Allelic Diversity of Acetyl Coenzyme A Carboxylase accD/bccp Genes Implicated in Nuclear-Cytoplasmic Conflict in the Wild and Domesticated Pea (Pisum sp.)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FP7-613551
Seventh Framework Programme
BR05236334 and BR06349586
Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan
IGA 001-2018, IGA 004-2019
Grant Agency of Palacký University
NPUI LO1417
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
30974846
PubMed Central
PMC6480052
DOI
10.3390/ijms20071773
PII: ijms20071773
Knihovny.cz E-zdroje
- Klíčová slova
- acetyl-CoA carboxylase, hybrid incompatibility, hybrid necrosis, nuclear-cytoplasmic conflict, pea, reproductive isolation, speciation,
- MeSH
- acetyl-CoA-karboxylasa genetika MeSH
- alely * MeSH
- buněčné jádro genetika metabolismus MeSH
- cytoplazma genetika metabolismus MeSH
- domestikace MeSH
- fylogeneze MeSH
- hrách setý genetika metabolismus MeSH
- plastidy genetika metabolismus MeSH
- reprodukční izolace MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetyl-CoA-karboxylasa MeSH
- rostlinné proteiny MeSH
Reproductive isolation is an important component of species differentiation. The plastid accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse samples of both cultivated (Pisum sativum, P. abyssinicum) and wild (P. fulvum and P. elatius) peas. Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially geographically and genetically structured. The accD is highly variable due to insertions of tandem repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other hand, partial overlap was observed between P. sativum and P. elatius. Mapping of protein sequence polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map to sequence regions that could not be modeled, consistent with this part of the protein being less constrained by requirements for precise folding than the enzymatically active domains. The results of this study are important not only from an evolutionary point of view but are also relevant for pea breeding when using more distant wild relatives.
Department of Botany Faculty of Sciences Palacký University 78371 Olomouc Czech Republic
Department of Geoinformatics Faculty of Sciences Palacký University 78371 Olomouc Czech Republic
Department of Plant Biology Faculty of Agronomy Mendel University 61300 Brno Czech Republic
Zobrazit více v PubMed
Coyne J.A. Genetics and speciation. Nature. 1992;355:511–515. doi: 10.1038/355511a0. PubMed DOI
Coyne J.A., Orr H.A. Speciation. Sinauer, Sunderland. Oxford University Press; New York, NY, USA: 2004. pp. 1–545.
Givnish T.J. Ecology of plant speciation. Taxon. 2010;59:1326–1366. doi: 10.1002/tax.595003. DOI
Case A.L., Finseth F.R., Barr C.M., Fishman L. Selfish evolution of cytonuclear hybrid incompatibility in Mimulus. Proc. Biol. Sci. 2016;283:20161493. doi: 10.1098/rspb.2016.1493. PubMed DOI PMC
Sambatti J.B.M., Ortiz-Barrientos D., Baack E.J., Rieseberg L.H. Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers. Ecol. Lett. 2008;11:1082–1091. doi: 10.1111/j.1461-0248.2008.01224.x. PubMed DOI PMC
Bateson W. Mendel’s Principles of Heredity. Cambridge University Press; Cambridge, UK: 1909.
Dobzhansky T. Columbia Biological Series. Volume 9. Columbia University Press; New York, NY, USA: 1937. Genetics and the Origin of Species; pp. 1–364.
Muller H.J. Isolating mechanisms, evolution, and temperature. Biol. Symp. 1942;6:71–125.
Fishman L., Sweigart A.L. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities. Annu. Rev. Plant Biol. 2018;69:707–731. doi: 10.1146/annurev-arplant-042817-040113. PubMed DOI
Barnard-Kubow K.B., So N., Galloway L.F. Cytonuclear incompatibility contributes to the early stages of speciation. Evolution. 2016;70:2752–2766. doi: 10.1111/evo.13075. PubMed DOI
Mayr E. Systematics and the Origin of Species. Columbia University Press; New York, NY, USA: 1942.
