Allelic Diversity of Acetyl Coenzyme A Carboxylase accD/bccp Genes Implicated in Nuclear-Cytoplasmic Conflict in the Wild and Domesticated Pea (Pisum sp.)

. 2019 Apr 10 ; 20 (7) : . [epub] 20190410

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30974846

Grantová podpora
FP7-613551 Seventh Framework Programme
BR05236334 and BR06349586 Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan
IGA 001-2018, IGA 004-2019 Grant Agency of Palacký University
NPUI LO1417 Ministry of Education, Youth and Sports of the Czech Republic

Reproductive isolation is an important component of species differentiation. The plastid accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse samples of both cultivated (Pisum sativum, P. abyssinicum) and wild (P. fulvum and P. elatius) peas. Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially geographically and genetically structured. The accD is highly variable due to insertions of tandem repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other hand, partial overlap was observed between P. sativum and P. elatius. Mapping of protein sequence polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map to sequence regions that could not be modeled, consistent with this part of the protein being less constrained by requirements for precise folding than the enzymatically active domains. The results of this study are important not only from an evolutionary point of view but are also relevant for pea breeding when using more distant wild relatives.

Zobrazit více v PubMed

Coyne J.A. Genetics and speciation. Nature. 1992;355:511–515. doi: 10.1038/355511a0. PubMed DOI

Coyne J.A., Orr H.A. Speciation. Sinauer, Sunderland. Oxford University Press; New York, NY, USA: 2004. pp. 1–545.

Givnish T.J. Ecology of plant speciation. Taxon. 2010;59:1326–1366. doi: 10.1002/tax.595003. DOI

Case A.L., Finseth F.R., Barr C.M., Fishman L. Selfish evolution of cytonuclear hybrid incompatibility in Mimulus. Proc. Biol. Sci. 2016;283:20161493. doi: 10.1098/rspb.2016.1493. PubMed DOI PMC

Sambatti J.B.M., Ortiz-Barrientos D., Baack E.J., Rieseberg L.H. Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers. Ecol. Lett. 2008;11:1082–1091. doi: 10.1111/j.1461-0248.2008.01224.x. PubMed DOI PMC

Bateson W. Mendel’s Principles of Heredity. Cambridge University Press; Cambridge, UK: 1909.

Dobzhansky T. Columbia Biological Series. Volume 9. Columbia University Press; New York, NY, USA: 1937. Genetics and the Origin of Species; pp. 1–364.

Muller H.J. Isolating mechanisms, evolution, and temperature. Biol. Symp. 1942;6:71–125.

Fishman L., Sweigart A.L. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities. Annu. Rev. Plant Biol. 2018;69:707–731. doi: 10.1146/annurev-arplant-042817-040113. PubMed DOI

Barnard-Kubow K.B., So N., Galloway L.F. Cytonuclear incompatibility contributes to the early stages of speciation. Evolution. 2016;70:2752–2766. doi: 10.1111/evo.13075. PubMed DOI

Mayr E. Systematics and the Origin of Species. Columbia University Press; New York, NY, USA: 1942.

Rieseberg L.H., Blackman B.K. Speciation genes in plants. Ann. Bot. 2010;106:439–455. doi: 10.1093/aob/mcq126. PubMed DOI PMC

Chen C., Lin H.-X. Evolution and Molecular Control of Hybrid Incompatibility in Plants. Front. Plant Sci. 2016;7:1208. doi: 10.3389/fpls.2016.01208. PubMed DOI PMC

Orr H.A., Masly J.P., Presgraves D.C. Speciation genes. Curr. Opin. Genet. Dev. 2004;14:675–679. doi: 10.1016/j.gde.2004.08.009. PubMed DOI

Bomblies K. Doomed lovers: Mechanisms of isolation and incompatibility in plants. Annu. Rev. Plant Biol. 2010;61:109–124. doi: 10.1146/annurev-arplant-042809-112146. PubMed DOI

Sweigart A.L., Willis J.H. Molecular evolution and genetics of postzygotic reproductive isolation in plants. F1000 Biol. Rep. 2012;4:23. doi: 10.3410/B4-23. PubMed DOI PMC

Baack E., Melo M.C., Rieseberg L.H., Ortiz-Barrientos D. The origins of reproductive isolation in plants. New Phytol. 2015;207:968–984. doi: 10.1111/nph.13424. PubMed DOI

Moison M., Roux F., Quadrado M., Duval R., Ekovich M., Lê D.-H., Verzaux M., Budar F. Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana. Plant J. 2010;63:728–738. doi: 10.1111/j.1365-313X.2010.04275.x. PubMed DOI

Levin D.A. The cytoplasmic factor in plant speciation. Syst. Bot. 2003;28:5–11.

