Molecular Evidence for Two Domestication Events in the Pea Crop

. 2018 Nov 06 ; 9 (11) : . [epub] 20181106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30404223

Grantová podpora
16-21053S Grantová Agentura České Republiky

Pea, one of the founder crops from the Near East, has two wild species: Pisum sativum subsp. elatius, with a wide distribution centered in the Mediterranean, and P. fulvum, which is restricted to Syria, Lebanon, Israel, Palestine and Jordan. Using genome wide analysis of 11,343 polymorphic single nucleotide polymorphisms (SNPs) on a set of wild P. elatius (134) and P. fulvum (20) and 74 domesticated accessions (64 P. sativum landraces and 10 P. abyssinicum), we demonstrated that domesticated P. sativum and the Ethiopian pea (P. abyssinicum) were derived from different P. elatius genepools. Therefore, pea has at least two domestication events. The analysis does not support a hybrid origin of P. abyssinicum, which was likely introduced into Ethiopia and Yemen followed by eco-geographic adaptation. Both P. sativum and P. abyssinicum share traits that are typical of domestication, such as non-dormant seeds. Non-dormant seeds were also found in several wild P. elatius accessions which could be the result of crop to wild introgression or natural variation that may have been present during pea domestication. A sub-group of P. elatius overlaps with P. sativum landraces. This may be a consequence of bidirectional gene-flow or may suggest that this group of P. elatius is the closest extant wild relative of P. sativum.

Zobrazit více v PubMed

Lev-Yadun S., Gopher A., Abbo S. Archaeology. The cradle of agriculture. Science. 2000;288:1602–1603. doi: 10.1126/science.288.5471.1602. PubMed DOI

Abbo S., Pinhasi van-Oss R., Gopher A., Saranga Y., Ofner I., Peleg Z. Plant domestication versus crop evolution: A conceptual framework for cereals and grain legumes. Trends Plant Sci. 2014;19:351–360. doi: 10.1016/j.tplants.2013.12.002. PubMed DOI

Willcox G., Fornite S., Herveux L. Early holocene cultivation before domestication in northern Syria. Veget. Hist. Archaeobot. 2008;17:313–325. doi: 10.1007/s00334-007-0121-y. DOI

Tanno K.-I., Willcox G. How fast was wild wheat domesticated? Science. 2006;311:1886. doi: 10.1126/science.1124635. PubMed DOI

Weiss E., Kislev M.E., Hartmann A. Anthropology: Autonomous cultivation before domestication. Science. 2006;312:1608–1610. doi: 10.1126/science.1127235. PubMed DOI

Allaby R.G., Fuller D.Q., Brown T.A. The genetic expectations of a protracted model for the origins of domesticated crops. Proc. Natl. Acad. Sci. USA. 2008;105:13982. doi: 10.1073/pnas.0803780105. PubMed DOI PMC

Fuller D.Q. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Ann. Bot. 2007;100:903–924. doi: 10.1093/aob/mcm048. PubMed DOI PMC

Fuller D.Q., Asouti E., Purugganan M.D. Cultivation as slow evolutionary entanglement: Comparative data on rate and sequence of domestication. Veget. Hist. Archaeobot. 2012;21:131–147. doi: 10.1007/s00334-011-0329-8. DOI

Abbo S., Saranga Y., Peleg Z., Kerem Z., Lev-Yadun S., Gopher A. Reconsidering domestication of legumes versus cereals in the ancient near east. Q. Rev. Biol. 2009;84:29–50. doi: 10.1086/596462. PubMed DOI

Mithen S. After the Ice: A Global Human History 20,000-5,000 BC. Weidenfield & Nicholson; London, UK: 2003.

Ladizinsky G. Plant Evolution under Domestication. Kluwer Academic Publishers; Dordrecht, The Netherlands: 1998.

Zohary D., Hopf M., Weiss E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. 4th ed. Oxford University Press; Oxford, UK: 2012.

Zohary D., Hopf M. Domestication of Pulses in the Old World: Legumes were companions of wheat and barley when agriculture began in the Near East. Science. 1973;182:887–894. doi: 10.1126/science.182.4115.887. PubMed DOI

De Candolle A. Origin of Cultivated Plants. Kessinger Publishing; Whitefish, UK: 2006.