Rieseberg L.H., Blackman B.K. Speciation genes in plants. Ann. Bot. 2010;106:439–455. doi: 10.1093/aob/mcq126. PubMed DOI PMC
Chen C., Lin H.-X. Evolution and Molecular Control of Hybrid Incompatibility in Plants. Front. Plant Sci. 2016;7:1208. doi: 10.3389/fpls.2016.01208. PubMed DOI PMC
Orr H.A., Masly J.P., Presgraves D.C. Speciation genes. Curr. Opin. Genet. Dev. 2004;14:675–679. doi: 10.1016/j.gde.2004.08.009. PubMed DOI
Bomblies K. Doomed lovers: Mechanisms of isolation and incompatibility in plants. Annu. Rev. Plant Biol. 2010;61:109–124. doi: 10.1146/annurev-arplant-042809-112146. PubMed DOI
Sweigart A.L., Willis J.H. Molecular evolution and genetics of postzygotic reproductive isolation in plants. F1000 Biol. Rep. 2012;4:23. doi: 10.3410/B4-23. PubMed DOI PMC
Baack E., Melo M.C., Rieseberg L.H., Ortiz-Barrientos D. The origins of reproductive isolation in plants. New Phytol. 2015;207:968–984. doi: 10.1111/nph.13424. PubMed DOI
Moison M., Roux F., Quadrado M., Duval R., Ekovich M., Lê D.-H., Verzaux M., Budar F. Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana. Plant J. 2010;63:728–738. doi: 10.1111/j.1365-313X.2010.04275.x. PubMed DOI
Levin D.A. The cytoplasmic factor in plant speciation. Syst. Bot. 2003;28:5–11.
Burton R.S., Pereira R.J., Barreto F.S. Cytonuclear Genomic Interactions and Hybrid Breakdown. Annu. Rev. Ecol. Evol. Syst. 2013;44:281–302. doi: 10.1146/annurev-ecolsys-110512-135758. DOI
Moyle L.C., Nakazato T. Complex Epistasis for Dobzhansky–Muller Hybrid Incompatibility in Solanum. Genetics. 2009;181:347–351. doi: 10.1534/genetics.108.095679. PubMed DOI PMC
Ouyang Y., Liu Y.-G., Zhang Q. Hybrid sterility in plant: Stories from rice. Curr. Opin. Plant Biol. 2010;13:186–192. doi: 10.1016/j.pbi.2010.01.002. PubMed DOI
Barr C.M., Fishman L. The Nuclear Component of a Cytonuclear Hybrid Incompatibility in Mimulus Maps to a Cluster of Pentatricopeptide Repeat Genes. Genetics. 2010;184:455–465. doi: 10.1534/genetics.109.108175. PubMed DOI PMC
Greiner S., Rauwolf U., Meurer J., Herrmann R.G. The role of plastids in plant speciation. Mol. Ecol. 2011;20:671–691. doi: 10.1111/j.1365-294X.2010.04984.x. PubMed DOI
Leppälä J., Savolainen O. Nuclear-Cytoplasmic Interactions Reduce Male Fertility in Hybrids of Arabidopsis Lyrata Subspecies. Evolution. 2011;65:2959–2972. doi: 10.1111/j.1558-5646.2011.01361.x. PubMed DOI
Törjék O., Witucka-Wall H., Meyer R.C., von Korff M., Kusterer B., Rautengarten C., Altmann T. Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor. Appl. Genet. 2006;113:1551–1561. doi: 10.1007/s00122-006-0402-3. PubMed DOI
Durand S., Bouché N., Perez Strand E., Loudet O., Camilleri C. Rapid Establishment of Genetic Incompatibility through Natural Epigenetic Variation. Curr. Biol. 2012;22:326–331. doi: 10.1016/j.cub.2011.12.054. PubMed DOI
Birky C.W. The Inheritance of Genes in Mitochondria and Chloroplasts: Laws, Mechanisms, and Models. Annu. Rev. Genet. 2001;35:125–148. doi: 10.1146/annurev.genet.35.102401.090231. PubMed DOI
Fishman L., Willis J.H. A cytonuclear incompatibility causes anther sterility in Mimulus hybrids. Evolution. 2006;60:1372–1381. doi: 10.1111/j.0014-3820.2006.tb01216.x. PubMed DOI
Hanson M.R., Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell. 2004;16(Suppl. 1):S154–S169. doi: 10.1105/tpc.015966. PubMed DOI PMC
Chen L., Liu Y.-G. Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant Biol. 2014;65:579–606. doi: 10.1146/annurev-arplant-050213-040119. PubMed DOI
Rhoades M.M. The cytoplasmic inheritance of male sterility in Zea mays. J. Genet. 1931;27:71–93. doi: 10.1007/BF02984382. PubMed DOI
Renner O. Die pflanzlichen Plastiden als selbstandige Elemente der genetischen Konstitution. Ber. Math. Phys. Kl. Sachs. Akad. 1934;86:241–266.
Stebbins G.L. Variation and Evolution in Plants. Columbia University Press; New York, NY, USA: 1950.
Stubbe W. The role of the plastome in evolution of the genus Oenothera. Genetica. 1964;35:28–33. doi: 10.1007/BF01804872. DOI
Crosby K., Smith D.R. Does the mode of plastid inheritance influence plastid genome architecture? PLoS ONE. 2012;7:e46260. doi: 10.1371/journal.pone.0046260. PubMed DOI PMC
Roux F., Mary-Huard T., Barillot E., Wenes E., Botran L., Durand S., Villoutreix R., Martin-Magniette M.-L., Camilleri C., Budar F. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field. Proc. Natl. Acad. Sci. USA. 2016;113:3687–3692. doi: 10.1073/pnas.1520687113. PubMed DOI PMC
Dempewolf H., Hodgins K.A., Rummell S.E., Ellstrand N.C., Rieseberg L.H. Reproductive isolation during domestication. Plant Cell. 2012;24:2710–2717. doi: 10.1105/tpc.112.100115. PubMed DOI PMC
Bogdanova V.S., Zaytseva O.O., Mglinets A.V., Shatskaya N.V., Kosterin O.E., Vasiliev G.V. Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits. PLoS ONE. 2015;10:e0119835. doi: 10.1371/journal.pone.0119835. PubMed DOI PMC
Sasaki Y., Nagano Y. Plant acetyl-CoA carboxylase: Structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem. 2004;68:1175–1184. doi: 10.1271/bbb.68.1175. PubMed DOI
Nikolau B.J., Ohlrogge J.B., Wurtele E.S. Plant biotin-containing carboxylases. Arch. Biochem. Biophys. 2003;414:211–222. doi: 10.1016/S0003-9861(03)00156-5. PubMed DOI
Szczepaniak A., Książkiewicz M., Podkowiński J., Czyż K.B., Figlerowicz M., Naganowska B. Legume Cytosolic and Plastid Acetyl-Coenzyme—A Carboxylase Genes Differ by Evolutionary Patterns and Selection Pressure Schemes Acting before and after Whole-Genome Duplications. Genes. 2018;9:563. doi: 10.3390/genes9110563. PubMed DOI PMC
Asaf S., Khan A.L., Aaqil Khan M., Muhammad Imran Q., Kang S.-M., Al-Hosni K., Jeong E.J., Lee K.E., Lee I.-J. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species. PLoS ONE. 2017;12:e0182281. doi: 10.1371/journal.pone.0182281. PubMed DOI PMC
Gurdon C., Maliga P. Two Distinct Plastid Genome Configurations and Unprecedented Intraspecies Length Variation in the accD Coding Region in Medicago truncatula. DNA Res. 2014;21:417–427. doi: 10.1093/dnares/dsu007. PubMed DOI PMC
Magee A.M., Aspinall S., Rice D.W., Cusack B.P., Sémon M., Perry A.S., Stefanović S., Milbourne D., Barth S., Palmer J.D., et al. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res. 2010;20:1700–1710. doi: 10.1101/gr.111955.110. PubMed DOI PMC
Ha Y.-H., Kim C., Choi K., Kim J.-H. Molecular Phylogeny and Dating of Forsythieae (Oleaceae) Provide Insight into the Miocene History of Eurasian Temperate Shrubs. Front. Plant Sci. 2018;9:99. doi: 10.3389/fpls.2018.00099. PubMed DOI PMC
Rockenbach K., Havird J.C., Monroe J.G., Triant D.A., Taylor D.R., Sloan D.B. Positive Selection in Rapidly Evolving Plastid-Nuclear Enzyme Complexes. Genetics. 2016;204:1507–1522. doi: 10.1534/genetics.116.188268. PubMed DOI PMC
Krüger J., Thomas C.M., Golstein C., Dixon M.S., Smoker M., Tang S., Mulder L., Jones J.D.G. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science. 2002;296:744–747. doi: 10.1126/science.1069288. PubMed DOI
Rooney H.C., Van’t Klooster J.W., van der Hoorn R.A., Joosten M.H., Jones J.D., de Wit P.J. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science. 2005;308:1783–1786. doi: 10.1126/science.1111404. PubMed DOI
Bomblies K., Lempe J., Epple P., Warthmann N., Lanz C., Dangl J.L., Weigel D. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 2007;5:e236. doi: 10.1371/journal.pbio.0050236. PubMed DOI PMC
Bomblies K., Weigel D. Hybrid necrosis: Autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 2007;8:382–393. doi: 10.1038/nrg2082. PubMed DOI
Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., Das R.R., Bhattacharyya D., Richards C., Coyne C.J., et al. Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci. Rep. 2017;7:17384. doi: 10.1038/s41598-017-17623-4. PubMed DOI PMC
Trněný O., Brus J., Hradilová I., Rathore A., Das R.R., Kopecký P., Coyne C.J., Reeves P., Richards C., Smýkal P. Molecular Evidence for Two Domestication Events in the Pea Crop. Genes (Basel) 2018;9:535. doi: 10.3390/genes9110535. PubMed DOI PMC
D’Agostino N., Tamburino R., Cantarella C., De Carluccio V., Sannino L., Cozzolino S., Cardi T., Scotti N. The Complete Plastome Sequences of Eleven Capsicum Genotypes: Insights into DNA Variation and Molecular Evolution. Genes. 2018;9:503. doi: 10.3390/genes9100503. PubMed DOI PMC
Greiner S., Wang X., Herrmann R.G., Rauwolf U., Mayer K., Haberer G., Meurer J. The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data. Mol. Biol. Evol. 2008;25:2019–2030. doi: 10.1093/molbev/msn149. PubMed DOI PMC
Sobanski J., Giavalisco P., Fischer A., Kreiner J., Walther D., Schoettler M.A., Pellizzer T., Golczyk H., Obata T., Bock R., et al. Chloroplast competition is controlled by lipid biosynthesis in evening primroses. Proc. Natl. Acad. Sci. USA. 2019;116:5665–5674. doi: 10.1073/pnas.1811661116. PubMed DOI PMC
Li J., Su Y., Wang T. The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes. Front. Plant Sci. 2018;9:533. doi: 10.3389/fpls.2018.00533. PubMed DOI PMC
Ujihara T., Hayashi N., Kohata K., Matsushita S., Kitajima S. Intraspecific Sequence Variation in the rbcL-accD Region of the Chloroplast Genome in Tea (Camellia sinensis) Tea Res. J. 2007;104:15–23. doi: 10.5979/cha.2007.104_15. DOI
Smýkal P., Trněný O., Brus J., Hanáček P., Rathore A., Roma R.D., Pechanec V., Duchoslav M., Bhattacharyya D., Bariotakis M., et al. Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. PLoS ONE. 2018;13:e0194056. PubMed PMC
Wright P.E., Dyson H.J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015;16:18–29. doi: 10.1038/nrm3920. PubMed DOI PMC
Light S., Sagit R., Sachenkova O., Ekman D., Elofsson A. Protein expansion is primarily due to indels in intrinsically disordered regions. Mol. Biol. Evol. 2013;30:2645–2653. doi: 10.1093/molbev/mst157. PubMed DOI
Simon M., Hancock J.M. Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biol. 2009;10:R59. doi: 10.1186/gb-2009-10-6-r59. PubMed DOI PMC
Kode V., Mudd E.A., Iamtham S., Day A. The tobacco plastid accD gene is essential and is required for leaf development. Plant J. 2005;44:237–244. doi: 10.1111/j.1365-313X.2005.02533.x. PubMed DOI
Corriveau J.L., Coleman A.W. Rapid Screening Method to Detect Potential Biparental Inheritance of Plastid DNA and Results for Over 200 Angiosperm Species. Am. J. Bot. 1988;75:1443–1458. doi: 10.1002/j.1537-2197.1988.tb11219.x. DOI
Zhang Q., Sodmergen Why does biparental plastid inheritance revive in angiosperms? J. Plant Res. 2010;123:201–206. doi: 10.1007/s10265-009-0291-z. PubMed DOI
Greiner S., Sobanski J., Bock R. Why are most organelle genomes transmitted maternally? Bioessays. 2015;37:80–94. doi: 10.1002/bies.201400110. PubMed DOI PMC
Christie J.R., Beekman M. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes. Mol. Biol. Evol. 2017;34:677–691. doi: 10.1093/molbev/msw266. PubMed DOI PMC
Bogdanova V.S., Kosterin O.E., Yadrikhinskiy A.K. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus. Theor. Appl. Genet. 2014;127:1163–1172. doi: 10.1007/s00122-014-2288-9. PubMed DOI
North N., Casey R., Domoney C. Inheritance and mapping of seed lipoxygenase polypeptides in Pisum. Theor. Appl. Genet. 1998;77:805–808. doi: 10.1007/BF00268330. PubMed DOI
Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., et al. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) Front. Plant Sci. 2017;8:542. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC
Meyer R.S., Purugganan M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013;14:840–852. doi: 10.1038/nrg3605. PubMed DOI
Ben-Ze’Ev N., Zohary D. Species relationships in the genus Pisum L. Isr. J. Bot. 1973;22:73–91.