Burton R.S., Pereira R.J., Barreto F.S. Cytonuclear Genomic Interactions and Hybrid Breakdown. Annu. Rev. Ecol. Evol. Syst. 2013;44:281–302. doi: 10.1146/annurev-ecolsys-110512-135758. DOI

Moyle L.C., Nakazato T. Complex Epistasis for Dobzhansky–Muller Hybrid Incompatibility in Solanum. Genetics. 2009;181:347–351. doi: 10.1534/genetics.108.095679. PubMed DOI PMC

Ouyang Y., Liu Y.-G., Zhang Q. Hybrid sterility in plant: Stories from rice. Curr. Opin. Plant Biol. 2010;13:186–192. doi: 10.1016/j.pbi.2010.01.002. PubMed DOI

Barr C.M., Fishman L. The Nuclear Component of a Cytonuclear Hybrid Incompatibility in Mimulus Maps to a Cluster of Pentatricopeptide Repeat Genes. Genetics. 2010;184:455–465. doi: 10.1534/genetics.109.108175. PubMed DOI PMC

Greiner S., Rauwolf U., Meurer J., Herrmann R.G. The role of plastids in plant speciation. Mol. Ecol. 2011;20:671–691. doi: 10.1111/j.1365-294X.2010.04984.x. PubMed DOI

Leppälä J., Savolainen O. Nuclear-Cytoplasmic Interactions Reduce Male Fertility in Hybrids of Arabidopsis Lyrata Subspecies. Evolution. 2011;65:2959–2972. doi: 10.1111/j.1558-5646.2011.01361.x. PubMed DOI

Törjék O., Witucka-Wall H., Meyer R.C., von Korff M., Kusterer B., Rautengarten C., Altmann T. Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor. Appl. Genet. 2006;113:1551–1561. doi: 10.1007/s00122-006-0402-3. PubMed DOI

Durand S., Bouché N., Perez Strand E., Loudet O., Camilleri C. Rapid Establishment of Genetic Incompatibility through Natural Epigenetic Variation. Curr. Biol. 2012;22:326–331. doi: 10.1016/j.cub.2011.12.054. PubMed DOI

Birky C.W. The Inheritance of Genes in Mitochondria and Chloroplasts: Laws, Mechanisms, and Models. Annu. Rev. Genet. 2001;35:125–148. doi: 10.1146/annurev.genet.35.102401.090231. PubMed DOI

Fishman L., Willis J.H. A cytonuclear incompatibility causes anther sterility in Mimulus hybrids. Evolution. 2006;60:1372–1381. doi: 10.1111/j.0014-3820.2006.tb01216.x. PubMed DOI

Hanson M.R., Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell. 2004;16(Suppl. 1):S154–S169. doi: 10.1105/tpc.015966. PubMed DOI PMC

Chen L., Liu Y.-G. Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant Biol. 2014;65:579–606. doi: 10.1146/annurev-arplant-050213-040119. PubMed DOI

Rhoades M.M. The cytoplasmic inheritance of male sterility in Zea mays. J. Genet. 1931;27:71–93. doi: 10.1007/BF02984382. PubMed DOI

Renner O. Die pflanzlichen Plastiden als selbstandige Elemente der genetischen Konstitution. Ber. Math. Phys. Kl. Sachs. Akad. 1934;86:241–266.

Stebbins G.L. Variation and Evolution in Plants. Columbia University Press; New York, NY, USA: 1950.

Stubbe W. The role of the plastome in evolution of the genus Oenothera. Genetica. 1964;35:28–33. doi: 10.1007/BF01804872. DOI

Crosby K., Smith D.R. Does the mode of plastid inheritance influence plastid genome architecture? PLoS ONE. 2012;7:e46260. doi: 10.1371/journal.pone.0046260. PubMed DOI PMC

Roux F., Mary-Huard T., Barillot E., Wenes E., Botran L., Durand S., Villoutreix R., Martin-Magniette M.-L., Camilleri C., Budar F. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field. Proc. Natl. Acad. Sci. USA. 2016;113:3687–3692. doi: 10.1073/pnas.1520687113. PubMed DOI PMC

Dempewolf H., Hodgins K.A., Rummell S.E., Ellstrand N.C., Rieseberg L.H. Reproductive isolation during domestication. Plant Cell. 2012;24:2710–2717. doi: 10.1105/tpc.112.100115. PubMed DOI PMC

Bogdanova V.S., Zaytseva O.O., Mglinets A.V., Shatskaya N.V., Kosterin O.E., Vasiliev G.V. Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits. PLoS ONE. 2015;10:e0119835. doi: 10.1371/journal.pone.0119835. PubMed DOI PMC

Sasaki Y., Nagano Y. Plant acetyl-CoA carboxylase: Structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem. 2004;68:1175–1184. doi: 10.1271/bbb.68.1175. PubMed DOI

Nikolau B.J., Ohlrogge J.B., Wurtele E.S. Plant biotin-containing carboxylases. Arch. Biochem. Biophys. 2003;414:211–222. doi: 10.1016/S0003-9861(03)00156-5. PubMed DOI

Szczepaniak A., Książkiewicz M., Podkowiński J., Czyż K.B., Figlerowicz M., Naganowska B. Legume Cytosolic and Plastid Acetyl-Coenzyme—A Carboxylase Genes Differ by Evolutionary Patterns and Selection Pressure Schemes Acting before and after Whole-Genome Duplications. Genes. 2018;9:563. doi: 10.3390/genes9110563. PubMed DOI PMC

Asaf S., Khan A.L., Aaqil Khan M., Muhammad Imran Q., Kang S.-M., Al-Hosni K., Jeong E.J., Lee K.E., Lee I.-J. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species. PLoS ONE. 2017;12:e0182281. doi: 10.1371/journal.pone.0182281. PubMed DOI PMC

Gurdon C., Maliga P. Two Distinct Plastid Genome Configurations and Unprecedented Intraspecies Length Variation in the accD Coding Region in Medicago truncatula. DNA Res. 2014;21:417–427. doi: 10.1093/dnares/dsu007. PubMed DOI PMC

Magee A.M., Aspinall S., Rice D.W., Cusack B.P., Sémon M., Perry A.S., Stefanović S., Milbourne D., Barth S., Palmer J.D., et al. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res. 2010;20:1700–1710. doi: 10.1101/gr.111955.110. PubMed DOI PMC

Ha Y.-H., Kim C., Choi K., Kim J.-H. Molecular Phylogeny and Dating of Forsythieae (Oleaceae) Provide Insight into the Miocene History of Eurasian Temperate Shrubs. Front. Plant Sci. 2018;9:99. doi: 10.3389/fpls.2018.00099. PubMed DOI PMC

Rockenbach K., Havird J.C., Monroe J.G., Triant D.A., Taylor D.R., Sloan D.B. Positive Selection in Rapidly Evolving Plastid-Nuclear Enzyme Complexes. Genetics. 2016;204:1507–1522. doi: 10.1534/genetics.116.188268. PubMed DOI PMC

Krüger J., Thomas C.M., Golstein C., Dixon M.S., Smoker M., Tang S., Mulder L., Jones J.D.G. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science. 2002;296:744–747. doi: 10.1126/science.1069288. PubMed DOI

Rooney H.C., Van’t Klooster J.W., van der Hoorn R.A., Joosten M.H., Jones J.D., de Wit P.J. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science. 2005;308:1783–1786. doi: 10.1126/science.1111404. PubMed DOI