Vavilov N.I. The Origin, Variation, Immunity and Breeding of Cultivated Plants. Volume 13. Chronica Botanica; Leyden, The Netherlands: 1951. pp. 1–364. Translated from the Russian by K. Starchester.

Smartt J. Grain Legumes: Evolution and Genetic Resources. Cambridge University Press; Cambridge, UK: 1990.

Ambrose M.J. From Near East centre of origin the prized pea migrates thorough world. Diversity. 1995;11:118–119.

Kislev M.E., Bar-Yosef O. The legumes: The earliest domesticated plants in the Near East? Curr. Anthropol. 1988;29:175–179. doi: 10.1086/203623. DOI

Holtgrieve G.W., Schindler D.E., Hobbs W.O., Leavitt P.R., Ward E.J., Bunting L., Chen G., Finney B.P., Gregory-Eaves I., Holmgren S., et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science. 2011;334:1545–1548. doi: 10.1126/science.1212267. PubMed DOI

Erisman J.W., Sutton M.A., Galloway J., Klimont Z., Winiwarter W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008;1:636–639. doi: 10.1038/ngeo325. DOI

Diamond J. Evolution, consequences and future of plant and animal domestication. Nature. 2002;418:700–707. doi: 10.1038/nature01019. PubMed DOI

FAOSTAT 2016. [(accessed on 26 September 2018)]; Available online: http://www.fao.org/faostat/en/

Smýkal P., Coyne C., Ambrose M., Maxted N., Schaefer H., Blair M., Berger J., Greene S.L., Nelson M., Besharat N., et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 2014;33:43–104. doi: 10.1080/07352689.2014.897904. DOI

Lewis G., Schrire B., Mackinder B., Lock M. Legumes of the World. Royal Botanic Gardens; London, UK: 2005.

Schaefer H., Hechenleitner P., Santos-Guerra A., Menezes de Sequeira M., Pennington R.T., Kenicer G., Carine M.A. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol. Biol. 2012;12:250. doi: 10.1186/1471-2148-12-250. PubMed DOI PMC

Govorov L. Pisum. In: Vavilovk N.I., Wulff E.V., editors. Flora of Cultivated Plants IV, Grain Leguminosae. State Agricultural Publishing Company; Moscow/Leningrad, Russia: 1937. pp. 231–336.

Makasheva R.K. Gorokh (pea) In: Korovina O.N., editor. Kulturnaya Flora SSR. Kolos Publishers; Leningrad, Russia: 1979. pp. 1–324.

Maxted N., Ambrose M. Peas (Pisum L.) In: Maxted N., Bennett S.J., editors. Plant Genetic Resources of Legumes in the Mediterranean. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2001. pp. 181–190.

Smýkal P., Kenicer G., Flavell A.J., Corander J., Kosterin O., Redden R.J., Ford R., Coyne C.J., Maxted N., Ambrose M.J., et al. Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet. Res. 2011;9:4–18. doi: 10.1017/S147926211000033X. DOI

Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., Das R.R., Bhattacharyya D., Richards C., Coyne C.J., et al. Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci. Rep. 2017;7:17384. doi: 10.1038/s41598-017-17623-4. PubMed DOI PMC

Jing R., Vershinin A., Grzebyta J., Shaw P., Smýkal P., Marshall D., Ambrose M.J., Ellis T.H.N., Flavell A.J. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol. Biol. 2010;10:44. doi: 10.1186/1471-2148-10-44. PubMed DOI PMC

Butler A. Food, Fuel and Fields: Progress in African Archaeobotany. African Archaeobotany; Frankfurt, Germany: 2003. The ethiopian pea: Seeking the evidence for a separate domestication; pp. 37–47.

