Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29579076
PubMed Central
PMC5868773
DOI
10.1371/journal.pone.0194056
PII: PONE-D-17-33381
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- fenotyp MeSH
- genetická variace genetika MeSH
- hrách setý genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- opylení genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Knowledge of current genetic diversity and mating systems of crop wild relatives (CWR) in the Fertile Crescent is important in crop genetic improvement, because western agriculture began in the area after the cold-dry period known as Younger Dryas about 12,000 years ago and these species are also wild genepools of the world's most important food crops. Wild pea (Pisum sativum subsp. elatius) is an important source of genetic diversity for further pea crop improvement harbouring traits useful in climate change context. The genetic structure was assessed on 187 individuals of Pisum sativum subsp. elatius from fourteen populations collected in the northern part of the Fertile Crescent using 18,397 genome wide single nucleotide polymorphism DARTseq markers. AMOVA showed that 63% of the allelic variation was distributed between populations and 19% between individuals within populations. Four populations were found to contain admixed individuals. The observed heterozygosity ranged between 0.99 to 6.26% with estimated self-pollination rate between 47 to 90%. Genetic distances of wild pea populations were correlated with geographic but not environmental (climatic) distances and support a mixed mating system with predominant self-pollination. Niche modelling with future climatic projections showed a local decline in habitats suitable for wild pea, making a strong case for further collection and ex situ conservation.
Agricultural Research Ltd Troubsko Czech Republic
CSIRO Agriculture and Food Wembley Western Australia Australia
Department of Biology and Botanical Garden University of Crete Heraklion Greece
Department of Botany Palacký University Olomouc Czech Republic
Department of Field Crops Akdeniz University Antalya Turkey
Department of Geoinformatics Palacký University Olomouc Czech Republic
Department of Life Science and Bioinformatics Assam University Silchar India
Department of Plant Biology Mendel University Brno Czech Republic
Zobrazit více v PubMed
Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017; 57: 1070–1082.
Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJ. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot. 2014;101: 1791–1800. doi: 10.3732/ajb.1400116 PubMed DOI
Dempewolf H, Eastwood RJ, Luigi G. et al. Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecol Sustain Food Syst. 2014;38: 369–377.
Redden R, Yadav SS, Maxted N, Dulloo ME, Guarino L, Smith P. (eds.) Crop Wild Relatives and Climate Change. Wiley-Blackwell, 2015.
Hübner S, Hüffken M, Oren E, Haseneyer G, Stein N, Graner A, et al. Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol, 2009; 18: 1523–15366. doi: 10.1111/j.1365-294X.2009.04106.x PubMed DOI
Jakob SS, Roedder D, Engler JO, Shaaf S, Oezkan H, Blattner FR, et al. Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol. 2014;6: 685–702. doi: 10.1093/gbe/evu047 PubMed DOI PMC
Fuchs EJ, Martínez AM, Calvo A, Muñoz M, Arrieta-Espinoza G. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa. PeerJ. 2016;4: e1875 doi: 10.7717/peerj.1875 PubMed DOI PMC
Smýkal P, Coyne C. Ambrose MJ, Maxted N, Schaefer H, Blair MW. et al. Legume crops phylogeny and genetic diversity for science and breeding. Critic Rev Plant Sci. 2015;34: 43–104.
Bonnin I, Ronfort J, Wozniak F, Olivieri I. Spatial effects and rare outcrossing events in Medicago truncatula (Fabaceae). Mol Ecol 2001;6: 1371–1383. PubMed
Kouam EB, Pasquet RS, Campagne P, Tignegre JB, Thoen K, Gaudin R, Ouedraogo JT, Salifu AB, Muluvi GM, Gepts P. Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant Biol. 2012;12: 113 doi: 10.1186/1471-2229-12-113 PubMed DOI PMC
Zaytseva OO, Gunbin KV, Mglinets AV, Kosterin OE. Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution. Gene 2015;556:235–244. doi: 10.1016/j.gene.2014.11.062 PubMed DOI
Smýkal P, Chaloupská M, Bariotakis M, Marečková L, Sinjushin A, Gabrielyan I et al. Spacial patterns and intraspecific diversity of the glacial relict legume species Vavilovia formosa (Stev.) Fed. in Eurasia. Plant Syst Evol. 2017;303: 267–282.
