characteristics of transcribing repeats in Setaria viridis

. 2025 Mar ; 18 (1) : e20551.

Holocentric repeat landscapes: From micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution

. 2024 Dec ; 33 (24) : e17100. [epub] 20230814

A chromosome-scale reference genome of grasspea (Lathyrus sativus)

. 2024 Sep 27 ; 11 (1) : 1035. [epub] 20240927

First insight into the genomes of the Pulmonaria officinalis group (Boraginaceae) provided by repeatome analysis and comparative karyotyping

. 2024 Sep 13 ; 24 (1) : 859. [epub] 20240913

Incidence and evolutionary relevance of autotriploid cytotypes in a relict member of the genus Daphne (Thymelaeaceae)

. 2023 Oct ; 15 (5) : plad056. [epub] 20230830

The giant diploid faba genome unlocks variation in a global protein crop

. 2023 Mar ; 615 (7953) : 652-659. [epub] 20230308

Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus

. 2023 Feb 16 ; 14 (1) : 876. [epub] 20230216

Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes

. 2023 Feb ; 19 (2) : e1010633. [epub] 20230203

Investigating the Origin and Evolution of Polyploid Trifolium medium L. Karyotype by Comparative Cytogenomic Methods

. 2023 Jan 04 ; 12 (2) : . [epub] 20230104

The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity

. 2022 Oct ; 236 (2) : 433-446. [epub] 20220707

Morphological, ecological and geographic differences between diploids and tetraploids of Symphytum officinale (Boraginaceae) justify both cytotypes as separate species

. 2022 Aug ; 14 (4) : plac028. [epub] 20220621

The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences-Implications for Evolution and Biological Regulation

. 2022 Jul 30 ; 23 (15) : . [epub] 20220730

Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)

. 2021 Nov 19 ; 10 (11) : . [epub] 20211119

Genome Size Doubling Arises From the Differential Repetitive DNA Dynamics in the Genus Heloniopsis (Melanthiaceae)

. 2021 ; 12 () : 726211. [epub] 20210906

The Evolution of Chromosome Numbers: Mechanistic Models and Experimental Approaches

. 2021 Feb 03 ; 13 (2) : .

Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa

. 2021 Jan 01 ; 127 (1) : 33-47.

Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae

. 2020 Aug 01 ; 37 (8) : 2341-2356.

Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses

. 2020 Jun 17 ; 20 (1) : 280. [epub] 20200617

Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus Rosa

. 2020 Jun 01 ; 125 (7) : 1025-1038.

What Can Long Terminal Repeats Tell Us About the Age of LTR Retrotransposons, Gene Conversion and Ectopic Recombination?

. 2020 ; 11 () : 644. [epub] 20200520

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...