Errico A., Conicella C., Taliercio U. Cytological and Morphological Characterization of Pisum sativum and Pisum fulvum Tetraploids. Plant Breed. 1991;106:141–148. doi: 10.1111/j.1439-0523.1991.tb00492.x. DOI
Lu Y., Kermicle J.L., Evans M.M.S. Genetic and cellular analysis of cross-incompatibility in Zea mays. Plant Reprod. 2014;27:19–29. doi: 10.1007/s00497-013-0236-5. PubMed DOI
Saitoh K., Onishi K., Mikami I., Thidar K., Sano Y. Allelic diversification at the C (OsC1) locus of wild and cultivated rice: Nucleotide changes associated with phenotypes. Genetics. 2004;168:997–1007. doi: 10.1534/genetics.103.018390. PubMed DOI PMC
Kubo T. Genetic mechanisms of postzygotic reproductive isolation: An epistatic network in rice. Breed. Sci. 2013;63:359–366. doi: 10.1270/jsbbs.63.359. PubMed DOI PMC
Kumari M., Clarke H.J., Small I., Siddique K.H.M. Albinism in Plants: A Major Bottleneck in Wide Hybridization, Androgenesis and Doubled Haploid Culture. Crit. Rev. Plant Sci. 2009;28:393–409. doi: 10.1080/07352680903133252. DOI
Kumari M., Clarke H.J., des Francs-Small C.C., Small I., Khan T.N., Siddique K.H.M. Albinism does not correlate with biparental inheritance of plastid DNA in interspecific hybrids in Cicer species. Plant Sci. 2011;180:628–633. doi: 10.1016/j.plantsci.2011.01.003. PubMed DOI
Bohra A., Jha U.C., Adhimoolam P. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 2016;35:967–993. doi: 10.1007/s00299-016-1949-3. PubMed DOI
Kim Y.-J., Zhang D. Molecular Control of Male Fertility for Crop Hybrid Breeding. Trends Plant Sci. 2018;23:53–65. doi: 10.1016/j.tplants.2017.10.001. PubMed DOI
Villesen P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes. 2007;7:965–968. doi: 10.1111/j.1471-8286.2007.01821.x. DOI
Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Kalendar R., Khassenov B., Ramanculov E., Samuilova O., Ivanov K.I. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017;109:312–319. doi: 10.1016/j.ygeno.2017.05.005. PubMed DOI
Heger A., Holm L. Rapid automatic detection and alignment of repeats in protein sequences. Proteins. 2000;41:224–237. doi: 10.1002/1097-0134(20001101)41:2<224::AID-PROT70>3.0.CO;2-Z. PubMed DOI
Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC
Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., Xu J. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 2012;7:1511–1522. doi: 10.1038/nprot.2012.085. PubMed DOI PMC
Johansson M.U., Zoete V., Michielin O., Guex N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinform. 2012;13:173. doi: 10.1186/1471-2105-13-173. PubMed DOI PMC
Hooft R.W., Vriend G., Sander C., Abola E.E. Errors in protein structures. Nature. 1996;381:272. doi: 10.1038/381272a0. PubMed DOI
Legume Genetics and Biology: From Mendel's Pea to Legume Genomics