Ellis T.H., Poyser S.J., Knox M.R., Vershinin A.V., Ambrose M.J. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol. Gen. Genet. 1998;260:9–19. doi: 10.1007/PL00008630. PubMed DOI

Vershinin A.V., Allnutt T.R., Knox M.R., Ambrose M.J., Ellis T.H.N. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol. Biol. Evol. 2003;20:2067–2075. doi: 10.1093/molbev/msg220. PubMed DOI

Jing R., Johnson R., Seres A., Kiss G., Ambrose M.J., Knox M.R., Ellis T.H.N., Flavell A.J. Gene-based sequence diversity analysis of field pea (Pisum) Genetics. 2007;177:2263–2275. doi: 10.1534/genetics.107.081323. PubMed DOI PMC

Polans N.O., Moreno R.R. Microsatellite and ITS sequence variation in wild species and cultivars of pea. Pisum Genet. 2009;41:3–6.

Ellis T.H.N. Pisum. In: Kole C., editor. Wild Crop Relatives, Genomic and Breeding Resources. Springer; Berlin/Heidelberg, Germany: 2011. pp. 237–248.

Weeden N.F. Domestication of pea (Pisum sativum L.): The case of the Abyssinian pea. Front. Plant Sci. 2018;9:515. doi: 10.3389/fpls.2018.00515. PubMed DOI PMC

Smýkal P., Vernoud V., Blair M.W., Soukup A., Thompson R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014;5:351. doi: 10.3389/fpls.2014.00351. PubMed DOI PMC

Baldev B. Origin, distribution, taxonomy, and morphology. In: Baldev B., Ramanujam S., Jain H.K., editors. Pulse Crops. Oxford and IBH Publishing Co.; New Delhi, India: 1988. pp. 3–51.

Riehl S., Zeidi M., Conard N.J. Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science. 2013;341:65–67. doi: 10.1126/science.1236743. PubMed DOI

Mikić A., Medović A., Jovanović Ž., Stanisavljević N. Integrating archaeobotany, paleogenetics and historical linguistics may cast more light onto crop domestication: The case of pea (Pisum sativum) Genet. Resour. Crop Evol. 2014;61:887–892. doi: 10.1007/s10722-014-0102-9. DOI

Chimwamurombe P.M., Khulbe R.K. Domestication. In: Pratap A., Kumar J., editors. Biology and Breeding of Food Legumes. CABI; Cambridge, UK: 2011. pp. 19–34.

Zong X., Guan J.P., Wang S.M., Liu Q., Redden R., Ford R. Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron. Sin. 2008;34:1518–1528. doi: 10.1016/S1875-2780(09)60003-1. DOI

Zong X., Redden R.J., Liu Q., Wang S., Guan J., Liu J., Xu Y., Liu X., Gu J., Yan L., et al. Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor. Appl. Genet. 2009;118:193–204. doi: 10.1007/s00122-008-0887-z. PubMed DOI

Li L., Redden R.J., Zong X., Berger J.D., Bennett S.J. Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Genet. Resour. Crop Evol. 2013;60:1801–1815. doi: 10.1007/s10722-013-9955-6. DOI

Ben-Ze’ev N., Zohary D. Species relationships in the genus Pisum L. Isr. J. Bot. 1973;22:73–91.

Errico A., Conicella C., Venora G. Karyotype studies on Pisum fulvum and Pisum sativum, using a chromosome image analysis system. Genome. 1991;34:105–108. doi: 10.1139/g91-017. DOI

Pourkheirandish M., Hensel G., Kilian B., Senthil N., Chen G., Sameri M., Azhaguvel P., Sakuma S., Dhanagond S., Sharma R., et al. Evolution of the grain dispersal system in barley. Cell. 2015;162:527–539. doi: 10.1016/j.cell.2015.07.002. PubMed DOI

Fernandes V., Triska P., Pereira J.B., Alshamali F., Rito T., Machado A., Fajkošová Z., Cavadas B., Černý V., Soares P., et al. Genetic stratigraphy of key demographic events in Arabia. PLoS ONE. 2015;10:e0118625. doi: 10.1371/journal.pone.0118625. PubMed DOI PMC

Gallego-Llorente M., Jones E.R., Eriksson A., Siska V., Arthur K.W., Arthur J.W., Curtis M.C., Stock J.T., Coltorti M., Pieruccini P., et al. Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science. 2015;350:820–822. doi: 10.1126/science.aad2879. PubMed DOI

Smýkal P., Coyne C., Redden R., Maxted N. Peas. In: Singh M., Upadhyaya H.D., Bisht I.S., editors. Genetic and Genomic Resources of Grain Legume Improvement. Elsevier; Amsterdam, The Netherlands: 2013.

