Extracellular Histones Profiles of Pediatric H3K27-Altered Diffuse Midline Glioma
Jazyk angličtina Země Nový Zéland Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NU23-03-00318
Ministerstvo Zdravotnictví Ceské Republiky
#KP-06-DV/4
Ministry of Education and Science
PubMed
39514166
DOI
10.1007/s40291-024-00754-6
PII: 10.1007/s40291-024-00754-6
Knihovny.cz E-zdroje
- MeSH
- difuzní intrinsický pontinní gliom * genetika diagnóza krev MeSH
- dítě MeSH
- gliom * genetika diagnóza krev MeSH
- histony * genetika krev metabolismus MeSH
- lidé MeSH
- mladiství MeSH
- mutace MeSH
- nádorové biomarkery krev MeSH
- nádory mozkového kmene * genetika diagnóza krev MeSH
- nukleozomy metabolismus MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony * MeSH
- nádorové biomarkery MeSH
- nukleozomy MeSH
BACKGROUND: Diffuse midline glioma, H3 K27-altered (DMG) is a fatal tumour that arises in the midline structures of the brain. When located in the pons, it is more commonly referred to as diffuse intrinsic pontine glioma (DIPG). DMG/DIPG is usually diagnosed when children are < 10 years, and it has a median overall survival of < 12 months after diagnosis. Radiological imaging is still the gold standard for DIPG diagnosis while the use of biopsy procedures led to our knowledge on its biology, such as with the identification of the canonical histone H3K27M mutation. However, the need to improve survival encourages the development of non-invasive, fast and inexpensive assays on biofluids for optimizing molecular diagnoses in DMG/DIPG. Here, we propose a rapid, new, imaging and epigenetics-based approach to diagnose DMG/DIPG in the plasma of paediatric patients. METHODS: A total of 20 healthy children (mean age: 10.5 years) and 24 children diagnosed with DMG/DIPG (mean age: 8.5 years) were recruited. Individual histones (H2A, H2B, H3, H4, macroH2A1.1 and macroH2A1.2), histone dimers and nucleosomes were assayed in biofluids by means of a new advanced flow cytometry ImageStream(X)-adapted method. RESULTS: We report a significant increase in circulating histone dimers and tetramers (macroH2A1.1/H2B versus control: p value < 0.0001; macroH2A1.2/H2B versus control: p value < 0.0001; H2A/H2B versus control: p value < 0.0001; H3/H4 versus control: p value = 0.008; H2A/H2B/H3/H4 versus control: p value < 0.0001) and a significant downregulation of individual histones (H2B versus control: p value < 0.0001; H3 versus control: p value < 0.0001; H4 versus control: p value < 0.0001). Moreover, histones were also detectable in the cerebrospinal fluid (CSF) of patients with DMG/DIPG and in the supernatant of SF8628, OPBG-DIPG002 and OPBG-DIPG004 DMG/DIPG cell lines, with patterns mostly similar to each other, but distinct compared to blood plasma. CONCLUSIONS: In summary, we identified circulating histone signatures able to detect the presence of DMG/DIPG in biofluids of children, using a rapid and non-invasive ImageStream(X)-based imaging technology, which may improve diagnosis and benefit the patients.