Karron JD, Ivey CT, Mitchell RJ, Whitehead MR, Peakall R, Case AL. New perspectives on the evolution of plant mating systems. Ann Bot. 2011;109: 493–503. doi: 10.1093/aob/mcr319 PubMed DOI PMC
Suso MJ, Bebeli PJ, Christmann S, Mateus C, Negri V, Pinheiro de Carvalho MAA, Torricelli R, Veloso MM. Enhancing legume ecosystem services through an understanding of plant–pollinator interplay. Front Plant Sci. 2016;7: 333 doi: 10.3389/fpls.2016.00333 PubMed DOI PMC
Dempewolf H, Hodgins KA, Rummell SE, Ellstrand NC, Rieseberg LH. Reproductive isolation during domestication. Plant Cell. 2012;7: 2710–2717. PubMed PMC
Cronk QCB. Legume flowers bear fruit. Proc Natl Acad Sci USA. 2006;103: 4801–4802. doi: 10.1073/pnas.0601298103 PubMed DOI PMC
Johnston MO, Porcher E, Cheptou PO, Eckert CG, Elle E, Geber MA, Winn AA. Correlations among fertility components can maintain mixed mating in plants. The American Naturalist. 2008;173: 1–11. PubMed
Jump AS, Marchant R, Peñuelas J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 2009;14: 51–58. doi: 10.1016/j.tplants.2008.10.002 PubMed DOI
Bradshaw AD. Genostasis and the limits to evolution. Phil Trans Royal Soc London, Series B. 1991;333: 289–305. PubMed
Nevo E. Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci USA. 2001;98: 6233–6240. doi: 10.1073/pnas.101109298 PubMed DOI PMC
Safriel UN, Volis S, Kark S. Core and peripheral populations and global climate change. Israel J Plant Sci. 1994;42: 331–345.
Smýkal P, Kenicer G, Flavell A, et al. Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour-Charact Util. 2011;9: 4–18.
Maxted N, Ambrose M. Peas (Pisum L.) In: Maxted N., Bennett S.J. (eds) Plant genetic resources of legumes in the Mediterranean. Current Plant Science and Biotechnology in Agriculture, vol 39. Kluwer Academic Press, Dordrecht: 2001; 181–190.
Ugurlu E, Rolecek J, Bergmeier E. Oak woodland vegetation of Turkey—a first overview based on multivariate statistics. Appl Veg Sci. 2012;15: 590–608.
Kilian A, Wenzl P, Huttner E, et al. Diversity Arrays Technology: a generic genome profiling technology on open platforms. Methods in Molecular Biology, 2012;888: 67–89. doi: 10.1007/978-1-61779-870-2_5 PubMed DOI
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155: 945–959. PubMed PMC
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Cons Genet Res. 2012;4: 359–361.
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE, a simulation study. Mol Ecol. 2005;14: 2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x PubMed DOI
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11: 94 doi: 10.1186/1471-2156-11-94 PubMed DOI PMC
Patterson N, Price AL, Reich D. Population Structure and Eigenanalysis. PLoS Genet. 2006; 2(12): e190 doi: 10.1371/journal.pgen.0020190 PubMed DOI PMC
Jombart T, Devillard S, Dufour AB Pontier D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity. 2008;101: 92–103. doi: 10.1038/hdy.2008.34 PubMed DOI
Huson DH, Bryant D. Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol. 2006;23: 254–267. doi: 10.1093/molbev/msj030 PubMed DOI
Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2: e281 doi: 10.7717/peerj.281 PubMed DOI PMC
Weir BS, Cockerham CC Mixed self and random mating at two loci. Genet Res. 1973;21: 247–262. PubMed
David P, Pujol B, Viard F, Castella V, Goudet J. Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol. 2007;16: 2474–2487. doi: 10.1111/j.1365-294X.2007.03330.x PubMed DOI
Hoffman JI, Simpson F, David P, Rijks JM, Kuiken T, Thorne MAS, Lacey RC, Dasmahapatra KK. High-throughput sequencing reveals inbreeding depression in a natural population. Proc Natl Acad Sci USA. 2014;111: 3775–3780. doi: 10.1073/pnas.1318945111 PubMed DOI PMC
Stoffel MA, Esser M, Kardos M, Humble E, Nichols H, David P, Hoffman JI. inbreedR: an R package for the analysis of inbreeding based on genetic markers. Methods Ecol Evol. 2016;7: 1331–1339.
Ritland K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res. 1996;67: 175–185.
Fick SE, Hijmans RJ. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. doi: 10.1002/joc.5086 2017. DOI
Gessler PE, Moore ID, McKenzie NJ, Ryan PJ. Soil-landscape modeling and spatial prediction of soil attributes. International Journal of GIS. 1995; 9: 421–432.
Moore ID, Gessler PE, Nielsen GA, Petersen GA. Terrain attributes: estimation methods and scale effects In. Modeling Change in Environmental Systems, edited by Jakeman A.J. Beck M.B. and McAleer M. Wiley, London: 1993; 189–214.
McCune B, Keon D. Equations for potential annual direct incident radiation and heat load index. Journal of Vegetation Science. 2002;13: 603–606.
Iverson LR, Dale ME, Scott CT, Prasad A. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landsc Ecol. 1997;12: 331–348.
Balice RG, Miller JD, Oswald BP, Edminister C, Yool SR. Forest surveys and wildfire assessment in the Los Alamos; 1998–1999. Los Alamos, NM, USA Los Alamos National Laboratory; LA-13714-MS. 2000; 12 p.
ter Braak CJF, Šmilauer P. CANOCO reference manual and User’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca, USA. 2012; 496 pp.
Legendre P, Legendre L. Numerical ecology. Elsevier, Amsterdam: 2012; 990 pp.
Rousset F. Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance. Genetics. 1997;145: 1219–1228. PubMed PMC
Rosenberg NA. Distruct: a program for the graphical display of population structure. Mol Ecol Notes, 2004;4: 137–138.
Pebesma EJ, Bivand RS. Classes and methods for spatial data in R. R News. 2005;5: 9–13.
Hijmans RJ. Raster: Geographic Data Analysis and Modeling. R package version 2.5–2. http://CRAN.R-project.org/package=raster. 2015.
Van Der Wal J, Falconi L, Januchowski S, Shoo L, Storlie C. SDMTools, Species Distribution Modelling Tools, Tools for processing data associated with species distribution modelling exercises. http://CRAN.R-project.org/package=SDMTools. 2014.
Holdsworth WL, Gazave E, Cheng P, et al. A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Hortic Res-England. 2017;4: 17017. PubMed PMC
Jing R, Vershinin A, Grzebyta J, et al. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol. 2010;10: 44 doi: 10.1186/1471-2148-10-44 PubMed DOI PMC
Ladizinski G, Abbo S. The Search for Wild Relatives of Cool Season Legumes The Pisum Genus. Springer; 2015; 55–69.
Blondel J. The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol. 2006;34: 713–729.
Thormann I, Reeves P, Reilley A, Engels JMM, Lohwasser U, Börner A, et al. Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan. PLoS ONE 2016;11(8): e0160745 doi: 10.1371/journal.pone.0160745 PubMed DOI PMC
Leimu R, Mutikainen P, Koricheva J, Fischer M. How general are positive relationships between plant population size, fitness and genetic variation? J Ecol. 2006; 94: 942–952.
Thompson JD. Plant Evolution in the Mediterranean. Oxford Univ. Press, Oxford: 2005.
D’Hondt B, Breyne P, Van Landuyt W, Hoffmann M. Genetic analysis reveals human-mediated long-distance dispersal among war cemeteries in Trifolium micranthum. Plant Ecol. 2012;213: 1241–1250.
Berger JD, Shrestha D, Ludwig C. Reproductive strategies in Mediterranean legumes: Trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Front Plant Sci. 2017;8: e548. PubMed PMC
Smýkal P, Vernoud V, Blair MW, Soukup A and Thompson RD. The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci. 2014;5: 351 doi: 10.3389/fpls.2014.00351 PubMed DOI PMC
Norman HC, Cocks PS, Galwey NW. Hardseededness in annual clovers: variation between populations from wet and dry environments. Aust J Agric Res. 2002;53: 821–829.
Norman HC, Cocks PS, Galwey NW. Annual clovers (Trifolium spp.) have different reproductive strategies to achieve persistence in Mediterranean-type climates. Aust J Agric Res. 2005;5: 33–43.
McCue K.A., Holtsford TP. Seed bank influences on genetic diversity in the rare annual Clarkia springvillensis (Onagraceae). Am J Bot. 1998;85: 30–36. PubMed
Kaljund K, Jaaska V. No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcata. Biochem Syst Ecol. 2010;38: 510–520.
Husband BC, Barrett SC. Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil. Oecologia. 1992; 89: 365–371. doi: 10.1007/BF00317414 PubMed DOI
Dostálová R, Seidenglanz M, Griga M. Simulation and assessment of possible environmental risks associated with release of genetically modified peas (Pisum sativum L.) into environment in Central Europe. Czech J Genet Plant Breed. 2005; 41: 51–63.
Polowick PL, Vandenberg A, Mahon JD. Field assessment of outcrossing from transgenic pea (Pisum sativum L.) plants. Transg Res. 2002; 11: 515–519, PubMed
Bogdanova VS, Berdnikov VA. A study of potential ability for cross-pollination in pea originating from different parts of the world. Pisum Genetics. 2000;32: 16–17.
Loenning WE. Cross fertilization in peas under different ecological conditions. Pisum Newsletter. 1984;16: 38–40.
Kosterin O, Bogdanova V. Efficiency of hand pollination in different pea (Pisum) species and subspecies. Indian J Genet Plant Breed. 2014;74: 50–55.
Saboor N, Sajjad A, Kamran S, Raham D, Bismillah S. Insect pollinators and their relative abundance on pea (Pisum sativum) at Peshawar. J Ent Zool Studies. 2016;4: 112–117.
Hoban S, Strand A. Ex situ seed collections will benefit from considering spatial sampling design and species’ reproductive biology. Biological Conservations. 2015;187: 182–191.
Al-Gharaibeh MM, Hamasha HR, Rosche C, Lachmuth S, Wesche K, Hensen I. 2017 Environmental gradients shape the genetic structure of two medicinal Salvia species in Jordan. Plant Biol. 2017;17: 227–238. PubMed
Hamasha HR, Schmidt-Lebuhn AN, Durka W, Schleuning M, Hensen I. Bioclimatic regions influence genetic structure of four Jordanian Stipa species. Plant Biol. 2013;15: 882–891. doi: 10.1111/j.1438-8677.2012.00689.x PubMed DOI
Franks SJ, Weis AE. Climate change alters reproductive isolation and potential gene flow in an annual plant. Evol Appl. 2009;2: 481–488. doi: 10.1111/j.1752-4571.2009.00073.x PubMed DOI PMC
Bishop J, Jones HE, O’Sullivan DM, Potts SG. Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba). J Exp Bot. 2017;68: 2055–2063. doi: 10.1093/jxb/erw430 PubMed DOI PMC
Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A. Evidence of climatic niche shift during biological invasion. Ecol Lett. 2007;10: 701–709. doi: 10.1111/j.1461-0248.2007.01060.x PubMed DOI
Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A. Climatic niche shifts are rare among terrestrial plant invaders. Science. 2012;335: 1344–1348. doi: 10.1126/science.1215933 PubMed DOI
Levin DA. Enviroment-enhanced self-fertilization: implications for niche shofts in adjacent populations. J Ecol. 2010; 98: 1276–1283.
Molecular Evidence for Two Domestication Events in the Pea Crop