Warkentin T., Smykal P., Coyne C., Weeden N., Domoney C., Bing D., Leonforte T., Xuxiao Z., Dixit G., Boros L., et al. Pea. In: De Ron A.M., editor. Grain Legumes. Handook of Plant Breeding. Volume 10. Springer; New York, NY, USA: 2015. pp. 37–85.

Tar’an B., Zhang C., Warkentin T., Tullu A., Vandenberg A. Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome. 2005;48:257–272. doi: 10.1139/g04-114. PubMed DOI

Siol M., Jacquin F., Chabert-Martinello M., Smýkal P., Le Paslier M.-C., Aubert G., Burstin J. Patterns of genetic structure and linkage disequilibrium in a large collection of pea germplasm. G3 (Bethesda) 2017;7:2461–2471. doi: 10.1534/g3.117.043471. PubMed DOI PMC

Burstin J., Salloignon P., Chabert-Martinello M., Magnin-Robert J.-B., Siol M., Jacquin F., Chauveau A., Pont C., Aubert G., Delaitre C., et al. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genom. 2015;16:105. doi: 10.1186/s12864-015-1266-1. PubMed DOI PMC

Tayeh N., Aluome C., Falque M., Jacquin F., Klein A., Chauveau A., Bérard A., Houtin H., Rond C., Kreplak J., et al. Development of two major resources for pea genomics: The GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map. Plant J. 2015;84:1257–1273. doi: 10.1111/tpj.13070. PubMed DOI

Wu X., Li N., Hao J., Hu J., Zhang X., Blair M.W. Genetic diversity of Chinese and global pea (Pisum sativum L.) collections. Crop Sci. 2017;57:1–11. doi: 10.2135/cropsci2016.04.0271. DOI

Baranger A., Aubert G., Arnau G., Lainé A.L., Deniot G., Potier J., Weinachter C., Lejeune-Hénaut I., Lallemand J., Burstin J. Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor. Appl. Genet. 2004;108:1309–1321. doi: 10.1007/s00122-003-1540-5. PubMed DOI

Tayeh N., Klein A., Le Paslier M.-C., Jacquin F., Houtin H., Rond C., Chabert-Martinello M., Magnin-Robert J.-B., Marget P., Aubert G., et al. Genomic prediction in pea: Effect of marker density and training population size and composition on prediction accuracy. Front. Plant Sci. 2015;6:941. doi: 10.3389/fpls.2015.00941. PubMed DOI PMC

Holdsworth W.L., Gazave E., Cheng P., Myers J.R., Gore M.A., Coyne C.J., McGee R.J., Mazourek M. A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Hort. Res. 2017;4:17017. doi: 10.1038/hortres.2017.17. PubMed DOI PMC

Jing R., Ambrose M.A., Knox M.R., Smykal P., Hybl M., Ramos Á., Caminero C., Burstin J., Duc G., van Soest L.J.M., et al. Genetic diversity in European Pisum germplasm collections. Theor. Appl. Genet. 2012;125:367–380. doi: 10.1007/s00122-012-1839-1. PubMed DOI PMC

Choi J.Y., Platts A.E., Fuller D.Q., Hsing Y.-I., Wing R.A., Purugganan M.D. The rice paradox: Multiple origins but single domestication in Asian rice. Mol. Biol. Evol. 2017;34:969–979. doi: 10.1093/molbev/msx049. PubMed DOI PMC

Poets A.M., Fang Z., Clegg M.T., Morrell P.L. Barley landraces are characterized by geographically heterogeneous genomic origins. Genome Biol. 2015;16:173. doi: 10.1186/s13059-015-0712-3. PubMed DOI PMC

Pankin A., Altmüller J., Becker C., von Korff M. Targeted resequencing reveals genomic signatures of barley domestication. New Phytol. 2018;218:1247–1259. doi: 10.1111/nph.15077. PubMed DOI PMC