Bioinformatics Laboratory Fondazione IRCCS Casa Sollievo della Sofferenza S Giovanni Rotondo Italy
Department of Adaptive Biotechnologies Global Change Research Institute CAS Brno Czech Republic
Department of Medical Genetics Medical University of Varna Varna Bulgaria
Faculty of Science Liverpool John Moores University Liverpool UK
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Neuro Oncology Unit Bambino Gesù Children's Hospital IRCCS Rome Italy
Research Unit of Genetics of Complex Phenotypes Bambino Gesù Children's Hospital IRCCS Rome Italy
Zobrazit více v PubMed
Jessa S, Blanchet-Cohen A, Krug B, Vladoiu M, Coutelier M, Faury D, et al. Stalled developmental programs at the root of pediatric brain tumors. Nat Genet. 2019;51:1702–13. https://doi.org/10.1038/s41588-019-0531-7 . PubMed DOI PMC
Baade PD, Youlden DR, Valery PC, Hassall T, Ward L, Green AC, et al. Trends in incidence of childhood cancer in Australia, 1983–2006. Br J Cancer. 2010;102:620–6. https://doi.org/10.1038/sj.bjc.6605503 . PubMed DOI PMC
Johnson KJ, Cullen J, Barnholtz-Sloan JS, Ostrom QT, Langer CE, Turner MC, et al. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomark Prev. 2014;23:2716–36. https://doi.org/10.1158/1055-9965.EPI-14-0207 . DOI
Hargrave DR, Zacharoulis S. Pediatric CNS tumors: current treatment and future directions. Expert Rev Neurother. 2007;7:1029–42. https://doi.org/10.1586/14737175.7.8.1029 . PubMed DOI
Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl). 2016;131:803–20. https://doi.org/10.1007/s00401-016-1545-1 . PubMed DOI
Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW, Kool M, et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell. 2013;24:660–72. https://doi.org/10.1016/j.ccr.2013.10.006 . PubMed DOI
Chan K-M, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 2013;27:985–90. https://doi.org/10.1101/gad.217778.113 . PubMed DOI PMC
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021;23:1231–51. https://doi.org/10.1093/neuonc/noab106 . PubMed DOI PMC
Gianno F, Giovannoni I, Cafferata B, Diomedi-Camassei F, Minasi S, Barresi S, et al. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathologica. 2022;114:422–35. https://doi.org/10.32074/1591-951X-830 . PubMed DOI PMC
Mondal G, Lee JC, Ravindranathan A, Villanueva-Meyer JE, Tran QT, Allen SJ, et al. Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol (Berl). 2020;139:1071–88. https://doi.org/10.1007/s00401-020-02155-5 . PubMed DOI
Sievers P, Sill M, Schrimpf D, Stichel D, Reuss DE, Sturm D, et al. A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro-Oncol. 2021;23:34–43. https://doi.org/10.1093/neuonc/noaa251 . PubMed DOI
Karremann M, Gielen GH, Hoffmann M, Wiese M, Colditz N, Warmuth-Metz M, Bison B, Claviez A, van Vuurden DG, von Bueren AO, Gessi M, Kuhnle I, Hans VH, Benesch M, Sturm D, Kortmann RD, Waha A, Pietsch T, Kramm CM. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro Oncol. 2018;20:123–31. https://doi.org/10.1093/neuonc/nox149 . PubMed DOI
Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, Batchelor TT, Cairncross JG, van den Bent M, Wick W, Wesseling P. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018;135:639–42. https://doi.org/10.1007/s00401-018-1826-y . PubMed DOI
Findlay IJ, De Iuliis GN, Duchatel RJ, Jackson ER, Vitanza NA, Cain JE, Waszak SM, Dun MD. Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene. 2022;41:461–75. https://doi.org/10.1038/s41388-021-02102-y . PubMed DOI
Castel D, Kergrohen T, Tauziede-Espariat A, Mackay A, Ghermaoui S, Lechapt E, Pfister SM, Kramm CM, Boddaert N, Blauwblomme T, Puget S, Beccaria K, Jones C, Jones DTW, Varlet P, Grill J, Debily MA. Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3–K27M mutation. Acta Neuropathol. 2020;139:1109–13. https://doi.org/10.1007/s00401-020-02142-w . PubMed DOI
Antin C, Tauziede-Espariat A, Debily MA, Castel D, Grill J, Pages M, Ayrault O, Chretien F, Gareton A, Andreiuolo F, Lechapt E, Varlet P. EZHIP is a specific diagnostic biomarker for posterior fossa ependymomas, group PFA and diffuse midline gliomas H3-WT with EZHIP overexpression. Acta Neuropathol Commun. 2020;8:183. https://doi.org/10.1186/s40478-020-01056-8 . PubMed DOI PMC
Sievers P, Sill M, Schrimpf D, Stichel D, Reuss DE, Sturm D, Hench J, Frank S, Krskova L, Vicha A, Zapotocky M, Bison B, Castel D, Grill J, Debily MA, Harter PN, Snuderl M, Kramm CM, Reifenberger G, Korshunov A, Jabado N, Wesseling P, Wick W, Solomon DA, Perry A, Jacques TS, Jones C, Witt O, Pfister SM, von Deimling A, Jones DTW, Sahm F. A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro Oncol. 2021;23:34–43. https://doi.org/10.1093/neuonc/noaa251 . PubMed DOI
Korones DN. Treatment of newly diagnosed diffuse brain stem gliomas in children: in search of the Holy Grail. Expert Rev Anticancer Ther. 2007;7:663–74. https://doi.org/10.1586/14737140.7.5.663 . PubMed DOI
Lu VM, Alvi MA, McDonald KL, Daniels DJ. Impact of the H3K27M mutation on survival in pediatric high-grade glioma: a systematic review and meta-analysis. J Neurosurg Pediatr. 2019;23:308–16. https://doi.org/10.3171/2018.9.PEDS18419 . PubMed DOI
Panditharatna E, Kilburn LB, Aboian MS, Kambhampati M, Gordish-Dressman H, Magge SN, et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin Cancer Res. 2018;24:5850–9. https://doi.org/10.1158/1078-0432.CCR-18-1345 . PubMed DOI PMC
Di Ruscio V, Del Baldo G, Fabozzi F, Vinci M, Cacchione A, De Billy E, et al. Pediatric diffuse midline gliomas: an unfinished puzzle. Diagnostics. 2022;12:2064. https://doi.org/10.3390/diagnostics12092064 . PubMed DOI PMC
Vallero SG, Bertero L, Morana G, Sciortino P, Bertin D, Mussano A, et al. Pediatric diffuse midline glioma H3K27- altered: a complex clinical and biological landscape behind a neatly defined tumor type. Front Oncol. 2023;12:1082062. https://doi.org/10.3389/fonc.2022.1082062 . PubMed DOI PMC
Al Sharie S, Abu Laban D, Al-Hussaini M. Decoding diffuse midline gliomas: a comprehensive review of pathogenesis, diagnosis and treatment. Cancers. 2023;15:4869. https://doi.org/10.3390/cancers15194869 . PubMed DOI PMC
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon. 2024;10: e24877. https://doi.org/10.1016/j.heliyon.2024.e24877 . PubMed DOI PMC
Seoane J, De Mattos-Arruda L, Le Rhun E, Bardelli A, Weller M. Cerebrospinal fluid cell-free tumor DNA as a liquid biopsy for primary brain tumors and central nervous system metastases. Ann Oncol. 2019;30:211–8. https://doi.org/10.1093/annonc/mdy544 . PubMed DOI
McEwen AE, Leary SES, Lockwood CM. Beyond the blood: CSF-derived cfDNA for diagnosis and characterization of CNS tumors. Front Cell Dev Biol. 2020;8:45. https://doi.org/10.3389/fcell.2020.00045 . PubMed DOI PMC
Izquierdo E, Proszek P, Pericoli G, Temelso S, Clarke M, Carvalho DM, et al. Droplet digital PCR-based detection of circulating tumor DNA from pediatric high grade and diffuse midline glioma patients. Neuro-Oncol Adv. 2021;3:vdab013. https://doi.org/10.1093/noajnl/vdab013 . DOI
Parpart-Li S, Bartlett B, Popoli M, Adleff V, Tucker L, Steinberg R, et al. The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res. 2017;23:2471–7. https://doi.org/10.1158/1078-0432.CCR-16-1691 . PubMed DOI
Li D, Bonner ER, Wierzbicki K, Panditharatna E, Huang T, Lulla R, et al. Standardization of the liquid biopsy for pediatric diffuse midline glioma using ddPCR. Sci Rep. 2021;11:5098. https://doi.org/10.1038/s41598-021-84513-1 . PubMed DOI PMC
Schilde LM, Kösters S, Steinbach S, Schork K, Eisenacher M, Galozzi S, et al. Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research. PLoS ONE. 2018;13: e0206478. https://doi.org/10.1371/journal.pone.0206478 . PubMed DOI PMC
Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, Hill DA, et al. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro-Oncol. 2012;14:547–60. https://doi.org/10.1093/neuonc/nos067 . PubMed DOI
Thomas JO, Kornberg RD. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci. 1975;72:2626–30. https://doi.org/10.1073/pnas.72.7.2626 . PubMed DOI PMC
Holdenrieder S, Stieber P, Von Pawel J, Raith H, Nagel D, Feldmann K, et al. Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2004;10:5981–7. https://doi.org/10.1158/1078-0432.CCR-04-0625 . PubMed DOI
Bauden M, Pamart D, Ansari D, Herzog M, Eccleston M, Micallef J, et al. Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer. Clin Epigenet. 2015;7:106. https://doi.org/10.1186/s13148-015-0139-4 . DOI
Rahier J-F, Druez A, Faugeras L, Martinet J-P, Géhénot M, Josseaux E, et al. Circulating nucleosomes as new blood-based biomarkers for detection of colorectal cancer. Clin Epigenet. 2017;9:53. https://doi.org/10.1186/s13148-017-0351-5 . DOI
Lo Re O, Maugeri A, Hruskova J, Jakubik J, Kucera J, Bienertova-Vasku J, et al. Obesity-induced nucleosome release predicts poor cardio-metabolic health. Clin Epigenet. 2019;12:2. https://doi.org/10.1186/s13148-019-0797-8 . DOI
Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol. 2017;18:299–314. https://doi.org/10.1038/nrm.2016.166 . PubMed DOI
Pazienza V, Borghesan M, Mazza T, Sheedfar F, Panebianco C, Williams R, et al. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging. 2014;6:35–47. https://doi.org/10.18632/aging.100632 . PubMed DOI PMC
Borghesan M, Fusilli C, Rappa F, Panebianco C, Rizzo G, Oben JA, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 2016;76:594–606. https://doi.org/10.1158/0008-5472.CAN-15-1336 . PubMed DOI PMC
Lo Re O, Douet J, Buschbeck M, Fusilli C, Pazienza V, Panebianco C, et al. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics. 2018;13:829–45. https://doi.org/10.1080/15592294.2018.1514239 . PubMed DOI PMC
Lo Re O, Fusilli C, Rappa F, Van Haele M, Douet J, Pindjakova J, et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2018;67:636–50. https://doi.org/10.1002/hep.29519 . PubMed DOI
Bereshchenko O, Lo Re O, Nikulenkov F, Flamini S, Kotaskova J, Mazza T, et al. Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Clin Epigenet. 2019;11:121. https://doi.org/10.1186/s13148-019-0724-z . DOI
Lo Re O, Mazza T, Giallongo S, Sanna P, Rappa F, Vinh Luong T, et al. Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4 + CD25 + FoxP3 + regulatory T cells activation. Theranostics. 2020;10:910–24. https://doi.org/10.7150/thno.35045 . PubMed DOI PMC
Ogle LF, Orr JG, Willoughby CE, Hutton C, McPherson S, Plummer R, et al. Imagestream detection and characterisation of circulating tumor cells—a liquid biopsy for hepatocellular carcinoma? J Hepatol. 2016;65:305–13. https://doi.org/10.1016/j.jhep.2016.04.014 . PubMed DOI
Buzova D, Maugeri A, Liguori A, Napodano C, Lo Re O, Oben J, et al. Circulating histone signature of human lean metabolic-associated fatty liver disease (MAFLD). Clin Epigenetics. 2020;12:126. https://doi.org/10.1186/s13148-020-00917-2 . PubMed DOI PMC
Buzova D, Braghini MR, Bianco SD, Lo Re O, Raffaele M, Frohlich J, et al. Profiling of cell-free DNA methylation and histone signatures in pediatric NAFLD: a pilot study. Hepatol Commun. 2022;6:3311–23. https://doi.org/10.1002/hep4.2082 . PubMed DOI PMC
Buzova D, Frohlich J, Zapletalova D, Raffaele M, Lo Re O, Tsoneva DK, et al. Detection of cell-free histones in the cerebrospinal fluid of pediatric central nervous system malignancies by imaging flow cytometry. Front Mol Biosci. 2023;10:1254699. https://doi.org/10.3389/fmolb.2023.1254699 . PubMed DOI PMC
Sperling R, Bustin M. Histone dimers: a fundamental unit in histone assembly. Nucleic Acids Res. 1976;3:1263–76. https://doi.org/10.1093/nar/3.5.1263 . PubMed DOI PMC
Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128:309–16. https://doi.org/10.1016/j.anorl.2011.03.002 . PubMed DOI
Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. Tracking tumor evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565:654–8. https://doi.org/10.1038/s41586-019-0882-3 . PubMed DOI PMC
Hogan AK, Foltz DR. Reduce, retain, recycle: mechanisms for promoting histone protein degradation versus stability and retention. Mol Cell Biol. 2021;41:e00007-21. https://doi.org/10.1128/MCB.00007-21 . PubMed DOI PMC
Ji D, Xiao X, Luo A, Fan X, Ma J, Wang D, Xia M, Ma L, Wang PY, Li W, Chen P. FACT mediates the depletion of macroH2A12 to expedite gene transcription. Mol Cell. 2024;84:3011-3025.e3017. https://doi.org/10.1016/j.molcel.2024.07.011 . PubMed DOI
Ehteda A, Simon S, Franshaw L, Giorgi FM, Liu J, Joshi S, et al. Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Rep. 2021;35: 108994. https://doi.org/10.1016/j.celrep.2021.108994 . PubMed DOI
Kim J, Sturgill D, Sebastian R, Khurana S, Tran AD, Edwards GB, et al. Replication stress shapes a protective chromatin environment across fragile genomic regions. Mol Cell. 2018;69:36-47.e7. https://doi.org/10.1016/j.molcel.2017.11.021 . PubMed DOI
Bočkaj I, Martini TEI, De Camargo Magalhães ES, Bakker PL, Meeuwsen-de Boer TGJ, Armandari I, et al. The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLOS Genet. 2021;17: e1009868. https://doi.org/10.1371/journal.pgen.1009868 . PubMed DOI PMC
Bonner ER, Bornhorst M, Packer RJ, Nazarian J. Liquid biopsy for pediatric central nervous system tumors. Npj Precis Oncol. 2018;2:29. https://doi.org/10.1038/s41698-018-0072-z . PubMed DOI PMC
Bounajem MT, Karsy M, Jensen RL. Liquid biopsies for the diagnosis and surveillance of primary pediatric central nervous system tumors: a review for practicing neurosurgeons. Neurosurg Focus. 2020;48:E8. https://doi.org/10.3171/2019.9.FOCUS19712 . PubMed DOI
Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68. https://doi.org/10.1016/j.cell.2015.11.050 . PubMed DOI PMC
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5. https://doi.org/10.1126/science.1092385 . PubMed DOI
Bailey CP, Wang R, Figueroa M, Zhang S, Wang L, Chandra J. Computational immune infiltration analysis of pediatric high-grade gliomas (pHGGs) reveals differences in immunosuppression and prognosis by tumor location. Comput Syst Oncol. 2021;1: e1016. https://doi.org/10.1002/cso2.1016 . PubMed DOI PMC
Price G, Bouras A, Hambardzumyan D, Hadjipanayis CG. