Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma

. 2016 Oct 02 ; 11 (10) : 709-720. [epub] 20160920

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27646854

Hepatocellular carcinoma (HCC) is a deadly malignancy characterized at the epigenetic level by global DNA hypomethylation and focal hypermethylation on the promoter of tumor suppressor genes. In most cases it develops on a background of liver steatohepatitis, fibrosis, and cirrhosis. Guadecitabine (SGI-110) is a second-generation hypomethylating agent, which inhibits DNA methyltransferases. Guadecitabine is formulated as a dinucleotide of decitabine and deoxyguanosine that is resistant to cytidine deaminase (CDA) degradation and results in prolonged in vivo exposure to decitabine following small volume subcutaneous administration of guadecitabine. Here we found that guadecitabine is an effective demethylating agent and is able to prevent HCC progression in pre-clinical models. In a xenograft HCC HepG2 model, guadecitabine impeded tumor growth and inhibited angiogenesis, while it could not prevent liver fibrosis and inflammation in a mouse model of steatohepatitis. Demethylating efficacy of guadecitabine on LINE-1 elements was found to be the highest 8 d post-infusion in blood samples of mice. Analysis of a panel of human HCC vs. normal tissue revealed a signature of hypermethylated tumor suppressor genes (CDKN1A, CDKN2A, DLEC1, E2F1, GSTP1, OPCML, E2F1, RASSF1, RUNX3, and SOCS1) as detected by methylation-specific PCR. A pronounced demethylating effect of guadecitabine was obtained also in the promoters of a subset of tumor suppressors genes (CDKN2A, DLEC1, and RUNX3) in HepG2 and Huh-7 HCC cells. Finally, we analyzed the role of macroH2A1, a variant of histone H2A, an oncogene upregulated in human cirrhosis/HCC that synergizes with DNA methylation in suppressing tumor suppressor genes, and it prevents the inhibition of cell growth triggered by decitabine in HCC cells. Guadecitabine, in contrast to decitabine, blocked growth in HCC cells overexpressing macroH2A1 histones and with high CDA levels, despite being unable to fully demethylate CDKN2A, RUNX3, and DLEC1 promoters altered by macroH2A1. Collectively, our findings in human and mice models reveal novel epigenetic anti-HCC effects of guadecitabine, which might be effective specifically in advanced states of the disease.

Zobrazit více v PubMed

Gores GJ. Decade in review-hepatocellular carcinoma: HCC-subtypes, stratification and sorafenib. Nat Rev Gastroenterol Hepatol 2014; 11(11):645-7; PMID:25245016; http://dx.doi.org/10.1038/nrgastro.2014.157 PubMed DOI PMC

Sheedfar F, Di Biase S, Koonen D, Vinciguerra M. Liver diseases and aging: friends or foes? Aging Cell 2013; 12(6):950-4; PMID:23815295; http://dx.doi.org/10.1111/acel.12128 PubMed DOI

Borghesan M, Fusilli C, Rappa F, Panebianco C, Rizzo G, Oben JA, Mazzoccoli G, Faulkes C, Pata I, Agodi A, et al.. DNA Hypomethylation and Histone Variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res 2016; 76(3):594-606; PMID:26772755; http://dx.doi.org/10.1158/0008-5472.CAN-15-1336 PubMed DOI PMC

Revill K, Wang T, Lachenmayer A, Kojima K, Harrington A, Li J, Hoshida Y, Llovet JM, Powers S. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma. Gastroenterol 2013; 145(6):1424-35 e1-25; PMID:24012984; http://dx.doi.org/10.1053/j.gastro.2013.08.055 PubMed DOI PMC

Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Mendez-Gonzalez J, Imbeaud S, Letouzé E, Hernandez-Gea V, Cornella H, et al.. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatol 2015; 61(6):1945-56; PMID:25645722; http://dx.doi.org/10.1002/hep.27732 PubMed DOI

Borghesan M, Mazzoccoli G, Sheedfar F, Oben J, Pazienza V, Vinciguerra M. Histone variants and lipid metabolism. Biochem Soc Trans 2014; 42(5):1409-13; PMID:25233423; http://dx.doi.org/10.1042/BST20140119 PubMed DOI

Rappa F, Greco A, Podrini C, Cappello F, Foti M, Bourgoin L, Peyrou M, Marino A, Scibetta N, Williams R, et al.. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. PLoS One 2013; 8(1):e54458; PMID:23372727; http://dx.doi.org/10.1371/journal.pone.0054458 PubMed DOI PMC

