Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1507 POLYMAT
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32295042
PubMed Central
PMC7215618
DOI
10.3390/ijms21082700
PII: ijms21082700
Knihovny.cz E-zdroje
- Klíčová slova
- GIPAW, oligopeptides, plane-wave DFT, samarosporin, solid-state NMR,
- MeSH
- aminokyseliny chemie MeSH
- izotopové značení MeSH
- magnetická rezonanční spektroskopie * metody MeSH
- oligopeptidy chemie izolace a purifikace MeSH
- peptidy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- oligopeptidy MeSH
- peptidy MeSH
Reliable values of the solid-state NMR (SSNMR) parameters together with precise structural data specific for a given amino acid site in an oligopeptide are needed for the proper interpretation of measurements aiming at an understanding of oligopeptides' function. The periodic density functional theory (DFT)-based computations of geometries and SSNMR chemical shielding tensors (CSTs) of solids are shown to be accurate enough to support the SSNMR investigations of suitably chosen models of oriented samples of oligopeptides. This finding is based on a thorough comparison between the DFT and experimental data for a set of tripeptides with both 13Cα and 15Namid CSTs available from the single-crystal SSNMR measurements and covering the three most common secondary structural elements of polypeptides. Thus, the ground is laid for a quantitative description of local spectral parameters of crystalline oligopeptides, as demonstrated for the backbone 15Namid nuclei of samarosporin I, which is a pentadecapeptide (composed of five classical and ten nonproteinogenic amino acids) featuring a strong antimicrobial activity.
Zobrazit více v PubMed
Hamley I.W. Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chem. Rev. 2017;117:14015–14041. doi: 10.1021/acs.chemrev.7b00522. PubMed DOI
Wang J., Dou X., Song J., Lyu Y., Zhu X., Xu L., Li W., Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019;39:831–859. doi: 10.1002/med.21542. PubMed DOI
Yount N.Y., Weaver D.C., Lee E.Y., Lee M.W., Wang H., Chan L.C., Wong G.C.L., Yeaman M.R. Unifying structural signature of eukaryotic α-helical host defense peptides. Proc. Natl. Acad. Sci. USA. 2019;116:6944–6953. doi: 10.1073/pnas.1819250116. PubMed DOI PMC
Du L., Risinger A.L., Mitchell C.A., You J., Stamps B.W., Pan N., King J.B., Bopassa J.C., Judge S.I.V., Yang Z., et al. Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides. Proc. Natl. Acad. Sci. USA. 2017;114:8957–8966. doi: 10.1073/pnas.1707565114. PubMed DOI PMC
Raheem N., Straus S.K. Mechanisms of Action for Antimicrobial Peptides with Antibacterial and Antibiofilm Functions. Front. Microbiol. 2019;10:2866. doi: 10.3389/fmicb.2019.02866. PubMed DOI PMC
Molugu T.R., Lee S., Brown M.F. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem. Rev. 2017;117:12087–12132. doi: 10.1021/acs.chemrev.6b00619. PubMed DOI
Salnikov E., Bertani P., Raap J., Bechinger B. Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues. J. Biomol. NMR. 2009;45:373–387. doi: 10.1007/s10858-009-9380-5. PubMed DOI
Nagao T., Mishima D., Javkhlantugs N., Wang J., Ishioka D., Yokota K., Norisada K., Kawamura I., Ueda K., Naito A. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. BBA Biomembr. 2015;1848:2789–2798. doi: 10.1016/j.bbamem.2015.07.019. PubMed DOI
Grage S.L., Kara S., Bordessa A., Doan V., Rizzolo F., Putzu M., Kubař T., Papini A.M., Chaume G., Brigaud T., et al. Orthogonal 19F-Labeling for Solid-State NMR Spectroscopy Reveals the Conformation and Orientation of Short Peptaibols in Membranes. Chem. Eur. J. 2018;24:4238–4335. doi: 10.1002/chem.201704307. PubMed DOI
Bonhomme C., Gervais C., Babonneau F., Coelho C., Pourpoint F., Azais T., Asbrook S.E., Griffin J.M., Yates J.R., Pickard J.C. First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist’s Point of View. Chem. Rev. 2012;112:5733–5779. doi: 10.1021/cr300108a. PubMed DOI
Czernek J., Brus J. Theoretical Investigations Into the Variability of the N-15 Solid-State NMR Parameters Within an Antimicrobial Peptide Ampullosporin A. Phys. Res. 2018;67:S349–S356. doi: 10.33549/physiolres.933976. PubMed DOI
Chekmenev E.Y., Xu R.Z., Mashuta M.S., Wittebort R.J. Glycyl C alpha chemical shielding in tripeptides: Measurement by solid-state NMR and correlation with X-ray structure and theory. J. Am. Chem. Soc. 2002;124:11894–11899. doi: 10.1021/ja026700g. PubMed DOI
Chekmenev E.Y., Zhang Q.W., Waddell K.W., Mashuta M.S., Wittebort R.J. N-15 chemical shielding in glycyl tripeptides: Measurement by solid-state NMR and correlation with x-ray structure. J. Am. Chem. Soc. 2004;126:379–384. doi: 10.1021/ja0370342. PubMed DOI
Waddell K.W., Chekmenev E.Y., Wittebort R.J. Single-Crystal Studies of Peptide Prolyl and Glycyl 15N Shielding Tensors. J. Am. Chem. Soc. 2005;127:9030–9035. doi: 10.1021/ja044204h. PubMed DOI
Kang X., Elso C., Penfield J., Kirui A., Chen A., Zhang L., Wang T. Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog. Commun. Biol. 2019;2:402–410. doi: 10.1038/s42003-019-0653-6. PubMed DOI PMC
Gessmann R., Axford D., Evans G., Bruckner H., Petratos K. The crystal structure of samarosporin I at atomic resolution. J. Pept. Sci. 2012;18:678–684. doi: 10.1002/psc.2454. PubMed DOI
Strohmeier M., Grant D.M. Experimental and theoretical investigation of the C-13 and N-15 chemical shift tensors in melanostatin-exploring the chemical shift tensor as a structural probe. J. Am. Chem. Soc. 2004;126:966–977. doi: 10.1021/ja037330e. PubMed DOI
Nerli S., McShan A.C., Sgourakis N.G. Chemical shift-based methods in NMR structure determination. Prog. Nucl. Mag. Res. Sp. 2018;106:1–25. doi: 10.1016/j.pnmrs.2018.03.002. PubMed DOI PMC
Harris R.K., Wasylishen R.E., Duer M.J., editors. NMR Crystallography. Wiley; Chichester, UK: 2009.
Hofstetter A., Balodis M., Paruzzo F.M., Widdifield C.M., Stevanato G., Pinon A.C., Bygrave P.J., Day G.M., Emsley L. Rapid structure determination of molecular solids using chemical shifts directed by unambiguous prior constraints. J. Am. Chem. Soc. 2019;141:16624–16634. doi: 10.1021/jacs.9b03908. PubMed DOI PMC
Guzmán-Afonso C., Hong Y., Colaux H., Iijima H., Saitow A., Fukumura T., Aoyama Y., Motoki S., Oikawa T., Yamazaki T., et al. Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nat. Commun. 2019;10:1–10. doi: 10.1038/s41467-019-11469-2. PubMed DOI PMC
Awosanya E.O., Lapin J., Nevzorov A.A. NMR “crystallography” for uniformly (13C, 15N)-labeled oriented membrane proteins. Angew. Chem. Int. Ed. 2020;59:3554–3557. doi: 10.1002/anie.201915110. PubMed DOI
Czernek J., Urbanová M., Brus J. NMR crystallography of the polymorphs of metergoline. Crystals. 2018;8:378. doi: 10.3390/cryst8100378. DOI
Sternberg U., Witter R. Investigation of backbone dynamics and local geometry of bio-molecules using calculated NMR chemical shifts and anisotropies. J. Biomol. NMR. 2019;73:727–741. doi: 10.1007/s10858-019-00284-y. PubMed DOI
Narwani T.J., Santuz H., Shinada N., Vattekatte A.M., Ghouzam Y., Srinivasan N., Gelly J.-C., de Brevern A.G. Recent advances on polyproline II. Amino Acids. 2017;49:705–713. doi: 10.1007/s00726-017-2385-6. PubMed DOI
Czernek J., Pawlak T., Potrzebowski M.J., Brus J. The comparison of approaches to the solid-state NMR-based structural refinement of vitamin B1 hydrochloride and of its monohydrate. Chem. Phys. Lett. 2013;555:135–140. doi: 10.1016/j.cplett.2012.11.002. DOI
Perrin B.S., Pastor R.W., Cotton M. Combining NMR Spectroscopic Measurements and Molecular Dynamics Simulations to Determine the Orientation of Amphipathic Peptides in Lipid Bilayers. In: Separovic S., Naito A., editors. Advances in Biological Solid-State NMR: Proteins and Membrane-Active Peptides. 1st ed. Royal Society of Chemistry; London, UK: 2014.
Witanowski M., Stefaniak L., Szymański S., Januszewski H. External neat nitromethane scale for nitrogen chemical shifts. J. Magn. Reson. 1977;28:217–226. doi: 10.1016/0022-2364(77)90148-2. DOI
Alderman D.W., Sherwood M.H., Grant D.M. Comparing, modeling and assigning chemical-shift tensors in the cartesian, irreducible spherical, and icosahedral representations. J. Magn. Reson. A. 1993;101:188–197. doi: 10.1006/jmra.1993.1029. DOI
Czernek J., Brus J. Theoretical predictions of the two-dimensional solid-state NMR spectra: A case study of the 13C—1H correlations in metergoline. Chem. Phys. Lett. 2013;586:56–60. doi: 10.1016/j.cplett.2013.09.015. DOI
Czernek J., Brus J. The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra. Chem. Phys. Lett. 2014;608:334–339. doi: 10.1016/j.cplett.2014.05.099. DOI
Czernek J., Brus J. Exploring accuracy limits of predictions of the 1-H chemical shielding anisotropy in the solid state. Molecules. 2019;24:1731. doi: 10.3390/molecules24091731. PubMed DOI PMC
Ramon-Martín F., Annaval T., Buchoux S., Sarazin C., D’Amelio N. ADAPTABLE: A comprehensive web platform of antimicrobial peptides tailored to the user’s research. Life Sci. Alliance. 2020;2:e201900512. doi: 10.26508/lsa.201900512. PubMed DOI PMC
Chu K.T., Wang H.X., Ng T.B. Fungal Peptides with Antifungal Activity. In: Kastin A.J., editor. Handbook of Biologically Active Peptides. 1st ed. Academic Press; Cambridge, MA, USA: 2006.
Wel van der P.C.A. New applications of solid-state NMR in structural biology. Emerg. Top. Life Sci. 2018;2:57–67. doi: 10.1042/ETLS20170088. PubMed DOI PMC
Marassi F.M., Opella S.J. A Solid-State NMR Index of Helical Membrane Protein Structure and Topology. J. Magn. Reson. 2000;144:150–155. doi: 10.1006/jmre.2000.2035. PubMed DOI PMC
Salnikov E.S., Aisenbrey C., Pokrandt B., Brügger B., Bechinger B. Structure, Topology, and Dynamics of Membrane-Inserted Polypeptides and Lipids by Solid-State NMR Spectroscopy: Investigations of the Transmembrane Domains of the DQ Beta-1 Subunit of the MHC II Receptor and of the COP I Protein. Front. Mol. Biosci. 2019;6:83. doi: 10.3389/fmolb.2019.00083. PubMed DOI PMC
Salnikov E.S., Friedrich H., Li X., Bertani P., Reissmann S., Hertweck C., O’Neil J.D.J., Raap J., Bechinger B. Structure and Alignment of the Membrane-Associated Peptaibols Ampullosporin A and Alamethicin by Oriented 15N and 31P Solid-State NMR Spectroscopy. Biophys. J. 2009;96:86–100. doi: 10.1529/biophysj.108.136242. PubMed DOI PMC
Yarava J.R., Nishiyama Y., Raghothama S., Ramanathan V.K. Conformational investigation of peptides using solid-state NMR spectroscopy–A study of polymorphism of β-turn peptides containing diprolines. Chem. Biol. Drug Des. 2020;95:394–407. doi: 10.1111/cbdd.13649. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C. First principles simulation: Ideas, illustrations, and the CASTEP code. J. Phys. Condens. Matter. 2002;14:2717–2744. doi: 10.1088/0953-8984/14/11/301. DOI
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Krist. Cryst. Mater. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI
Yates J.R., Pickard C.J., Mauri F. Calculations of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI
Czernek J., Brus J. On the predictions of the B-11 solid state NMR parameters. Chem. Phys. Lett. 2016;655:66–70. doi: 10.1016/j.cplett.2016.05.027. DOI
Modeling the Structure of Crystalline Alamethicin and Its NMR Chemical Shift Tensors
Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments
Polymorphic Forms of Valinomycin Investigated by NMR Crystallography