Peng J.H., Sun D., Nevo E. Domestication evolution, genetics and genomics in wheat. Mol. Breed. 2011;28:281. doi: 10.1007/s11032-011-9608-4. DOI

Civáň P., Ivaničová Z., Brown T.A. Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the Fertile Crescent. PLoS ONE. 2013;8:e81955. doi: 10.1371/journal.pone.0081955. PubMed DOI PMC

Matsuoka Y., Vigouroux Y., Goodman M.M., Sanchez G.J., Buckler E., Doebley J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA. 2002;99:6080–6084. doi: 10.1073/pnas.052125199. PubMed DOI PMC

von Wettberg E.J.B., Chang P.L., Başdemir F., Carrasquila-Garcia N., Korbu L.B., Moenga S.M., Bedada G., Greenlon A., Moriuchi K.S., Singh V., et al. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat. Commun. 2018;9:649. doi: 10.1038/s41467-018-02867-z. PubMed DOI PMC

Bertioli D.J., Cannon S.B., Froenicke L., Huang G., Farmer A.D., Cannon E.K.S., Liu X., Gao D., Clevenger J., Dash S., et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016;48:438–446. doi: 10.1038/ng.3517. PubMed DOI

Bitocchi E., Rau D., Bellucci E., Rodriguez M., Murgia M.L., Gioia T., Santo D., Nanni L., Attene G., Papa R. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front. Plant Sci. 2017;8:722. doi: 10.3389/fpls.2017.00722. PubMed DOI PMC

Sedivy E.J., Wu F., Hanzawa Y. Soybean domestication: The origin, genetic architecture and molecular bases. New Phytol. 2017;214:539–553. doi: 10.1111/nph.14418. PubMed DOI

Linnaeus C. Species Plantarum. Volume 2 Salvius; Stockholm, Sweden: 1753.

Braun A. Bemerkungen über die Flora von Abyssinien. Flora Oder Allgemeine Botanische Zeitung. 1841;1:257–288.

Bieberstein M. Flora Taurico-Caucasica Exhibens Stirpes Phaenomagas in Chersoneso Taurica et regionibus Caucasicis Sponte Crescents. Volume 2. Typis Academicis; Charkouiae/Kharkov, Ukraine: 1808. p. 447.

Sibthorp J.M.D., Smith J.E. Flora Graeca Sibthorpiana. Volume 2 Richard Taylor; London, UK: 1813.

Smýkal P., Trněný O., Brus J., Hanáček P., Rathore A., Roma R.D., Pechanec V., Duchoslav M., Bhattacharyya D., Bariotakis M., et al. Genetic structure of wild pea (Pisum sativum subsp elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. . PLoS ONE. 2018;13:e0194056. doi: 10.1371/journal.pone.0194056. PubMed DOI PMC

Kilian A., Wenzl P., Huttner E., Carling J., Xia L., Blois H., Caig V., Heller-Uszynska K., Jaccoud D., Hopper C., et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 2012;888:67–89. doi: 10.1007/978-1-61779-870-2_5. PubMed DOI

Cruz V.M.V., Kilian A., Dierig D.A. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop Lesquerella and related species. PLoS ONE. 2013;8:e64062. doi: 10.1371/journal.pone.0064062. PubMed DOI PMC

Raman H., Raman R., Kilian A., Detering F., Carling J., Coombes N., Diffey S., Kadkol G., Edwards D., McCully M., et al. Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE. 2014;9:e101673. doi: 10.1371/journal.pone.0101673. PubMed DOI PMC

Reeves P.A., Richards C.M. Accurate inference of subtle population structure (and other genetic discontinuities) using principal coordinates. PLoS ONE. 2009;4:e4269. doi: 10.1371/journal.pone.0004269. PubMed DOI PMC

Bryant D., Moulton V. Neighbor-net: An agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 2004;21:255–265. doi: 10.1093/molbev/msh018. PubMed DOI

Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Jombart T., Devillard S., Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. doi: 10.1186/1471-2156-11-94. PubMed DOI PMC

Malinsky M., Trucchi E., Lawson D.J., Falush D. RADpainter and fineRADstructure: Population inference from RADseq data. Mol. Biol. Evol. 2018;35:1284–1290. doi: 10.1093/molbev/msy023. PubMed DOI PMC

Ranal M.A., Santana D.G. How and why to measure the germination process? Braz. J. Bot. 2006;29:1–11. doi: 10.1590/S0100-84042006000100002. DOI

Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., et al. A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.) Front. Plant Sci. 2017;8:542. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC

Steele K.P., Wojciechowski M.F. Phylogenetic analyses of tribes Trifolieae and Vicieae, based on sequences of the plastid gene matK (Papilionoideae: Leguminosae) In: Klitgaard B.B., Bruneau A., editors. Advances in Legume Systematics, Part 10, Higher Level Systematics. Kew Royal Botanical Gardens; London, UK: 2003. pp. 355–370.

de Lamarck M.M. Flore Françoise, ou Description Succinte de Toutes des Plantes qui Croiffent Naturellement en France, disposées selon une nouvelle méthode d’analyse, et précédées par un exposé des principes élémentaires de la botanique. 3rd ed. Desray; Paris, France: 1778.

Coulot P., Rabaute P. Monographie de Leguminosae de France. 4. Tribus des Fabeae, des Cicereae et des Genisteae. 13 9782744909542Bulletin de la Société Botanique du Centre-Ouest. 2016;46:1–902.

Kosterin O. Abyssinian pea (Lathyrus schaeferi Kosterin nom. Nov. pro Pisum abyssinicum A. Br.) is a problematic taxon. Vavilov J. Genet. Breed. 2017;21:158–169. doi: 10.18699/VJ17.234. DOI

Davis P.H. Lathyrus. In: Davis P.H., editor. Flora of Turkey. Volume 3. Edinburgh University Press; Edinburgh, Scottland, UK: 1970. pp. 328–369.

Kupicha F.K. Vicieae (Adans.) DC. (1825) nom conserv prop. In: Polhill R.M., Raven P.H., editors. Advances in Legume Systematics. Volume 1. Royal Botanical Gardens; Kew, London, UK: 1981. pp. 377–381.

Schmalhausen I. Flora Srednei y Yuzhnoj Rossii, Kryma i Severnogo Kavkaza. Volume 1. Botanicheskii Institut (Akademiia nauk SSSR); Kiev, Russia: 1895. p. 468.

Ascheron P., Graebner P. Synopsis der Mitteleuropaischen Flora Bd 6, Abt 2, IV. W. Engelmann; Leipzig, Germany: 1910.

Boissier E. Diagnoses plantarum orientalum novarum. Lipsie. 1856;3:125.

Miller P. The Gardener’s Dictionary; Containing the Methods of Cultivating and Improving the Kitchen, Fruit and Flower Garden. 8th ed. Verlag von J. Cramer; Leutershausen, Germany: London, UK: 1969. Printed by J. and J. Rivington, 1768.

Berger A. Systematic botany of peas and their allies. Peas of New York. In: Hedrick J.B., editor. The Vegetables of New York. Lyon Company; Albany, NY, USA: 1928. pp. 1–132.

Lehmann C. Das morphologische system der saaterbsen (Pisum sativum L. sensu lato Gov. subsp. sativum). Der Züchter. 1954;24:316–337.

Ladizinsky G., Abbo S. The Search for Wild Relatives of Cool Season Legumes. Springer; Heidelberg, Germany: 2015.

Bogdanova V.S., Mglinets A.V., Shatskaya N.V., Kosterin O.E., Solovyev V.I., Vasiliev G.V. Cryptic divergences in the genus Pisum L. (peas), as revealed by phylogenetic analysis of plastid genomes. Mol. Phyl. Evol. 2018;129:280–290. doi: 10.1016/j.ympev.2018.09.002. PubMed DOI

van Oss R., Abbo S., Eshed R., Sherman A., Coyne C.J., Vandemark G.J., Zhang H.B., Peleg Z. Genetic relationship in Cicer sp. expose evidence for geneflow between the cultigen and its wild progenitor. PLoS ONE. 2015;10:e0139789. doi: 10.1371/journal.pone.0139789. PubMed DOI PMC

