Circulating histones as potential biomarkers of MASLD-MASH-HCC progression
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41486803
PubMed Central
PMC12826724
DOI
10.1080/17501911.2025.2611415
Knihovny.cz E-zdroje
- Klíčová slova
- HCC, Liquid biopsy, MASH, MASLD, histone complexes, histones, liver disease progression, machine learning,
- MeSH
- biologické markery krev MeSH
- dospělí MeSH
- hepatocelulární karcinom * krev patologie diagnóza etiologie MeSH
- histony * krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery * krev MeSH
- nádory jater * krev patologie diagnóza etiologie MeSH
- progrese nemoci MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- ztučnělá játra * krev komplikace patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- histony * MeSH
- nádorové biomarkery * MeSH
BACKGROUND: Reliable biomarkers are warranted to identify patients with metabolic dysfunction-associated steatotic liver disease (MASLD), including metabolic dysfunction-associated steatohepatitis (MASH), at risk for developing hepatocellular carcinoma (HCC). RESEARCH AND METHODS: We evaluated whether circulating histones can predict this risk. Plasma histones were measured using imaging flow cytometry in patients with MASLD (n = 25), MASH (n = 25), HCC (n = 40), and 30 healthy controls. RESULTS: We detected (p < 0.05), compared to controls: 1) elevated levels of H2A, H3, H2A/H2B/H3/H4, macroH2A1.1, macroH2A1.2 in MASLD/MASH and HCC; 2) decreased levels of macroH2A1.2/H2B/H3/H4 in MASLD/MASH and increased in HCC; 3) reduced H4 levels discriminating between MASH and non-MASH. Machine-learning analysis showed that being diabetic/dyslipidemic, having decreased H2A (p = 0.002) and H4 (p = 0.0156) levels favor MASH. CONCLUSIONS: Our data indicate plasma histones H2A and H4 as new biomarkers of liver disease progression. The identification of histone-based biomarkers using imaging flow cytometry could provide a rapid approach to discriminate between non-MASH and MASH, and to predict the risk of HCC development.
Patients with fatty liver disease linked to metabolism (MASLD or its more severe inflammatory form MASH) need better ways to spot who might later develop liver cancer (HCC). In this study, we measured different types of histones (proteins that bind our DNA and then float in the blood if cells die) using a special imaging technique in 25 people with MASLD, 25 with MASH, 40 with HCC, and 30 healthy people. We found clear differences: several histones and histone complexes were higher in all patient groups than in healthy controls. Some histone levels were lower in MASLD/MASH but rose again in HCC, while histone H4 was particularly low in MASH and helped tell MASH apart from milder disease. Using machine learning, the strongest signals for having MASH (rather than a simpler fatty liver) were diabetes or high blood fats combined with lower circulating histones H2A and H4. Overall, blood levels of histones H2A and H4 look like promising new markers to track how serious the liver disease is, distinguish MASH from less severe forms, and possibly predict who will go on to develop liver cancer. This histone test is fast and could be useful in everyday practice.
Department of Adaptive Biotechnologies Global Change Research Institute CAS Brno Czech Republic
Department of Medical Genetics Medical University of Varna Varna Bulgaria
Research Unit of Genetics of Complex Phenotypes Bambino Gesù Children's Hospital IRCCS Rome Italy
Zobrazit více v PubMed
Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79(6):1542–1556. doi: 10.1016/j.jhep.2023.06.003 PubMed DOI
Targher G, Byrne CD, Tilg H.. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut. 2024;73(4):691–702. doi: 10.1136/gutjnl-2023-330595 PubMed DOI
Tacke F, Horn P, Wai-Sun Wong V, et al. EASL–EASD–EASO clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol. 2024;81(3):492–542. doi: 10.1016/j.jhep.2024.04.031 PubMed DOI
