The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences-Implications for Evolution and Biological Regulation

. 2022 Jul 30 ; 23 (15) : . [epub] 20220730

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35955617

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000477 ERDF
22-21903S Czech Science Foundation

G-quadruplexes (G4s) have been long considered rare and physiologically unimportant in vitro curiosities, but recent methodological advances have proved their presence and functions in vivo. Moreover, in addition to their functional relevance in bacteria and animals, including humans, their importance has been recently demonstrated in evolutionarily distinct plant species. In this study, we analyzed the genome of Pisum sativum (garden pea, or the so-called green pea), a unique member of the Fabaceae family. Our results showed that this genome contained putative G4 sequences (PQSs). Interestingly, these PQSs were located nonrandomly in the nuclear genome. We also found PQSs in mitochondrial (mt) and chloroplast (cp) DNA, and we experimentally confirmed G4 formation for sequences found in these two organelles. The frequency of PQSs for nuclear DNA was 0.42 PQSs per thousand base pairs (kbp), in the same range as for cpDNA (0.53/kbp), but significantly lower than what was found for mitochondrial DNA (1.58/kbp). In the nuclear genome, PQSs were mainly associated with regulatory regions, including 5'UTRs, and upstream of the rRNA region. In contrast to genomic DNA, PQSs were located around RNA genes in cpDNA and mtDNA. Interestingly, PQSs were also associated with specific transposable elements such as TIR and LTR and around them, pointing to their role in their spreading in nuclear DNA. The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.

Zobrazit více v PubMed

Trněný O., Brus J., Hradilová I., Rathore A., Das R.R., Kopecký P., Coyne C.J., Reeves P., Richards C., Smýkal P. Molecular Evidence for Two Domestication Events in the Pea Crop. Genes. 2018;9:535. doi: 10.3390/genes9110535. PubMed DOI PMC

Powers S.E., Thavarajah D. Checking Agriculture’s Pulse: Field Pea (Pisum Sativum L.), Sustainability, and Phosphorus Use Efficiency. Front. Plant Sci. 2019;10:1489. doi: 10.3389/fpls.2019.01489. PubMed DOI PMC

Gu B., Chen Y., Xie F., Murray J.D., Miller A.J. Inorganic Nitrogen Transport and Assimilation in Pea (Pisum Sativum) Genes. 2022;13:158. doi: 10.3390/genes13010158. PubMed DOI PMC

Labeeb M., Badr A., Haroun S.A., Mattar M.Z., El-Kholy A.S. Ultrastructural and Molecular Implications of Ecofriendly Made Silver Nanoparticles Treatments in Pea (Pisum Sativum L.) J. Genet. Eng. Biotechnol. 2022;20:5. doi: 10.1186/s43141-021-00285-1. PubMed DOI PMC

Mendel G.J. Versuche Über Plflanzenhybriden. Verh. Nat. Ver. Brünn Abh. 1865;4:3–47.

Bateson W. Mendel’s Principles of Heredity. Cambridge University Press; Cambridge, UK: 1902.

Bartas M., Brázda V., Karlický V., Červeň J., Pečinka P. Bioinformatics Analyses and in Vitro Evidence for Five and Six Stacked G-Quadruplex Forming Sequences. Biochimie. 2018;150:70–75. doi: 10.1016/j.biochi.2018.05.002. PubMed DOI

Cho H., Cho H.S., Nam H., Jo H., Yoon J., Park C., Dang T.V.T., Kim E., Jeong J., Park S., et al. Translational Control of Phloem Development by RNA G-Quadruplex–JULGI Determines Plant Sink Strength. Nat. Plants. 2018;4:376–390. doi: 10.1038/s41477-018-0157-2. PubMed DOI

Kim N. The Interplay between G-Quadruplex and Transcription. Curr. Med. Chem. 2019;26:2898–2917. doi: 10.2174/0929867325666171229132619. PubMed DOI PMC

Robinson J., Raguseo F., Nuccio S.P., Liano D., Di Antonio M. DNA G-Quadruplex Structures: More than Simple Roadblocks to Transcription? Nucleic Acids Res. 2021;49:8419–8431. doi: 10.1093/nar/gkab609. PubMed DOI PMC

Feng Y., Tao S., Zhang P., Sperti F.R., Liu G., Cheng X., Zhang T., Yu H., Wang X.-E., Chen C., et al. Epigenomic Features of DNA G-Quadruplexes and Their Roles in Regulating Rice Gene Transcription. Plant Physiol. 2022;188:1632–1648. doi: 10.1093/plphys/kiab566. PubMed DOI PMC

Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Mergny J.-L., Brázda V. Analyses of Viral Genomes for G-Quadruplex Forming Sequences Reveal Their Correlation with the Type of Infection. Biochimie. 2021;186:13–27. doi: 10.1016/j.biochi.2021.03.017. PubMed DOI

Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S. G-Quadruplex Forming Sequences in the Genome of All Known Human Viruses: A Comprehensive Guide. PLoS Comput. Biol. 2018;14:e1006675. doi: 10.1371/journal.pcbi.1006675. PubMed DOI PMC

Bartas M., Čutová M., Brázda V., Kaura P., Šťastný J., Kolomazník J., Coufal J., Goswami P., Červeň J., Pečinka P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules. 2019;24:1711. doi: 10.3390/molecules24091711. PubMed DOI PMC

Brázda V., Luo Y., Bartas M., Kaura P., Porubiaková O., Št’astnỳ J., Pečinka P., Verga D., Da Cunha V., Takahashi T.S. G-Quadruplexes in the Archaea Domain. Biomolecules. 2020;10:1349. doi: 10.3390/biom10091349. PubMed DOI PMC

Čutová M., Manta J., Porubiaková O., Kaura P., Šťastný J., Jagelská E.B., Goswami P., Bartas M., Brázda V. Divergent Distributions of Inverted Repeats and G-Quadruplex Forming Sequences in Saccharomyces Cerevisiae. Genomics. 2020;112:1897–1901. doi: 10.1016/j.ygeno.2019.11.002. PubMed DOI

Warner E.F., Bohálová N., Brázda V., Waller Z.A.E., Bidula S. Analysis of Putative Quadruplex-Forming Sequences in Fungal Genomes: Novel Antifungal Targets? Microb. Genom. 2021;7:000570. doi: 10.1099/mgen.0.000570. PubMed DOI PMC

Hänsel-Hertsch R., Di Antonio M., Balasubramanian S. DNA G-Quadruplexes in the Human Genome: Detection, Functions and Therapeutic Potential. Nat. Rev. Mol. Cell Biol. 2017;18:279–284. doi: 10.1038/nrm.2017.3. PubMed DOI

Garg R., Aggarwal J., Thakkar B. Genome-Wide Discovery of G-Quadruplex Forming Sequences and Their Functional Relevance in Plants. Sci. Rep. 2016;6:28211. doi: 10.1038/srep28211. PubMed DOI PMC

Yang X., Cheema J., Zhang Y., Deng H., Duncan S., Umar M.I., Zhao J., Liu Q., Cao X., Kwok C.K. RNA G-Quadruplex Structures Exist and Function in Vivo in Plants. Genome Biol. 2020;21:226. doi: 10.1186/s13059-020-02142-9. PubMed DOI PMC

Griffin B.D., Bass H.W. Plant G-Quadruplex (G4) Motifs in DNA and RNA. Abundant, Intriguing Sequences of Unknown Function. Plant Sci. 2018;269:143–147. doi: 10.1016/j.plantsci.2018.01.011. PubMed DOI

Volná A., Bartas M., Karlický V., Nezval J., Kundrátová K., Pečinka P., Špunda V., Červeň J. G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story. Int. J. Mol. Sci. 2021;22:7381. doi: 10.3390/ijms22147381. PubMed DOI PMC

Kreplak J., Madoui M.-A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., et al. A Reference Genome for Pea Provides Insight into Legume Genome Evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI

Ellis T.H.N., Poyser S.J. An Integrated and Comparative View of Pea Genetic and Cytogenetic Maps. New Phytol. 2002;153:17–25. doi: 10.1046/j.0028-646X.2001.00302.x. DOI

Macas J., Novák P., Pellicer J., Čížková J., Koblížková A., Neumann P., Fuková I., Doležel J., Kelly L.J., Leitch I.J. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE. 2015;10:e0143424. doi: 10.1371/journal.pone.0143424. PubMed DOI PMC

Li S.-F., Su T., Cheng G.-Q., Wang B.-X., Li X., Deng C.-L., Gao W.-J. Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants. Genes. 2017;8:290. doi: 10.3390/genes8100290. PubMed DOI PMC

Chen J., Cheng M., Salgado G.F., Stadlbauer P., Zhang X., Amrane S., Guédin A., He F., Šponer J., Ju H., et al. The Beginning and the End: Flanking Nucleotides Induce a Parallel G-Quadruplex Topology. Nucleic Acids Res. 2021;49:9548–9559. doi: 10.1093/nar/gkab681. PubMed DOI PMC

Luo Y., Granzhan A., Verga D., Mergny J.-L. FRET-MC: A Fluorescence Melting Competition Assay for Studying G4 Structures in Vitro. Biopolymers. 2021;112:e23415. doi: 10.1002/bip.23415. PubMed DOI

Cesare A.J., Quinney N., Willcox S., Subramanian D., Griffith J.D. Telomere Looping in P. sativum (Common Garden Pea) Plant J. 2003;36:271–279. doi: 10.1046/j.1365-313X.2003.01882.x. PubMed DOI

Tran P.L.T., Mergny J.-L., Alberti P. Stability of Telomeric G-Quadruplexes. Nucleic Acids Res. 2011;39:3282–3294. doi: 10.1093/nar/gkq1292. PubMed DOI PMC

De Cian A., Grellier P., Mouray E., Depoix D., Bertrand H., Monchaud D., Teulade-Fichou M.-P., Mergny J.-L., Alberti P. Plasmodium Telomeric Sequences: Structure, Stability and Quadruplex Targeting by Small Compounds. ChemBioChem. 2008;9:2730–2739. doi: 10.1002/cbic.200800330. PubMed DOI

Burstin J., Kreplak J., Macas J., Lichtenzveig J. Pisum Sativum (Pea) Trends Genet. 2020;36:312–313. doi: 10.1016/j.tig.2019.12.009. PubMed DOI

Jakowitsch J., Mette M.F., van der Winden J., Matzke M.A., Matzke A.J.M. Integrated Pararetroviral Sequences Define a Unique Class of Dispersed Repetitive DNA in Plants. Proc. Natl. Acad. Sci. USA. 1999;96:13241–13246. doi: 10.1073/pnas.96.23.13241. PubMed DOI PMC

Bennetzen J.L., Wang H. The Contributions of Transposable Elements to the Structure, Function, and Evolution of Plant Genomes. Annu. Rev. Plant Biol. 2014;65:505–530. doi: 10.1146/annurev-arplant-050213-035811. PubMed DOI

Takahashi H., Nakagawa A., Kojima S., Takahashi A., Cha B.-Y., Woo J.-T., Nagai K., Machida Y., Machida C. Discovery of Novel Rules for G-Quadruplex-Forming Sequences in Plants by Using Bioinformatics Methods. J. Biosci. Bioeng. 2012;114:570–575. doi: 10.1016/j.jbiosc.2012.05.017. PubMed DOI

Yadav V., Kim N., Tuteja N., Yadav P. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance. Front. Plant Sci. 2017;8:1163. doi: 10.3389/fpls.2017.01163. PubMed DOI PMC

Wang Y., Zhao M., Zhang Q., Zhu G.-F., Li F.-F., Du L.-F. Genomic Distribution and Possible Functional Roles of Putative G-Quadruplex Motifs in Two Subspecies of Oryza Sativa. Comput. Biol. Chem. 2015;56:122–130. doi: 10.1016/j.compbiolchem.2015.04.009. PubMed DOI

Bohálová N., Dobrovolná M., Brázda V., Bidula S. Conservation and Over-Representation of G-Quadruplex Sequences in Regulatory Regions of Mitochondrial DNA across Distinct Taxonomic Sub-Groups. Biochimie. 2022;194:28–34. doi: 10.1016/j.biochi.2021.12.006. PubMed DOI

Falabella M., Kolesar J.E., Wallace C., de Jesus D., Sun L., Taguchi Y.V., Wang C., Wang T., Xiang I.M., Alder J.K., et al. G-Quadruplex Dynamics Contribute to Regulation of Mitochondrial Gene Expression. Sci. Rep. 2019;9:5605. doi: 10.1038/s41598-019-41464-y. PubMed DOI PMC

Castillo Bosch P., Segura-Bayona S., Koole W., van Heteren J.T., Dewar J.M., Tijsterman M., Knipscheer P. FANCJ Promotes DNA Synthesis through G-Quadruplex Structures. EMBO J. 2014;33:2521–2533. doi: 10.15252/embj.201488663. PubMed DOI PMC

Cantara A., Luo Y., Dobrovolná M., Bohalova N., Fojta M., Verga D., Guittat L., Cucchiarini A., Savrimoutou S., Häberli C., et al. G-Quadruplexes in Helminth Parasites. Nucleic Acids Res. 2022;50:2719–2735. doi: 10.1093/nar/gkac129. PubMed DOI PMC

Lee D.S.M., Ghanem L.R., Barash Y. Integrative Analysis Reveals RNA G-Quadruplexes in UTRs Are Selectively Constrained and Enriched for Functional Associations. Nat. Commun. 2020;11:527. doi: 10.1038/s41467-020-14404-y. PubMed DOI PMC

Brázda V., Hároníková L., Liao J.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC

Sjakste T., Leonova E., Petrovs R., Trapina I., Röder M.S., Sjakste N. Tight DNA-Protein Complexes Isolated from Barley Seedlings Are Rich in Potential Guanine Quadruplex Sequences. PeerJ. 2020;8:e8569. doi: 10.7717/peerj.8569. PubMed DOI PMC

Volná A., Bartas M., Nezval J., Špunda V., Pečinka P., Červeň J. Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation. BioTech. 2021;10:20. doi: 10.3390/biotech10040020. PubMed DOI PMC

Kejnovsky E., Tokan V., Lexa M. Transposable Elements and G-Quadruplexes. Chromosome Res. 2015;23:615–623. doi: 10.1007/s10577-015-9491-7. PubMed DOI

Sayers E.W., Agarwala R., Bolton E.E., Brister J.R., Canese K., Clark K., Connor R., Fiorini N., Funk K., Hefferon T. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47:D23. doi: 10.1093/nar/gky1069. PubMed DOI PMC

Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št’astný J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI

Brázda V., Kolomazník J., Lỳsek J., Bartas M., Fojta M., Št’astnỳ J., Mergny J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC

Bedrat A., Lacroix L., Mergny J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC

Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains. PLoS Genet. 2012;8:e1002777. doi: 10.1371/journal.pgen.1002777. PubMed DOI PMC

Novák P., Neumann P., Macas J. Global Analysis of Repetitive DNA from Unassembled Sequence Reads Using RepeatExplorer2. Nat. Protoc. 2020;15:3745–3776. doi: 10.1038/s41596-020-0400-y. PubMed DOI

The DDBJ/ENA/GenBank Feature Table Definition | INSDC. [(accessed on 21 March 2022)]. Available online: https://www.insdc.org/documents/feature-table#2.

Komsta L. Processing Data for Outliers. R News. 2006;6:10–13.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...