Bomblies K., Lempe J., Epple P., Warthmann N., Lanz C., Dangl J.L., Weigel D. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 2007;5:e236. doi: 10.1371/journal.pbio.0050236. PubMed DOI PMC

Bomblies K., Weigel D. Hybrid necrosis: Autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 2007;8:382–393. doi: 10.1038/nrg2082. PubMed DOI

Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., Das R.R., Bhattacharyya D., Richards C., Coyne C.J., et al. Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci. Rep. 2017;7:17384. doi: 10.1038/s41598-017-17623-4. PubMed DOI PMC

Trněný O., Brus J., Hradilová I., Rathore A., Das R.R., Kopecký P., Coyne C.J., Reeves P., Richards C., Smýkal P. Molecular Evidence for Two Domestication Events in the Pea Crop. Genes (Basel) 2018;9:535. doi: 10.3390/genes9110535. PubMed DOI PMC

D’Agostino N., Tamburino R., Cantarella C., De Carluccio V., Sannino L., Cozzolino S., Cardi T., Scotti N. The Complete Plastome Sequences of Eleven Capsicum Genotypes: Insights into DNA Variation and Molecular Evolution. Genes. 2018;9:503. doi: 10.3390/genes9100503. PubMed DOI PMC

Greiner S., Wang X., Herrmann R.G., Rauwolf U., Mayer K., Haberer G., Meurer J. The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data. Mol. Biol. Evol. 2008;25:2019–2030. doi: 10.1093/molbev/msn149. PubMed DOI PMC

Sobanski J., Giavalisco P., Fischer A., Kreiner J., Walther D., Schoettler M.A., Pellizzer T., Golczyk H., Obata T., Bock R., et al. Chloroplast competition is controlled by lipid biosynthesis in evening primroses. Proc. Natl. Acad. Sci. USA. 2019;116:5665–5674. doi: 10.1073/pnas.1811661116. PubMed DOI PMC

Li J., Su Y., Wang T. The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes. Front. Plant Sci. 2018;9:533. doi: 10.3389/fpls.2018.00533. PubMed DOI PMC

Ujihara T., Hayashi N., Kohata K., Matsushita S., Kitajima S. Intraspecific Sequence Variation in the rbcL-accD Region of the Chloroplast Genome in Tea (Camellia sinensis) Tea Res. J. 2007;104:15–23. doi: 10.5979/cha.2007.104_15. DOI

Smýkal P., Trněný O., Brus J., Hanáček P., Rathore A., Roma R.D., Pechanec V., Duchoslav M., Bhattacharyya D., Bariotakis M., et al. Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. PLoS ONE. 2018;13:e0194056. PubMed PMC

Wright P.E., Dyson H.J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015;16:18–29. doi: 10.1038/nrm3920. PubMed DOI PMC

Light S., Sagit R., Sachenkova O., Ekman D., Elofsson A. Protein expansion is primarily due to indels in intrinsically disordered regions. Mol. Biol. Evol. 2013;30:2645–2653. doi: 10.1093/molbev/mst157. PubMed DOI

Simon M., Hancock J.M. Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biol. 2009;10:R59. doi: 10.1186/gb-2009-10-6-r59. PubMed DOI PMC

Kode V., Mudd E.A., Iamtham S., Day A. The tobacco plastid accD gene is essential and is required for leaf development. Plant J. 2005;44:237–244. doi: 10.1111/j.1365-313X.2005.02533.x. PubMed DOI

Corriveau J.L., Coleman A.W. Rapid Screening Method to Detect Potential Biparental Inheritance of Plastid DNA and Results for Over 200 Angiosperm Species. Am. J. Bot. 1988;75:1443–1458. doi: 10.1002/j.1537-2197.1988.tb11219.x. DOI

Zhang Q., Sodmergen Why does biparental plastid inheritance revive in angiosperms? J. Plant Res. 2010;123:201–206. doi: 10.1007/s10265-009-0291-z. PubMed DOI

Greiner S., Sobanski J., Bock R. Why are most organelle genomes transmitted maternally? Bioessays. 2015;37:80–94. doi: 10.1002/bies.201400110. PubMed DOI PMC

Christie J.R., Beekman M. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes. Mol. Biol. Evol. 2017;34:677–691. doi: 10.1093/molbev/msw266. PubMed DOI PMC

Bogdanova V.S., Kosterin O.E., Yadrikhinskiy A.K. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus. Theor. Appl. Genet. 2014;127:1163–1172. doi: 10.1007/s00122-014-2288-9. PubMed DOI

North N., Casey R., Domoney C. Inheritance and mapping of seed lipoxygenase polypeptides in Pisum. Theor. Appl. Genet. 1998;77:805–808. doi: 10.1007/BF00268330. PubMed DOI

Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., et al. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) Front. Plant Sci. 2017;8:542. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC

Meyer R.S., Purugganan M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013;14:840–852. doi: 10.1038/nrg3605. PubMed DOI

Ben-Ze’Ev N., Zohary D. Species relationships in the genus Pisum L. Isr. J. Bot. 1973;22:73–91.

Errico A., Conicella C., Taliercio U. Cytological and Morphological Characterization of Pisum sativum and Pisum fulvum Tetraploids. Plant Breed. 1991;106:141–148. doi: 10.1111/j.1439-0523.1991.tb00492.x. DOI

Lu Y., Kermicle J.L., Evans M.M.S. Genetic and cellular analysis of cross-incompatibility in Zea mays. Plant Reprod. 2014;27:19–29. doi: 10.1007/s00497-013-0236-5. PubMed DOI

Saitoh K., Onishi K., Mikami I., Thidar K., Sano Y. Allelic diversification at the C (OsC1) locus of wild and cultivated rice: Nucleotide changes associated with phenotypes. Genetics. 2004;168:997–1007. doi: 10.1534/genetics.103.018390. PubMed DOI PMC

Kubo T. Genetic mechanisms of postzygotic reproductive isolation: An epistatic network in rice. Breed. Sci. 2013;63:359–366. doi: 10.1270/jsbbs.63.359. PubMed DOI PMC

Kumari M., Clarke H.J., Small I., Siddique K.H.M. Albinism in Plants: A Major Bottleneck in Wide Hybridization, Androgenesis and Doubled Haploid Culture. Crit. Rev. Plant Sci. 2009;28:393–409. doi: 10.1080/07352680903133252. DOI

Kumari M., Clarke H.J., des Francs-Small C.C., Small I., Khan T.N., Siddique K.H.M. Albinism does not correlate with biparental inheritance of plastid DNA in interspecific hybrids in Cicer species. Plant Sci. 2011;180:628–633. doi: 10.1016/j.plantsci.2011.01.003. PubMed DOI

Bohra A., Jha U.C., Adhimoolam P. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 2016;35:967–993. doi: 10.1007/s00299-016-1949-3. PubMed DOI

Kim Y.-J., Zhang D. Molecular Control of Male Fertility for Crop Hybrid Breeding. Trends Plant Sci. 2018;23:53–65. doi: 10.1016/j.tplants.2017.10.001. PubMed DOI

Villesen P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes. 2007;7:965–968. doi: 10.1111/j.1471-8286.2007.01821.x. DOI

Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Kalendar R., Khassenov B., Ramanculov E., Samuilova O., Ivanov K.I. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017;109:312–319. doi: 10.1016/j.ygeno.2017.05.005. PubMed DOI

Heger A., Holm L. Rapid automatic detection and alignment of repeats in protein sequences. Proteins. 2000;41:224–237. doi: 10.1002/1097-0134(20001101)41:2<224::AID-PROT70>3.0.CO;2-Z. PubMed DOI

Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC

Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., Xu J. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 2012;7:1511–1522. doi: 10.1038/nprot.2012.085. PubMed DOI PMC

Johansson M.U., Zoete V., Michielin O., Guex N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinform. 2012;13:173. doi: 10.1186/1471-2105-13-173. PubMed DOI PMC

Hooft R.W., Vriend G., Sander C., Abola E.E. Errors in protein structures. Nature. 1996;381:272. doi: 10.1038/381272a0. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Legume Genetics and Biology: From Mendel's Pea to Legume Genomics

. 2020 May 08 ; 21 (9) : . [epub] 20200508

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace