Isolation of senescent cells by iodixanol (OptiPrep) density gradient-based separation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000492
European Social Fund and European Regional Development Fund
European Social Fund
European Regional Development Fund
PubMed
31517418
PubMed Central
PMC6869531
DOI
10.1111/cpr.12674
Knihovny.cz E-zdroje
- MeSH
- doxorubicin farmakologie MeSH
- hepatocelulární karcinom patologie MeSH
- kyseliny trijodbenzoové farmakologie MeSH
- lidé MeSH
- nádory jater patologie MeSH
- poškození DNA účinky léků MeSH
- separace buněk * metody MeSH
- stárnutí buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin MeSH
- iodixanol MeSH Prohlížeč
- kyseliny trijodbenzoové MeSH
OBJECTIVES: Chemotherapeutic drugs induce senescence in cancer cells but, unlike replicative senescence or oncogene-induced senescence, do so rather inefficiently and depending on DNA damage. A thorough understanding of the biology of chemotherapy-induced senescent cells requires their isolation from a mixed population of adjacent senescent and non-senescent cancer cells. MATERIALS AND METHODS: We have developed and optimized a rapid iodixanol (OptiPrep)-based gradient centrifugation system to identify, isolate and characterize doxorubicin (DXR)-induced senescent hepatocellular carcinoma (HCC) cells (HepG2 and Huh-7) in vitro. RESULTS: After cellular exposure to DXR, we used iodixanol gradient-based centrifugation to isolate and re-plate cells on collagen-coated flasks, despite their low or null proliferative capacity. The isolated cell populations were enriched for DXR-induced senescent HCC cells, as confirmed by proliferation arrest assay, and β-galactosidase and DNA damage-dependent γH2A.X staining. CONCLUSIONS: Analysing pure cultures of chemotherapy-induced senescent versus non-responsive cancer cells will increase our knowledge on chemotherapeutic mechanisms of action, and help refine current therapeutic strategies.
Zobrazit více v PubMed
Jeon OH, Kim C, Laberge R‐M, et al. Local clearance of senescent cells attenuates the development of post‐traumatic osteoarthritis and creates a pro‐regenerative environment. Nat Med. 2017;23(6):775‐781. PubMed PMC
Demaria M, O'Leary MN, Chang J, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7(2):165‐176. PubMed PMC
Wiley CD, Campisi J. From ancient pathways to aging cells‐connecting metabolism and cellular senescence. Cell Metab. 2016;23(6):1013‐1021. PubMed PMC
Bird TG, Muller M, Boulter L, et al. TGFbeta inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci Transl Med. 2018;10(454):pii eaan1230. PubMed PMC
Lowe D, Horvath S, Raj K. Epigenetic clock analyses of cellular senescence and ageing. Oncotarget. 2016;7(8):8524‐8531. PubMed PMC
Chen Y, Mao P, Snijders AM, Wang D. Senescence chips for ultrahigh‐throughput isolation and removal of senescent cells. Aging Cell. 2018;17(2):e12722. PubMed PMC
Matjusaitis M, Chin G, Sarnoski EA, Stolzing A. Biomarkers to identify and isolate senescent cells. Ageing Res Rev. 2016;29:1‐12. PubMed
Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc. 2017;65(10):2297‐2301. PubMed PMC
Kovacovicova K, Skolnaja M, Heinmaa M, et al. Senolytic cocktail Dasatinib+Quercetin (D+Q) does not enhance the efficacy of senescence‐inducing chemotherapy in liver cancer. Front Oncol. 2018;8:459. PubMed PMC
Chen J, Chen K‐H, Fu B‐Q, et al. Isolation and identification of senescent renal tubular epithelial cells using immunomagnetic beads based on DcR2. Exp Gerontol. 2017;95:116‐127. PubMed
Kim KM, Noh JH, Bodogai M, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017;31(15):1529‐1534. PubMed PMC
Frescas D, Roux CM, Aygun‐Sunar S, et al. Senescent cells expose and secrete an oxidized form of membrane‐bound vimentin as revealed by a natural polyreactive antibody. Proc Natl Acad Sci USA. 2017;114(9):E1668‐E1677. PubMed PMC
Wang D, Lu P, Liu Y, et al. Isolation of live premature senescent cells using FUCCI technology. Sci Rep. 2016;6:30705. PubMed PMC
Borghesan M, Fusilli C, Rappa F, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy‐induced senescence to promote hepatocellular carcinoma progression. Can Res. 2016;76(3):594‐606. PubMed PMC