Cantarino N, Douet J, Buschbeck M. MacroH2A–an epigenetic regulator of cancer. Cancer Lett 2013; 336(2):247-52; PMID:23531411; http://dx.doi.org/10.1016/j.canlet.2013.03.022 PubMed DOI

Barzily-Rokni M, Friedman N, Ron-Bigger S, Isaac S, Michlin D, Eden A. Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16(CDKN2A). Nucleic Acids Res 2011; 39(4):1326-35; PMID:21030442; http://dx.doi.org/10.1093/nar/gkq994 PubMed DOI PMC

Venturelli S, Berger A, Weiland T, Essmann F, Waibel M, Nuebling T, Häcker S, Schenk M, Schulze-Osthoff K, Salih HR, et al.. Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumor cells. Mol Cancer Ther 2013; 12(10):2226-36; PMID:23924947; http://dx.doi.org/10.1158/1535-7163.MCT-13-0137 PubMed DOI

Venturelli S, Berger A, Weiland T, Zimmermann M, Hacker S, Peter C, Wesselborg S, Königsrainer A, Weiss TS, Gregor M, et al.. Dual antitumour effect of 5-azacytidine by inducing a breakdown of resistance-mediating factors and epigenetic modulation. Gut 2011; 60(2):156-65; PMID:21106551; http://dx.doi.org/10.1136/gut.2010.208041 PubMed DOI

Venturelli S, Armeanu S, Pathil A, Hsieh CJ, Weiss TS, Vonthein R, Wehrmann M, Gregor M, Lauer UM, Bitzer M. Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma. Cancer 2007; 109(10):2132-41; PMID:17407132; http://dx.doi.org/10.1002/cncr.22652 PubMed DOI

Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol 2015; 9(9):1799-814; PMID:26160429; http://dx.doi.org/10.1016/j.molonc.2015.06.002 PubMed DOI PMC

Jueliger S, Lyons J, Azab M, Taverna P.SGI-110, a novel second generation DNA hypomethylating agent, enhances sorafenib activity and alters the methylation signature of HCC cell lines. EORTC-AACR- NCI Symposium on Molecular Targets and Cancer Therapeutics; Dublin, Ireland: 2012..

Coral S, Parisi G, Nicolay HJ, Colizzi F, Danielli R, Fratta E, Covre A, Taverna P, Sigalotti L, Maio M. Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide. Cancer Immunol Immunother 2013; 62(3):605-14; PMID:23138873; http://dx.doi.org/10.1007/s00262-012-1365-7 PubMed DOI PMC

Issa JP, Roboz G, Rizzieri D, Jabbour E, Stock W, O'Connell C, Yee K, Tibes R, Griffiths EA, Walsh K, et al.. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol 2015; 16(9):1099-110; PMID:26296954; http://dx.doi.org/10.1016/S1470-2045(15)00038-8 PubMed DOI PMC

Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Karbach J, Nemeth MJ, Taverna P, Karpf AR, Griffiths EA. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res 2014; 38(11):1332-41; PMID:25260825; http://dx.doi.org/10.1016/j.leukres.2014.09.001 PubMed DOI PMC

McCarthy H, Wierda WG, Barron LL, Cromwell CC, Wang J, Coombes KR, Rangel R, Elenitoba-Johnson KS, Keating MJ, Abruzzo LV. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood 2003; 101(12):4903-8; PMID:12586616; http://dx.doi.org/10.1182/blood-2002-09-2906 PubMed DOI

Ebrahem Q, Mahfouz RZ, Ng KP, Saunthararajah Y. High cytidine deaminase expression in the liver provides sanctuary for cancer cells from decitabine treatment effects. Oncotarget 2012; 3(10):1137-45; PMID:23087155; http://dx.doi.org/10.18632/oncotarget.597 PubMed DOI PMC

Maio M, Covre A, Fratta E, Di Giacomo AM, Taverna P, Natali PG, Coral S, Sigalotti L. Molecular pathways: At the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res 2015; 21(18):4040-7; PMID:26374074; http://dx.doi.org/10.1158/1078-0432.CCR-14-2914 PubMed DOI

Savona MR, Malcovati L, Komrokji R, Tiu RV, Mughal TI, Orazi A, Kiladjian JJ, Padron E, Solary E, Tibes R, et al.. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood 2015; 125(12):1857-65; PMID:25624319; http://dx.doi.org/10.1182/blood-2014-10-607341 PubMed DOI PMC

El-Khoueiry AM, Bekali-Saab M, Kim T, Denlinger R, Goel CS, Gupta R, Jueliger S, Dua S, Oganesian R, Keer A, editor Single Agent Activity Of The Second-Generation Hypomethylating Agent, SGI-110, In Patients With Hepatocellular Carcinoma (HCC) After Progression On Sorafenib. 9th ILCA Annual Conference; 2015

Podrini C, Borghesan M, Greco A, Pazienza V, Mazzoccoli G, Vinciguerra M. Redox homeostasis and epigenetics in non-alcoholic fatty liver disease (NAFLD). Curr Pharm Des 2013; 19(15):2737-46; PMID:23092327; http://dx.doi.org/10.2174/1381612811319150009. PubMed DOI

Saito K, Uebanso T, Maekawa K, Ishikawa M, Taguchi R, Nammo T, Nishimaki-Mogami T, Udagawa H, Fujii M, Shibazaki Y, et al.. Characterization of hepatic lipid profiles in a mouse model with nonalcoholic steatohepatitis and subsequent fibrosis. Sci Rep 2015; 5:12466.. PubMed PMC

Takakura K, Koido S, Fujii M, Hashiguchi T, Shibazaki Y, Yoneyama H, et al.. Characterization of non-alcoholic steatohepatitis-derived hepatocellular carcinoma as a human stratification model in mice. Anticancer Res 2014; 34(9):4849-55; PMID:25202066 PubMed

Fang F, Munck J, Tang J, Taverna P, Wang Y, Miller DF, Pilrose J, Choy G, Azab M, Pawelczak KS, et al.. The novel, small-molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer. Clin Cancer Res 2014; 20(24):6504-16; PMID:25316809; http://dx.doi.org/10.1158/1078-0432.CCR-14-1553 PubMed DOI PMC

Henikoff S, Smith MM. Histone variants and epigenetics. Cold Spring Harb Perspect Biol 2015; 7(1):a019364; PMID:25561719; http://dx.doi.org/10.1101/cshperspect.a019364 PubMed DOI PMC

Podrini C, Koffas A, Chokshi S, Vinciguerra M, Lelliott CJ, White JK, Adissu HA, Williams R, Greco A. MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat-induced steatosis. FASEB J 2015; 29(5):1676-87; PMID:25526730; http://dx.doi.org/10.1096/fj.14-262717 PubMed DOI

Novikov L, Park JW, Chen H, Klerman H, Jalloh AS, Gamble MJ. QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol Cell Biol 2011; 31(20):4244-55; PMID:21844227; http://dx.doi.org/10.1128/MCB.05244-11 PubMed DOI PMC

Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Taverna P, Karpf AR, Griffiths EA. Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts. Epigenetics 2015; 10(3):237-46; PMID:25793777; http://dx.doi.org/10.1080/15592294.2015.1017198 PubMed DOI PMC

Tellez CS, Grimes MJ, Picchi MA, Liu Y, March TH, Reed MD, Oganesian A, Taverna P, Belinsky SA. SGI-110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. Int J Cancer 2014; 135(9):2223-31; PMID:24668305; http://dx.doi.org/10.1002/ijc.28865 PubMed DOI

Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, Curiel TJ, de Cabo R, Franceschi C, Gems D, et al.. Interventions to slow aging in humans: Are we ready? Aging Cell 2015; 14(4):497-510; PMID:25902704; http://dx.doi.org/10.1111/acel.12338 PubMed DOI PMC

McKee C, Sigala B, Soeda J, Mouralidarane A, Morgan M, Mazzoccoli G, Rappa F, Cappello F, Cabibi D, Pazienza V, et al.. Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis. Sci Rep 2015; 5:8812; PMID:25744849; http://dx.doi.org/10.1038/srep08812 PubMed DOI PMC

Moylan CA, Pang H, Dellinger A, Suzuki A, Garrett ME, Guy CD, Murphy SK, Ashley-Koch AE, Choi SS, Michelotti GA, et al.. Hepatic gene expression profiles differentiate presymptomatic patients with mild vs. severe nonalcoholic fatty liver disease. Hepatol 2014; 59(2):471-82; PMID:23913408; http://dx.doi.org/10.1002/hep.26661 PubMed DOI PMC

Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, Garrett ME, Ashley-Koch A, Suzuki A, Tillmann HL, et al.. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterol 2013; 145(5):1076-87; PMID:23916847; http://dx.doi.org/10.1053/j.gastro.2013.07.047 PubMed DOI PMC

Vinciguerra M. Normalization of a NAFLD gene expression signature. Hepatol 2014; 60(4):1445; PMID:24493162; http://dx.doi.org/10.1002/hep.27042 PubMed DOI

Mann DA. Epigenetics in liver disease. Hepatol 2014; 60(4):1418-25; PMID:24633972; http://dx.doi.org/10.1002/hep.27131 PubMed DOI PMC

Benegiamo G, Vinciguerra M, Mazzoccoli G, Piepoli A, Andriulli A, Pazienza V. DNA methyltransferases 1 and 3b expression in Huh-7 cells expressing HCV core protein of different genotypes. Dig Dis Sci 2012; 57(6):1598-603; PMID:22526584; http://dx.doi.org/10.1007/s10620-012-2160-1 PubMed DOI

Bian EB, Huang C, Ma TT, Tao H, Zhang H, Cheng C, Lv XW, Li J. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol 2012; 264(1):13-22; PMID:22841775; http://dx.doi.org/10.1016/j.taap.2012.06.022 PubMed DOI

Lavelle D, Vaitkus K, Ling Y, Ruiz MA, Mahfouz R, Ng KP, Negrotto S, Smith N, Terse P, Engelke KJ, et al.. Effects of tetrahydrouridine on pharmacokinetics and pharmacodynamics of oral decitabine. Blood 2012; 119(5):1240-7; PMID:22160381; http://dx.doi.org/10.1182/blood-2011-08-371690 PubMed DOI PMC

Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, McCubrey JA, Montalto G. Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle 2012; 11(15):2843-55; PMID:22801548; http://dx.doi.org/10.4161/cc.21193 PubMed DOI

D'Aronzo M, Vinciguerra M, Mazza T, Panebianco C, Saracino C, Pereira SP, Graziano P, Pazienza V. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 2015; 6(21):18545-57; PMID:26176887; http://dx.doi.org/10.18632/oncotarget.4186 PubMed DOI PMC

Pazienza V, Borghesan M, Mazza T, Sheedfar F, Panebianco C, Williams R, Mazzoccoli G, Andriulli A, Nakanishi T, Vinciguerra M. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY) 2014; 6(1):35-47; PMID:24473773; http://dx.doi.org/10.18632/aging.100632 PubMed DOI PMC

Ripoli M, Barbano R, Balsamo T, Piccoli C, Brunetti V, Coco M, Mazzoccoli G, Vinciguerra M, Pazienza V. Hypermethylated levels of E-cadherin promoter in Huh-7 cells expressing the HCV core protein. Virus Res 2011; 160(1–2):74-81; PMID:21640770; http://dx.doi.org/10.1016/j.virusres.2011.05.014 PubMed DOI

Planavila A, Dominguez E, Navarro M, Vinciguerra M, Iglesias R, Giralt M, Lope-Piedrafita S, Ruberte J, Villarroya F. Dilated cardiomyopathy and mitochondrial dysfunction in Sirt1-deficient mice: a role for Sirt1-Mef2 in adult heart. J Mol Cell Cardiol 2012; 53(4):521-31; PMID:22986367; http://dx.doi.org/10.1016/j.yjmcc.2012.07.019 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Histone Variant macroH2A1.1 Enhances Nonhomologous End Joining-dependent DNA Double-strand-break Repair and Reprogramming Efficiency of Human iPSCs

. 2022 Mar 03 ; 40 (1) : 35-48.

Phosphorylation within Intrinsic Disordered Region Discriminates Histone Variant macroH2A1 Splicing Isoforms-macroH2A1.1 and macroH2A1.2

. 2021 Jul 13 ; 10 (7) : . [epub] 20210713

The Circadian Clock, the Immune System, and Viral Infections: The Intricate Relationship Between Biological Time and Host-Virus Interaction

. 2020 Jan 27 ; 9 (2) : . [epub] 20200127

Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation

. 2020 ; 10 (2) : 910-924. [epub] 20200101

A Role for the Biological Clock in Liver Cancer

. 2019 Nov 11 ; 11 (11) : . [epub] 20191111

Isolation of senescent cells by iodixanol (OptiPrep) density gradient-based separation

. 2019 Nov ; 52 (6) : e12674. [epub] 20190913

Macro Histone Variants: Emerging Rheostats of Gastrointestinal Cancers

. 2019 May 15 ; 11 (5) : . [epub] 20190515

Senolytic Cocktail Dasatinib+Quercetin (D+Q) Does Not Enhance the Efficacy of Senescence-Inducing Chemotherapy in Liver Cancer

. 2018 ; 8 () : 459. [epub] 20181030

Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells

. 2018 ; 13 (8) : 829-845. [epub] 20180929

Histone MacroH2A1: A Chromatin Point of Intersection between Fasting, Senescence and Cellular Regeneration

. 2017 Dec 05 ; 8 (12) : . [epub] 20171205

Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis

. 2016 ; 9 () : 45. [epub] 20161025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...