Circulating histones as potential biomarkers of MASLD-MASH-HCC progression

. 2025 Dec ; 17 (18) : 1435-1446. [epub] 20260104

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41486803

BACKGROUND: Reliable biomarkers are warranted to identify patients with metabolic dysfunction-associated steatotic liver disease (MASLD), including metabolic dysfunction-associated steatohepatitis (MASH), at risk for developing hepatocellular carcinoma (HCC). RESEARCH AND METHODS: We evaluated whether circulating histones can predict this risk. Plasma histones were measured using imaging flow cytometry in patients with MASLD (n = 25), MASH (n = 25), HCC (n = 40), and 30 healthy controls. RESULTS: We detected (p < 0.05), compared to controls: 1) elevated levels of H2A, H3, H2A/H2B/H3/H4, macroH2A1.1, macroH2A1.2 in MASLD/MASH and HCC; 2) decreased levels of macroH2A1.2/H2B/H3/H4 in MASLD/MASH and increased in HCC; 3) reduced H4 levels discriminating between MASH and non-MASH. Machine-learning analysis showed that being diabetic/dyslipidemic, having decreased H2A (p = 0.002) and H4 (p = 0.0156) levels favor MASH. CONCLUSIONS: Our data indicate plasma histones H2A and H4 as new biomarkers of liver disease progression. The identification of histone-based biomarkers using imaging flow cytometry could provide a rapid approach to discriminate between non-MASH and MASH, and to predict the risk of HCC development.

Patients with fatty liver disease linked to metabolism (MASLD or its more severe inflammatory form MASH) need better ways to spot who might later develop liver cancer (HCC). In this study, we measured different types of histones (proteins that bind our DNA and then float in the blood if cells die) using a special imaging technique in 25 people with MASLD, 25 with MASH, 40 with HCC, and 30 healthy people. We found clear differences: several histones and histone complexes were higher in all patient groups than in healthy controls. Some histone levels were lower in MASLD/MASH but rose again in HCC, while histone H4 was particularly low in MASH and helped tell MASH apart from milder disease. Using machine learning, the strongest signals for having MASH (rather than a simpler fatty liver) were diabetes or high blood fats combined with lower circulating histones H2A and H4. Overall, blood levels of histones H2A and H4 look like promising new markers to track how serious the liver disease is, distinguish MASH from less severe forms, and possibly predict who will go on to develop liver cancer. This histone test is fast and could be useful in everyday practice.

Zobrazit více v PubMed

Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79(6):1542–1556. doi: 10.1016/j.jhep.2023.06.003 PubMed DOI

Targher G, Byrne CD, Tilg H.. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut. 2024;73(4):691–702. doi: 10.1136/gutjnl-2023-330595 PubMed DOI

Tacke F, Horn P, Wai-Sun Wong V, et al. EASL–EASD–EASO clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol. 2024;81(3):492–542. doi: 10.1016/j.jhep.2024.04.031 PubMed DOI

Younossi ZM, Kalligeros M, Henry L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol. 2025;31(Suppl):S32–S50. doi: 10.3350/cmh.2024.0431 PubMed DOI PMC

Sawada K, Chung H, Softic S, et al. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab. 2023;35(11):1852–1871. doi: 10.1016/j.cmet.2023.10.009 PubMed DOI PMC

Mori T, Yoshio S, Kakazu E, et al. Active role of the immune system in metabolic dysfunction-associated steatotic liver disease. Gastroenterol Rep (Oxf). 2024;12:goae089. doi: 10.1093/gastro/goae089 PubMed DOI PMC

Bo T, Gao L, Yao Z, et al. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab. 2024;36(5):947–968. doi: 10.1016/j.cmet.2024.04.006 PubMed DOI

Yasin A, Nguyen M, Sidhu A, et al. Liver and cardiovascular disease outcomes in metabolic syndrome and diabetic populations: Bi-directional opportunities to multiply preventive strategies. Diabetes Res Clin Pract. 2024;211:111650. doi: 10.1016/j.diabres.2024.111650 PubMed DOI

Yu L, Gao F, Li Y, et al. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother. 2024;175:116724. doi: 10.1016/j.biopha.2024.116724 PubMed DOI

Bergheim I, Moreno‐Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction‐associated steatotic liver disease. Eur J Clin Investigation. 2024;54(7):e14224. doi: 10.1111/eci.14224 PubMed DOI

Yeh ML, Huang JF, Dai CY, et al. Metabolic dysfunction-associated steatotic liver disease and diabetes: the cross-talk between hepatologist and diabetologist. Expert Rev Gastroenterol Hepatol. 2024;18(8):431–439. doi: 10.1080/17474124.2024.2388790 PubMed DOI

Suvarna R, Shetty S, Pappachan JM. Efficacy and safety of resmetirom, a selective thyroid hormone receptor-β agonist, in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD): a systematic review and meta-analysis. Sci Rep. 2024;14(1):19790. doi: 10.1038/s41598-024-70242-8 PubMed DOI PMC

Yu T, Luo L, Xue J, et al. Gut microbiota–NLRP3 inflammasome crosstalk in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol. 2024;48(8):102458. doi: 10.1016/j.clinre.2024.102458 PubMed DOI

Iturbe-Rey S, Maccali C, Arrese M, et al. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis. 2025;400:119053. doi: 10.1016/j.atherosclerosis.2024.119053 PubMed DOI

Vitellius C, Desjonqueres E, Lequoy M, et al. MASLD-related HCC: multicenter study comparing patients with and without cirrhosis. JHEP Rep. 2024;6(10):101160. doi: 10.1016/j.jhepr.2024.101160 PubMed DOI PMC

Takahashi Y, Dungubat E, Kusano H, et al. Pathology and pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatic tumors. Biomedicines. 2023;11(10):2761. doi: 10.3390/biomedicines11102761 PubMed DOI PMC

Catalano G, Chatzipanagiotou OP, Kawashima J, et al. Metabolic-associated steatotic liver disease and hepatocellular carcinoma. Expert Opin Pharmacother. 2024;25(17):2283–2291. doi: 10.1080/14656566.2024.2426680 PubMed DOI

Jiang Y, Qi S, Zhang R, et al. Diagnosis of hepatocellular carcinoma using liquid biopsy-based biomarkers: a systematic review and network meta-analysis. Front Oncol. 2025;14:1483521. doi: 10.3389/fonc.2024.1483521 PubMed DOI PMC

Lo RO, Maugeri A, Hruskova J, et al. Obesity-induced nucleosome release predicts poor cardio-metabolic health. Clin Epigenet. 2020;12(1):2. doi: 10.1186/s13148-019-0797-8 PubMed DOI PMC

Tsoneva DK, Ivanov MN, Conev NV, et al. Circulating histones to detect and monitor the progression of cancer. IJMS. 2023;24(2):942. doi: 10.3390/ijms24020942 PubMed DOI PMC

Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid liver biopsy for disease diagnosis and prognosis. J Clin Transl Hepatol. 2023;11(7):1520–1541. doi: 10.14218/JCTH.2023.00040 PubMed DOI PMC

Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol. 2017;18(5):299–314. doi: 10.1038/nrm.2016.166 PubMed DOI

Rappa F, Greco A, Podrini C, et al. Immunopositivity for histone MacroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. Folli F, ed. PLOS ONE. 2013;8(1):e54458. doi: 10.1371/journal.pone.0054458 PubMed DOI PMC

Pazienza V, Borghesan M, Mazza T, et al. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY). 2014;6(1):35–47. doi: 10.18632/aging.100632 PubMed DOI PMC

Borghesan M, Mazzoccoli G, Sheedfar F, et al. Histone variants and lipid metabolism. Biochem Soc Trans. 2014;42(5):1409–1413. doi: 10.1042/BST20140119 PubMed DOI

Sheedfar F, Vermeer M, Pazienza V, et al. Genetic ablation of macrohistone H2A1 leads to increased leanness, glucose tolerance and energy expenditure in mice fed a high-fat diet. Int J Obes. 2015;39(2):331–338. doi: 10.1038/ijo.2014.91 PubMed DOI

Podrini C, Koffas A, Chokshi S, et al. MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat‐induced steatosis. Faseb J. 2015;29(5):1676–1687. doi: 10.1096/fj.14-262717 PubMed DOI

Borghesan M, Fusilli C, Rappa F, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 2016;76(3):594–606. doi: 10.1158/0008-5472.CAN-15-1336 PubMed DOI PMC

Jueliger S, Lyons J, Cannito S, et al. Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics. 2016;11(10):709–720. doi: 10.1080/15592294.2016.1214781 PubMed DOI PMC

Lo Re O, Fusilli C, Rappa F, et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2018;67(2):636–650. doi: 10.1002/hep.29519 PubMed DOI

Lo Re O, Mazza T, Giallongo S, et al. Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4 PubMed DOI PMC

Chiodi V, Rappa F, Lo Re O, et al. Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice. Sci Rep. 2023;13(1):19123. doi: 10.1038/s41598-023-46304-8 PubMed DOI PMC

Buzova D, Maugeri A, Liguori A, et al. Circulating histone signature of human lean metabolic-associated fatty liver disease (MAFLD). Clin Epigenet. 2020;12(1):126. doi: 10.1186/s13148-020-00917-2 PubMed DOI PMC

Buzova D, Braghini MR, Bianco SD, et al. Profiling of cell‐free DNA methylation and histone signatures in pediatric NAFLD: a pilot study. Hepatol Commun. 2022;6(12):3311–3323. doi: 10.1002/hep4.2082 PubMed DOI PMC

Buzova D, Petrilli LL, Frohlich J, et al. Extracellular histones profiles of pediatric H3K27-altered diffuse midline glioma. Mol Diagn Ther. 2025;29(1):129–141. doi: 10.1007/s40291-024-00754-6 PubMed DOI

Tsoneva DK, Buzova D, Bianco SD, et al. Histone H2A: a promising diagnostic marker in heart failure with reduced versus preserved ejection fraction. Mol Cell Biochem. 2025;480(7):4343–4354. doi: 10.1007/s11010-025-05254-7 PubMed DOI

Khanna R, Verma SK. Pediatric hepatocellular carcinoma. WJG. 2018;24(35):3980–3999. doi: 10.3748/wjg.v24.i35.3980 PubMed DOI PMC

Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–140. doi: 10.1007/BF00058655 DOI

Wong RJ. Epidemiology of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD). Metab Target Organ Damage. 2024. doi: 10.20517/mtod.2024.57 DOI

Ligi D, Lo Sasso B, Della Franca C, et al. Monocyte distribution width alterations and cytokine storm are modulated by circulating histones. Clin Chem Lab Med (CCLM). 2023;61(8):1525–1535. doi: 10.1515/cclm-2023-0093 PubMed DOI

Augusto JF, Beauvillain C, Poli C, et al. Clusterin neutralizes the inflammatory and cytotoxic properties of extracellular histones in sepsis. Am J Respir Crit Care Med. 2023;208(2):176–187. doi: 10.1164/rccm.202207-1253OC PubMed DOI

García-Giménez JL, García-López E, Mena-Mollá S, et al. Validation of circulating histone detection by mass spectrometry for early diagnosis, prognosis, and management of critically ill septic patients. J Transl Med. 2023;21(1):344. doi: 10.1186/s12967-023-04197-1 PubMed DOI PMC

Bellomo R, Patava J, Van Lancker R, et al. A dose‐adjusted, open‐label, pilot study of the safety, tolerability, and pharmacokinetics of STC3141 in critically ill patients with sepsis. Pharmacol Res Perspec. 2024;12(5):e70015. doi: 10.1002/prp2.70015 PubMed DOI PMC

Cusi K, Abdelmalek MF, Apovian CM, et al. Metabolic dysfunction–associated steatotic liver disease (MASLD) in people with diabetes: the need for screening and early intervention. A consensus report of the American diabetes association. Diabetes Care. 2025;48(7):1057–1082. doi: 10.2337/dci24-0094 PubMed DOI

Targher G, Mantovani A, Byrne CD, et al. Recent advances in incretin-based therapy for MASLD: from single to dual or triple incretin receptor agonists. Gut. 2025;74(3):487–497. doi: 10.1136/gutjnl-2024-334023 PubMed DOI

Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (mash). Nat Rev Drug Discov. 2025;24(3):171–189. doi: 10.1038/s41573-024-01084-2 PubMed DOI

Sanyal AJ, Newsome PN, Kliers I, et al. Phase 3 trial of semaglutide in metabolic dysfunction–associated steatohepatitis. N Engl J Med. 2025;392(21):2089–2099. doi: 10.1056/NEJMoa2413258 PubMed DOI

Lugari S, Baldelli E, Lonardo A. Metabolic primary liver cancer in adults: risk factors and pathogenic mechanisms. Metab Target Organ Damage. 2023;3(1):5. doi: 10.20517/mtod.2022.38 DOI

Llamoza-Torres CJ, Fuentes-Pardo M, Ramos-Molina B. Metabolic dysfunction-associated steatotic liver disease: a key factor in hepatocellular carcinoma therapy response. Metab Target Organ Damage. 2024;4(4). doi: 10.20517/mtod.2024.64 DOI

Hardy T, Wonders K, Younes R, et al. The European NAFLD Registry: a real-world longitudinal cohort study of nonalcoholic fatty liver disease. Contemp Clin Trials. 2020;98:106175. doi: 10.1016/j.cct.2020.106175 PubMed DOI

Mogna-Peláez P, Riezu-Boj JI, Milagro FI, et al. Inflammatory markers as diagnostic and precision nutrition tools for metabolic dysfunction-associated steatotic liver disease: results from the fatty liver in obesity trial. Clin Nutr. 2024;43(7):1770–1781. doi: 10.1016/j.clnu.2024.05.042 PubMed DOI

Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164(1–2):57–68. doi: 10.1016/j.cell.2015.11.050 PubMed DOI PMC

Wang H, Kim SJ, Lei Y, et al. Neutrophil extracellular traps in homeostasis and disease. Sig Transduct Target Ther. 2024;9(1):235. doi: 10.1038/s41392-024-01933-x PubMed DOI PMC

Zhang K, Jia R, Zhang Q, et al. Metabolic dysregulation‐triggered neutrophil extracellular traps exacerbate acute liver failure. FEBS Lett. 2024:1873–3468.14971. doi: 10.1002/1873-3468.14971 PubMed DOI

Itier R, Guillaume M, Ricci J, et al. Non‐alcoholic fatty liver disease and heart failure with preserved ejection fraction: from pathophysiology to practical issues. ESC Heart Fail. 2021;8(2):789–798. doi: 10.1002/ehf2.13222 PubMed DOI PMC

De Conti A, Dreval K, Tryndyak V, et al. Inhibition of the cell death pathway in nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis is associated with histone H4 lysine 16 deacetylation. Mol Cancer Res. 2017;15(9):1163–1172. doi: 10.1158/1541-7786.MCR-17-0109 PubMed DOI

Chai X, Guo J, Dong R, et al. Quantitative acetylome analysis reveals histone modifications that may predict prognosis in hepatitis B‐related hepatocellular carcinoma. Clin Transl Med. 2021;11(3):e313. doi: 10.1002/ctm2.313 PubMed DOI PMC

Ling J, Wang S, Yi C, et al. PRMT1-mediated modification of H4R3me2a promotes liver cancer progression by enhancing the transcriptional activity of SOX18. Hepatol Commun. 2025;9(4). doi: 10.1097/HC9.0000000000000647 PubMed DOI PMC

Ohno Y, Koizumi M, Nakayama H, et al. Downregulation of ANP32B exerts anti-apoptotic effects in hepatocellular carcinoma. Hsieh YH, ed. PLOS ONE. 2017;12(5):e0177343. doi: 10.1371/journal.pone.0177343 PubMed DOI PMC

Ji D, Xiao X, Luo A, et al. Fact mediates the depletion of macroH2A1.2 to expedite gene transcription. Mol Cell. 2024;84(16):3011–3025.e7. doi: 10.1016/j.molcel.2024.07.011 PubMed DOI

Shen J, Chen M, Lee D, et al. Histone chaperone fact complex mediates oxidative stress response to promote liver cancer progression. Gut. 2020;69(2):329–342. doi: 10.1136/gutjnl-2019-318668 PubMed DOI

Zhao R, Ge Y, Gong Y, et al. NAP1L5 targeting combined with MYH9 inhibit HCC progression through PI3K/AKT/mTOR signaling pathway. Aging (Albany NY). 2022;14(22):9000–9019. doi: 10.18632/aging.204377 PubMed DOI PMC

Liu Y, Liu S, Jing R, et al. Identification of ASF1A and HJURP by global H3–H4 histone chaperone analysis as a prognostic two-gene model in hepatocellular carcinoma. Sci Rep. 2024;14(1):7666. doi: 10.1038/s41598-024-58368-1 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...