Lo Re O, Fusilli C, Rappa F, et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2017;67(2):636-650. PubMed
Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence‐associated beta‐galactosidase assay. Methods Mol Biol. 2007;371:21‐31. PubMed
Podrini C, Koffas A, Chokshi S, et al. MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat‐induced steatosis. FASEB J. 2015;29(5):1676‐1687. PubMed
Graham JM. Formation of self‐generated gradients of iodixanol. ScientificWorldJournal. 2002;2:1356‐1360. PubMed PMC
Jueliger S, Lyons J, Cannito S, et al. Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI‐110) in preclinical models of hepatocellular carcinoma. Epigenetics. 2016;1–12. PubMed PMC
Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92(20):9363‐9367. PubMed PMC
Kilic Eren M, Kilincli A, Eren O. Resveratrol induced premature senescence is associated with DNA damage mediated SIRT1 and SIRT2 down‐regulation. PLoS One. 2015;10(4):e0124837. PubMed PMC
Boothe T, Hilbert L, Heide M, et al. A tunable refractive index matching medium for live imaging cells, tissues and model organisms. eLife. 2017;6:e27240. PubMed PMC
Mita A, Ricordi C, Messinger S, et al. Antiproinflammatory effects of iodixanol (OptiPrep)‐based density gradient purification on human islet preparations. Cell Transplant. 2010;19(12):1537‐1546. PubMed PMC
Holtzclaw JD, Jiang M, Yasin Z, Joiner CH, Franco RS. Rehydration of high‐density sickle erythrocytes in vitro. Blood. 2002;100(8):3017‐3025. PubMed
Inaba N, Hiruma T, Togayachi A, et al. A novel I‐branching beta‐1,6‐N‐acetylglucosaminyltransferase involved in human blood group I antigen expression. Blood. 2003;101(7):2870‐2876. PubMed
Gorgoulis VG, Halazonetis TD. Oncogene‐induced senescence: the bright and dark side of the response. Curr Opin Cell Biol. 2010;22(6):816‐827. PubMed
Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy‐induced senescence in cancer. J Natl Cancer Inst. 2010;102(20):1536‐1546. PubMed PMC
Abou‐Alfa GK, Johnson P, Knox JJ, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. JAMA. 2010;304(19):2154‐2160. PubMed
Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727‐741. PubMed
Pang B, Qiao X, Janssen L, et al. Drug‐induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun. 2013;4:1908. PubMed PMC
Denard B, Lee C, Ye J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. eLife. 2012;1:e00090. PubMed PMC
d'Adda di Fagagna F Living on a break: cellular senescence as a DNA‐damage response. Nat Rev Cancer. 2008;8(7):512‐522. PubMed
von Zglinicki T, Saretzki G, Ladhoff J, d'Adda di Fagagna F, Jackson SP. Human cell senescence as a DNA damage response. Mech Ageing Dev. 2005;126(1):111‐117. PubMed
Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H(2)O(2)‐ and p53‐dependent pathways. J Biol Chem. 2004;279(24):25535‐25543. PubMed
Di Biase S, Shim HS, Kim KH, et al. Fasting regulates EGR1 and protects from glucose‐ and dexamethasone‐dependent sensitization to chemotherapy. PLoS Biol. 2017;15(3):e2001951. PubMed PMC
Vinciguerra M, Carrozzino F, Peyrou M, et al. Unsaturated fatty acids promote hepatoma proliferation and progression through downregulation of the tumor suppressor PTEN. J Hepatol. 2009;50(6):1132‐1141. PubMed
Jung H‐R, Kang HM, Ryu J‐W, et al. Cell spheroids with enhanced aggressiveness to mimic human liver cancer in vitro and in vivo. Sci Rep. 2017;7(1):10499. PubMed PMC
Bhardwaj B, Bhardwaj G, Lau JY. Expression of p21 and p27 in hepatoma cell lines with different p53 gene profile. J Hepatol. 1999;31(2):386. PubMed
Jackson J, Pant V, Li Q, et al. p53‐mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell. 2012;21(6):793‐806. PubMed PMC
Kang T‐W, Yevsa T, Woller N, et al. Senescence surveillance of pre‐malignant hepatocytes limits liver cancer development. Nature. 2011;479(7374):547‐551. PubMed
Yevsa T, Kang TW, Zender L. Immune surveillance of pre‐cancerous senescent hepatocytes limits hepatocellular carcinoma development. Oncoimmunology. 2012;1(3):398‐399. PubMed PMC
Senescence-like phenotype in post-mitotic cells of mice entering middle age