The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences-Implications for Evolution and Biological Regulation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000477
ERDF
22-21903S
Czech Science Foundation
PubMed
35955617
PubMed Central
PMC9369095
DOI
10.3390/ijms23158482
PII: ijms23158482
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex, G4 propensity, chloroplast DNA, sequence prediction,
- MeSH
- 5' nepřekládaná oblast MeSH
- G-kvadruplexy * MeSH
- genom rostlinný MeSH
- hrách setý genetika MeSH
- lidé MeSH
- sekvence nukleotidů MeSH
- transpozibilní elementy DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- transpozibilní elementy DNA MeSH
G-quadruplexes (G4s) have been long considered rare and physiologically unimportant in vitro curiosities, but recent methodological advances have proved their presence and functions in vivo. Moreover, in addition to their functional relevance in bacteria and animals, including humans, their importance has been recently demonstrated in evolutionarily distinct plant species. In this study, we analyzed the genome of Pisum sativum (garden pea, or the so-called green pea), a unique member of the Fabaceae family. Our results showed that this genome contained putative G4 sequences (PQSs). Interestingly, these PQSs were located nonrandomly in the nuclear genome. We also found PQSs in mitochondrial (mt) and chloroplast (cp) DNA, and we experimentally confirmed G4 formation for sequences found in these two organelles. The frequency of PQSs for nuclear DNA was 0.42 PQSs per thousand base pairs (kbp), in the same range as for cpDNA (0.53/kbp), but significantly lower than what was found for mitochondrial DNA (1.58/kbp). In the nuclear genome, PQSs were mainly associated with regulatory regions, including 5'UTRs, and upstream of the rRNA region. In contrast to genomic DNA, PQSs were located around RNA genes in cpDNA and mtDNA. Interestingly, PQSs were also associated with specific transposable elements such as TIR and LTR and around them, pointing to their role in their spreading in nuclear DNA. The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.
CNRS UMR9187 INSERM U1196 Université Paris Saclay CEDEX 91405 Orsay France
Department of Experimental Biology Faculty of Science Masaryk University 611 37 Brno Czech Republic
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Faculty of Chemistry Brno University of Technology Purkyňova 118 612 00 Brno Czech Republic
Institute of Biophysics of the Czech Academy of Sciences 612 65 Brno Czech Republic
Zobrazit více v PubMed
Trněný O., Brus J., Hradilová I., Rathore A., Das R.R., Kopecký P., Coyne C.J., Reeves P., Richards C., Smýkal P. Molecular Evidence for Two Domestication Events in the Pea Crop. Genes. 2018;9:535. doi: 10.3390/genes9110535. PubMed DOI PMC
Powers S.E., Thavarajah D. Checking Agriculture’s Pulse: Field Pea (Pisum Sativum L.), Sustainability, and Phosphorus Use Efficiency. Front. Plant Sci. 2019;10:1489. doi: 10.3389/fpls.2019.01489. PubMed DOI PMC
Gu B., Chen Y., Xie F., Murray J.D., Miller A.J. Inorganic Nitrogen Transport and Assimilation in Pea (Pisum Sativum) Genes. 2022;13:158. doi: 10.3390/genes13010158. PubMed DOI PMC
Labeeb M., Badr A., Haroun S.A., Mattar M.Z., El-Kholy A.S. Ultrastructural and Molecular Implications of Ecofriendly Made Silver Nanoparticles Treatments in Pea (Pisum Sativum L.) J. Genet. Eng. Biotechnol. 2022;20:5. doi: 10.1186/s43141-021-00285-1. PubMed DOI PMC
Mendel G.J. Versuche Über Plflanzenhybriden. Verh. Nat. Ver. Brünn Abh. 1865;4:3–47.
Bateson W. Mendel’s Principles of Heredity. Cambridge University Press; Cambridge, UK: 1902.
Bartas M., Brázda V., Karlický V., Červeň J., Pečinka P. Bioinformatics Analyses and in Vitro Evidence for Five and Six Stacked G-Quadruplex Forming Sequences. Biochimie. 2018;150:70–75. doi: 10.1016/j.biochi.2018.05.002. PubMed DOI
Cho H., Cho H.S., Nam H., Jo H., Yoon J., Park C., Dang T.V.T., Kim E., Jeong J., Park S., et al. Translational Control of Phloem Development by RNA G-Quadruplex–JULGI Determines Plant Sink Strength. Nat. Plants. 2018;4:376–390. doi: 10.1038/s41477-018-0157-2. PubMed DOI
Kim N. The Interplay between G-Quadruplex and Transcription. Curr. Med. Chem. 2019;26:2898–2917. doi: 10.2174/0929867325666171229132619. PubMed DOI PMC
Robinson J., Raguseo F., Nuccio S.P., Liano D., Di Antonio M. DNA G-Quadruplex Structures: More than Simple Roadblocks to Transcription? Nucleic Acids Res. 2021;49:8419–8431. doi: 10.1093/nar/gkab609. PubMed DOI PMC
Feng Y., Tao S., Zhang P., Sperti F.R., Liu G., Cheng X., Zhang T., Yu H., Wang X.-E., Chen C., et al. Epigenomic Features of DNA G-Quadruplexes and Their Roles in Regulating Rice Gene Transcription. Plant Physiol. 2022;188:1632–1648. doi: 10.1093/plphys/kiab566. PubMed DOI PMC
Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Mergny J.-L., Brázda V. Analyses of Viral Genomes for G-Quadruplex Forming Sequences Reveal Their Correlation with the Type of Infection. Biochimie. 2021;186:13–27. doi: 10.1016/j.biochi.2021.03.017. PubMed DOI
Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S. G-Quadruplex Forming Sequences in the Genome of All Known Human Viruses: A Comprehensive Guide. PLoS Comput. Biol. 2018;14:e1006675. doi: 10.1371/journal.pcbi.1006675. PubMed DOI PMC
Bartas M., Čutová M., Brázda V., Kaura P., Šťastný J., Kolomazník J., Coufal J., Goswami P., Červeň J., Pečinka P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules. 2019;24:1711. doi: 10.3390/molecules24091711. PubMed DOI PMC
Brázda V., Luo Y., Bartas M., Kaura P., Porubiaková O., Št’astnỳ J., Pečinka P., Verga D., Da Cunha V., Takahashi T.S. G-Quadruplexes in the Archaea Domain. Biomolecules. 2020;10:1349. doi: 10.3390/biom10091349. PubMed DOI PMC
Čutová M., Manta J., Porubiaková O., Kaura P., Šťastný J., Jagelská E.B., Goswami P., Bartas M., Brázda V. Divergent Distributions of Inverted Repeats and G-Quadruplex Forming Sequences in Saccharomyces Cerevisiae. Genomics. 2020;112:1897–1901. doi: 10.1016/j.ygeno.2019.11.002. PubMed DOI
Warner E.F., Bohálová N., Brázda V., Waller Z.A.E., Bidula S. Analysis of Putative Quadruplex-Forming Sequences in Fungal Genomes: Novel Antifungal Targets? Microb. Genom. 2021;7:000570. doi: 10.1099/mgen.0.000570. PubMed DOI PMC
Hänsel-Hertsch R., Di Antonio M., Balasubramanian S. DNA G-Quadruplexes in the Human Genome: Detection, Functions and Therapeutic Potential. Nat. Rev. Mol. Cell Biol. 2017;18:279–284. doi: 10.1038/nrm.2017.3. PubMed DOI
Garg R., Aggarwal J., Thakkar B. Genome-Wide Discovery of G-Quadruplex Forming Sequences and Their Functional Relevance in Plants. Sci. Rep. 2016;6:28211. doi: 10.1038/srep28211. PubMed DOI PMC
Yang X., Cheema J., Zhang Y., Deng H., Duncan S., Umar M.I., Zhao J., Liu Q., Cao X., Kwok C.K. RNA G-Quadruplex Structures Exist and Function in Vivo in Plants. Genome Biol. 2020;21:226. doi: 10.1186/s13059-020-02142-9. PubMed DOI PMC
Griffin B.D., Bass H.W. Plant G-Quadruplex (G4) Motifs in DNA and RNA. Abundant, Intriguing Sequences of Unknown Function. Plant Sci. 2018;269:143–147. doi: 10.1016/j.plantsci.2018.01.011. PubMed DOI
Volná A., Bartas M., Karlický V., Nezval J., Kundrátová K., Pečinka P., Špunda V., Červeň J. G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story. Int. J. Mol. Sci. 2021;22:7381. doi: 10.3390/ijms22147381. PubMed DOI PMC
Kreplak J., Madoui M.-A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., et al. A Reference Genome for Pea Provides Insight into Legume Genome Evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI
Ellis T.H.N., Poyser S.J. An Integrated and Comparative View of Pea Genetic and Cytogenetic Maps. New Phytol. 2002;153:17–25. doi: 10.1046/j.0028-646X.2001.00302.x. DOI
Macas J., Novák P., Pellicer J., Čížková J., Koblížková A., Neumann P., Fuková I., Doležel J., Kelly L.J., Leitch I.J. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE. 2015;10:e0143424. doi: 10.1371/journal.pone.0143424. PubMed DOI PMC
Li S.-F., Su T., Cheng G.-Q., Wang B.-X., Li X., Deng C.-L., Gao W.-J. Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants. Genes. 2017;8:290. doi: 10.3390/genes8100290. PubMed DOI PMC
Chen J., Cheng M., Salgado G.F., Stadlbauer P., Zhang X., Amrane S., Guédin A., He F., Šponer J., Ju H., et al. The Beginning and the End: Flanking Nucleotides Induce a Parallel G-Quadruplex Topology. Nucleic Acids Res. 2021;49:9548–9559. doi: 10.1093/nar/gkab681. PubMed DOI PMC
Luo Y., Granzhan A., Verga D., Mergny J.-L. FRET-MC: A Fluorescence Melting Competition Assay for Studying G4 Structures in Vitro. Biopolymers. 2021;112:e23415. doi: 10.1002/bip.23415. PubMed DOI
Cesare A.J., Quinney N., Willcox S., Subramanian D., Griffith J.D. Telomere Looping in P. sativum (Common Garden Pea) Plant J. 2003;36:271–279. doi: 10.1046/j.1365-313X.2003.01882.x. PubMed DOI
Tran P.L.T., Mergny J.-L., Alberti P. Stability of Telomeric G-Quadruplexes. Nucleic Acids Res. 2011;39:3282–3294. doi: 10.1093/nar/gkq1292. PubMed DOI PMC
De Cian A., Grellier P., Mouray E., Depoix D., Bertrand H., Monchaud D., Teulade-Fichou M.-P., Mergny J.-L., Alberti P. Plasmodium Telomeric Sequences: Structure, Stability and Quadruplex Targeting by Small Compounds. ChemBioChem. 2008;9:2730–2739. doi: 10.1002/cbic.200800330. PubMed DOI
Burstin J., Kreplak J., Macas J., Lichtenzveig J. Pisum Sativum (Pea) Trends Genet. 2020;36:312–313. doi: 10.1016/j.tig.2019.12.009. PubMed DOI
Jakowitsch J., Mette M.F., van der Winden J., Matzke M.A., Matzke A.J.M. Integrated Pararetroviral Sequences Define a Unique Class of Dispersed Repetitive DNA in Plants. Proc. Natl. Acad. Sci. USA. 1999;96:13241–13246. doi: 10.1073/pnas.96.23.13241. PubMed DOI PMC
Bennetzen J.L., Wang H. The Contributions of Transposable Elements to the Structure, Function, and Evolution of Plant Genomes. Annu. Rev. Plant Biol. 2014;65:505–530. doi: 10.1146/annurev-arplant-050213-035811. PubMed DOI
Takahashi H., Nakagawa A., Kojima S., Takahashi A., Cha B.-Y., Woo J.-T., Nagai K., Machida Y., Machida C. Discovery of Novel Rules for G-Quadruplex-Forming Sequences in Plants by Using Bioinformatics Methods. J. Biosci. Bioeng. 2012;114:570–575. doi: 10.1016/j.jbiosc.2012.05.017. PubMed DOI
Yadav V., Kim N., Tuteja N., Yadav P. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance. Front. Plant Sci. 2017;8:1163. doi: 10.3389/fpls.2017.01163. PubMed DOI PMC
Wang Y., Zhao M., Zhang Q., Zhu G.-F., Li F.-F., Du L.-F. Genomic Distribution and Possible Functional Roles of Putative G-Quadruplex Motifs in Two Subspecies of Oryza Sativa. Comput. Biol. Chem. 2015;56:122–130. doi: 10.1016/j.compbiolchem.2015.04.009. PubMed DOI
Bohálová N., Dobrovolná M., Brázda V., Bidula S. Conservation and Over-Representation of G-Quadruplex Sequences in Regulatory Regions of Mitochondrial DNA across Distinct Taxonomic Sub-Groups. Biochimie. 2022;194:28–34. doi: 10.1016/j.biochi.2021.12.006. PubMed DOI
Falabella M., Kolesar J.E., Wallace C., de Jesus D., Sun L., Taguchi Y.V., Wang C., Wang T., Xiang I.M., Alder J.K., et al. G-Quadruplex Dynamics Contribute to Regulation of Mitochondrial Gene Expression. Sci. Rep. 2019;9:5605. doi: 10.1038/s41598-019-41464-y. PubMed DOI PMC
Castillo Bosch P., Segura-Bayona S., Koole W., van Heteren J.T., Dewar J.M., Tijsterman M., Knipscheer P. FANCJ Promotes DNA Synthesis through G-Quadruplex Structures. EMBO J. 2014;33:2521–2533. doi: 10.15252/embj.201488663. PubMed DOI PMC
Cantara A., Luo Y., Dobrovolná M., Bohalova N., Fojta M., Verga D., Guittat L., Cucchiarini A., Savrimoutou S., Häberli C., et al. G-Quadruplexes in Helminth Parasites. Nucleic Acids Res. 2022;50:2719–2735. doi: 10.1093/nar/gkac129. PubMed DOI PMC
Lee D.S.M., Ghanem L.R., Barash Y. Integrative Analysis Reveals RNA G-Quadruplexes in UTRs Are Selectively Constrained and Enriched for Functional Associations. Nat. Commun. 2020;11:527. doi: 10.1038/s41467-020-14404-y. PubMed DOI PMC
Brázda V., Hároníková L., Liao J.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC
Sjakste T., Leonova E., Petrovs R., Trapina I., Röder M.S., Sjakste N. Tight DNA-Protein Complexes Isolated from Barley Seedlings Are Rich in Potential Guanine Quadruplex Sequences. PeerJ. 2020;8:e8569. doi: 10.7717/peerj.8569. PubMed DOI PMC
Volná A., Bartas M., Nezval J., Špunda V., Pečinka P., Červeň J. Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation. BioTech. 2021;10:20. doi: 10.3390/biotech10040020. PubMed DOI PMC
Kejnovsky E., Tokan V., Lexa M. Transposable Elements and G-Quadruplexes. Chromosome Res. 2015;23:615–623. doi: 10.1007/s10577-015-9491-7. PubMed DOI
Sayers E.W., Agarwala R., Bolton E.E., Brister J.R., Canese K., Clark K., Connor R., Fiorini N., Funk K., Hefferon T. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47:D23. doi: 10.1093/nar/gky1069. PubMed DOI PMC
Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št’astný J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI
Brázda V., Kolomazník J., Lỳsek J., Bartas M., Fojta M., Št’astnỳ J., Mergny J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC
Bedrat A., Lacroix L., Mergny J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC
Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains. PLoS Genet. 2012;8:e1002777. doi: 10.1371/journal.pgen.1002777. PubMed DOI PMC
Novák P., Neumann P., Macas J. Global Analysis of Repetitive DNA from Unassembled Sequence Reads Using RepeatExplorer2. Nat. Protoc. 2020;15:3745–3776. doi: 10.1038/s41596-020-0400-y. PubMed DOI
The DDBJ/ENA/GenBank Feature Table Definition | INSDC. [(accessed on 21 March 2022)]. Available online: https://www.insdc.org/documents/feature-table#2.
Komsta L. Processing Data for Outliers. R News. 2006;6:10–13.
G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes
A sodium/potassium switch for G4-prone G/C-rich sequences