Meyer R.S., DuVal A.E., Jensen H.R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol. 2012;196:29–48. doi: 10.1111/j.1469-8137.2012.04253.x. PubMed DOI

Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., Cannon S., Baek J., Rosen B.D., Tar’an B., et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013;31:240–246. doi: 10.1038/nbt.2491. PubMed DOI

Parween S., Nawaz K., Roy R., Pole A.K., Venkata Suresh B., Misra G., Jain M., Yadav G., Parida S.K., Tyagi A.K., et al. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.) Sci. Rep. 2015;5:12806. doi: 10.1038/srep12806. PubMed DOI PMC

Caracuta V., Vardi J., Paz Y., Boaretto E. Farming legumes in the pre-pottery Neolithic: New discoveries from the site of Ahihud (Israel) PLoS ONE. 2017;12:e0177859. doi: 10.1371/journal.pone.0177859. PubMed DOI PMC

Abbo S., Rachamim E., Zehavi Y., Zezak I., Lev-Yadun S., Gopher A. Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. Ann. Bot. 2011;107:1399–1404. doi: 10.1093/aob/mcr081. PubMed DOI PMC

Smýkal P., Nelson M., Berger J., Smýkal P., Nelson M.N., Berger J.D., von Wettberg E.J.B. The impact of genetic changes during crop domestication. Agronomy. 2018;8:119. doi: 10.3390/agronomy8070119. DOI

Weeden N.F. Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the “domestication syndrome” for legumes? Ann. Bot. 2007;100:1017–1025. doi: 10.1093/aob/mcm122. PubMed DOI PMC

Wang H., Vieira F.G., Crawford J.E., Chu C., Nielsen R. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Res. 2017;27:1029–1038. doi: 10.1101/gr.204800.116. PubMed DOI PMC

Li L.F., Li Y.L., Jia Y., Caicedo A.L., Olsen K.M. Signatures of adaptation in the weedy rice genome. Nat. Genet. 2017;49:811–814. doi: 10.1038/ng.3825. PubMed DOI

Abbo S., Lev-Yadun S., Heun M., Gopher A. On the “lost” crops of the neolithic Near East. J. Exp. Bot. 2013;64:815–822. doi: 10.1093/jxb/ers373. PubMed DOI PMC

Young J.P.W., Matthews P. A distinct class of peas (Pisum sativum L.) from Afghanistan that show strain specificity for symbiotic Rhizobium. Heredity. 1982;48:203. doi: 10.1038/hdy.1982.26. DOI

Lamprecht H. Die Enstehung der Arten und hohhren Kaategorien. Springer; Wien, Germany: 1966.

Gebreslassie B., Abraha B. Review: Distribution and productivity of dekoko (Pisum sativum var. abyssinicum A. Braun) in Ethiopia. Glob. J. Sci. Front. Res. C Biol. Sci. 2016;16:1–14.

Baranyi M., Greilhuber J. Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae) Plant Syst. Evol. 1995;194:231–239. doi: 10.1007/BF00982857. DOI

Kloz J. Serology of the Leguminosae. In: Harborne J.B., Boulter D., Turner B.L., editors. Chemotaxonomy of the Leguminosae. Academic Press; London, UK: 1971. pp. 309–365.

Holden D. Ph.D. Thesis. School of Biological Sciences, University of East Anglia, John Innes Centre & Unilever Research; Colworth, UK: 2009. Genetic studies of wide crosses between cultivated pea species, and the domestication of Pisum abyssinicum.

Claussen M., Kubatzki C., Brovkin V., Ganopolski A., Hoelzmann P., Pachur H.J. Simulation of an abrupt change in Saharan vegetation at the end of the Mid-Holocene. Geophys. Res. Lett. 1999;24:2037–2040. doi: 10.1029/1999GL900494. DOI

Weeden N., Wolko B. Allozyme analysis of Pisum sativum ssp. abyssinicum and the development of a genotype definition for this subspecies. Pisum Genet. 2001;33:21–25.

Conicella C., Errico A. Karyotype Variations in Pisum Sativum Ect. Abyssinicum. Caryologia. 1990;43:87–97. doi: 10.1080/00087114.1990.10796989. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...