Younossi ZM, Kalligeros M, Henry L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol. 2025;31(Suppl):S32–S50. doi: 10.3350/cmh.2024.0431 PubMed DOI PMC
Sawada K, Chung H, Softic S, et al. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab. 2023;35(11):1852–1871. doi: 10.1016/j.cmet.2023.10.009 PubMed DOI PMC
Mori T, Yoshio S, Kakazu E, et al. Active role of the immune system in metabolic dysfunction-associated steatotic liver disease. Gastroenterol Rep (Oxf). 2024;12:goae089. doi: 10.1093/gastro/goae089 PubMed DOI PMC
Bo T, Gao L, Yao Z, et al. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab. 2024;36(5):947–968. doi: 10.1016/j.cmet.2024.04.006 PubMed DOI
Yasin A, Nguyen M, Sidhu A, et al. Liver and cardiovascular disease outcomes in metabolic syndrome and diabetic populations: Bi-directional opportunities to multiply preventive strategies. Diabetes Res Clin Pract. 2024;211:111650. doi: 10.1016/j.diabres.2024.111650 PubMed DOI
Yu L, Gao F, Li Y, et al. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother. 2024;175:116724. doi: 10.1016/j.biopha.2024.116724 PubMed DOI
Bergheim I, Moreno‐Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction‐associated steatotic liver disease. Eur J Clin Investigation. 2024;54(7):e14224. doi: 10.1111/eci.14224 PubMed DOI
Yeh ML, Huang JF, Dai CY, et al. Metabolic dysfunction-associated steatotic liver disease and diabetes: the cross-talk between hepatologist and diabetologist. Expert Rev Gastroenterol Hepatol. 2024;18(8):431–439. doi: 10.1080/17474124.2024.2388790 PubMed DOI
Suvarna R, Shetty S, Pappachan JM. Efficacy and safety of resmetirom, a selective thyroid hormone receptor-β agonist, in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD): a systematic review and meta-analysis. Sci Rep. 2024;14(1):19790. doi: 10.1038/s41598-024-70242-8 PubMed DOI PMC
Yu T, Luo L, Xue J, et al. Gut microbiota–NLRP3 inflammasome crosstalk in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol. 2024;48(8):102458. doi: 10.1016/j.clinre.2024.102458 PubMed DOI
Iturbe-Rey S, Maccali C, Arrese M, et al. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis. 2025;400:119053. doi: 10.1016/j.atherosclerosis.2024.119053 PubMed DOI
Vitellius C, Desjonqueres E, Lequoy M, et al. MASLD-related HCC: multicenter study comparing patients with and without cirrhosis. JHEP Rep. 2024;6(10):101160. doi: 10.1016/j.jhepr.2024.101160 PubMed DOI PMC
Takahashi Y, Dungubat E, Kusano H, et al. Pathology and pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatic tumors. Biomedicines. 2023;11(10):2761. doi: 10.3390/biomedicines11102761 PubMed DOI PMC
Catalano G, Chatzipanagiotou OP, Kawashima J, et al. Metabolic-associated steatotic liver disease and hepatocellular carcinoma. Expert Opin Pharmacother. 2024;25(17):2283–2291. doi: 10.1080/14656566.2024.2426680 PubMed DOI
Jiang Y, Qi S, Zhang R, et al. Diagnosis of hepatocellular carcinoma using liquid biopsy-based biomarkers: a systematic review and network meta-analysis. Front Oncol. 2025;14:1483521. doi: 10.3389/fonc.2024.1483521 PubMed DOI PMC
Lo RO, Maugeri A, Hruskova J, et al. Obesity-induced nucleosome release predicts poor cardio-metabolic health. Clin Epigenet. 2020;12(1):2. doi: 10.1186/s13148-019-0797-8 PubMed DOI PMC
Tsoneva DK, Ivanov MN, Conev NV, et al. Circulating histones to detect and monitor the progression of cancer. IJMS. 2023;24(2):942. doi: 10.3390/ijms24020942 PubMed DOI PMC
Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid liver biopsy for disease diagnosis and prognosis. J Clin Transl Hepatol. 2023;11(7):1520–1541. doi: 10.14218/JCTH.2023.00040 PubMed DOI PMC
Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol. 2017;18(5):299–314. doi: 10.1038/nrm.2016.166 PubMed DOI
Rappa F, Greco A, Podrini C, et al. Immunopositivity for histone MacroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. Folli F, ed. PLOS ONE. 2013;8(1):e54458. doi: 10.1371/journal.pone.0054458 PubMed DOI PMC
Pazienza V, Borghesan M, Mazza T, et al. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY). 2014;6(1):35–47. doi: 10.18632/aging.100632 PubMed DOI PMC
Borghesan M, Mazzoccoli G, Sheedfar F, et al. Histone variants and lipid metabolism. Biochem Soc Trans. 2014;42(5):1409–1413. doi: 10.1042/BST20140119 PubMed DOI
Sheedfar F, Vermeer M, Pazienza V, et al. Genetic ablation of macrohistone H2A1 leads to increased leanness, glucose tolerance and energy expenditure in mice fed a high-fat diet. Int J Obes. 2015;39(2):331–338. doi: 10.1038/ijo.2014.91 PubMed DOI
Podrini C, Koffas A, Chokshi S, et al. MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat‐induced steatosis. Faseb J. 2015;29(5):1676–1687. doi: 10.1096/fj.14-262717 PubMed DOI
Borghesan M, Fusilli C, Rappa F, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 2016;76(3):594–606. doi: 10.1158/0008-5472.CAN-15-1336 PubMed DOI PMC
Jueliger S, Lyons J, Cannito S, et al. Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics. 2016;11(10):709–720. doi: 10.1080/15592294.2016.1214781 PubMed DOI PMC
Lo Re O, Fusilli C, Rappa F, et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2018;67(2):636–650. doi: 10.1002/hep.29519 PubMed DOI
Lo Re O, Mazza T, Giallongo S, et al. Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4 PubMed DOI PMC
Chiodi V, Rappa F, Lo Re O, et al. Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice. Sci Rep. 2023;13(1):19123. doi: 10.1038/s41598-023-46304-8 PubMed DOI PMC
Buzova D, Maugeri A, Liguori A, et al. Circulating histone signature of human lean metabolic-associated fatty liver disease (MAFLD). Clin Epigenet. 2020;12(1):126. doi: 10.1186/s13148-020-00917-2 PubMed DOI PMC
Buzova D, Braghini MR, Bianco SD, et al. Profiling of cell‐free DNA methylation and histone signatures in pediatric NAFLD: a pilot study. Hepatol Commun. 2022;6(12):3311–3323. doi: 10.1002/hep4.2082 PubMed DOI PMC
Buzova D, Petrilli LL, Frohlich J, et al. Extracellular histones profiles of pediatric H3K27-altered diffuse midline glioma. Mol Diagn Ther. 2025;29(1):129–141. doi: 10.1007/s40291-024-00754-6 PubMed DOI
Tsoneva DK, Buzova D, Bianco SD, et al. Histone H2A: a promising diagnostic marker in heart failure with reduced versus preserved ejection fraction. Mol Cell Biochem. 2025;480(7):4343–4354. doi: 10.1007/s11010-025-05254-7 PubMed DOI
Khanna R, Verma SK. Pediatric hepatocellular carcinoma. WJG. 2018;24(35):3980–3999. doi: 10.3748/wjg.v24.i35.3980 PubMed DOI PMC
Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–140. doi: 10.1007/BF00058655 DOI
Wong RJ. Epidemiology of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD). Metab Target Organ Damage. 2024. doi: 10.20517/mtod.2024.57 DOI
Ligi D, Lo Sasso B, Della Franca C, et al. Monocyte distribution width alterations and cytokine storm are modulated by circulating histones. Clin Chem Lab Med (CCLM). 2023;61(8):1525–1535. doi: 10.1515/cclm-2023-0093 PubMed DOI
Augusto JF, Beauvillain C, Poli C, et al. Clusterin neutralizes the inflammatory and cytotoxic properties of extracellular histones in sepsis. Am J Respir Crit Care Med. 2023;208(2):176–187. doi: 10.1164/rccm.202207-1253OC PubMed DOI
García-Giménez JL, García-López E, Mena-Mollá S, et al. Validation of circulating histone detection by mass spectrometry for early diagnosis, prognosis, and management of critically ill septic patients. J Transl Med. 2023;21(1):344. doi: 10.1186/s12967-023-04197-1 PubMed DOI PMC
Bellomo R, Patava J, Van Lancker R, et al. A dose‐adjusted, open‐label, pilot study of the safety, tolerability, and pharmacokinetics of STC3141 in critically ill patients with sepsis. Pharmacol Res Perspec. 2024;12(5):e70015. doi: 10.1002/prp2.70015 PubMed DOI PMC
Cusi K, Abdelmalek MF, Apovian CM, et al. Metabolic dysfunction–associated steatotic liver disease (MASLD) in people with diabetes: the need for screening and early intervention. A consensus report of the American diabetes association. Diabetes Care. 2025;48(7):1057–1082. doi: 10.2337/dci24-0094 PubMed DOI
Targher G, Mantovani A, Byrne CD, et al. Recent advances in incretin-based therapy for MASLD: from single to dual or triple incretin receptor agonists. Gut. 2025;74(3):487–497. doi: 10.1136/gutjnl-2024-334023 PubMed DOI
Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (mash). Nat Rev Drug Discov. 2025;24(3):171–189. doi: 10.1038/s41573-024-01084-2 PubMed DOI
Sanyal AJ, Newsome PN, Kliers I, et al. Phase 3 trial of semaglutide in metabolic dysfunction–associated steatohepatitis. N Engl J Med. 2025;392(21):2089–2099. doi: 10.1056/NEJMoa2413258 PubMed DOI
Lugari S, Baldelli E, Lonardo A. Metabolic primary liver cancer in adults: risk factors and pathogenic mechanisms. Metab Target Organ Damage. 2023;3(1):5. doi: 10.20517/mtod.2022.38 DOI
Llamoza-Torres CJ, Fuentes-Pardo M, Ramos-Molina B. Metabolic dysfunction-associated steatotic liver disease: a key factor in hepatocellular carcinoma therapy response. Metab Target Organ Damage. 2024;4(4). doi: 10.20517/mtod.2024.64 DOI
Hardy T, Wonders K, Younes R, et al. The European NAFLD Registry: a real-world longitudinal cohort study of nonalcoholic fatty liver disease. Contemp Clin Trials. 2020;98:106175. doi: 10.1016/j.cct.2020.106175 PubMed DOI
Mogna-Peláez P, Riezu-Boj JI, Milagro FI, et al. Inflammatory markers as diagnostic and precision nutrition tools for metabolic dysfunction-associated steatotic liver disease: results from the fatty liver in obesity trial. Clin Nutr. 2024;43(7):1770–1781. doi: 10.1016/j.clnu.2024.05.042 PubMed DOI
Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164(1–2):57–68. doi: 10.1016/j.cell.2015.11.050 PubMed DOI PMC
Wang H, Kim SJ, Lei Y, et al. Neutrophil extracellular traps in homeostasis and disease. Sig Transduct Target Ther. 2024;9(1):235. doi: 10.1038/s41392-024-01933-x PubMed DOI PMC
Zhang K, Jia R, Zhang Q, et al. Metabolic dysregulation‐triggered neutrophil extracellular traps exacerbate acute liver failure. FEBS Lett. 2024:1873–3468.14971. doi: 10.1002/1873-3468.14971 PubMed DOI
Itier R, Guillaume M, Ricci J, et al. Non‐alcoholic fatty liver disease and heart failure with preserved ejection fraction: from pathophysiology to practical issues. ESC Heart Fail. 2021;8(2):789–798. doi: 10.1002/ehf2.13222 PubMed DOI PMC
De Conti A, Dreval K, Tryndyak V, et al. Inhibition of the cell death pathway in nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis is associated with histone H4 lysine 16 deacetylation. Mol Cancer Res. 2017;15(9):1163–1172. doi: 10.1158/1541-7786.MCR-17-0109 PubMed DOI
Chai X, Guo J, Dong R, et al. Quantitative acetylome analysis reveals histone modifications that may predict prognosis in hepatitis B‐related hepatocellular carcinoma. Clin Transl Med. 2021;11(3):e313. doi: 10.1002/ctm2.313 PubMed DOI PMC
Ling J, Wang S, Yi C, et al. PRMT1-mediated modification of H4R3me2a promotes liver cancer progression by enhancing the transcriptional activity of SOX18. Hepatol Commun. 2025;9(4). doi: 10.1097/HC9.0000000000000647 PubMed DOI PMC
Ohno Y, Koizumi M, Nakayama H, et al. Downregulation of ANP32B exerts anti-apoptotic effects in hepatocellular carcinoma. Hsieh YH, ed. PLOS ONE. 2017;12(5):e0177343. doi: 10.1371/journal.pone.0177343 PubMed DOI PMC
Ji D, Xiao X, Luo A, et al. Fact mediates the depletion of macroH2A1.2 to expedite gene transcription. Mol Cell. 2024;84(16):3011–3025.e7. doi: 10.1016/j.molcel.2024.07.011 PubMed DOI
Shen J, Chen M, Lee D, et al. Histone chaperone fact complex mediates oxidative stress response to promote liver cancer progression. Gut. 2020;69(2):329–342. doi: 10.1136/gutjnl-2019-318668 PubMed DOI
Zhao R, Ge Y, Gong Y, et al. NAP1L5 targeting combined with MYH9 inhibit HCC progression through PI3K/AKT/mTOR signaling pathway. Aging (Albany NY). 2022;14(22):9000–9019. doi: 10.18632/aging.204377 PubMed DOI PMC
Liu Y, Liu S, Jing R, et al. Identification of ASF1A and HJURP by global H3–H4 histone chaperone analysis as a prognostic two-gene model in hepatocellular carcinoma. Sci Rep. 2024;14(1):7666. doi: 10.1038/s41598-024-58368-1 PubMed DOI PMC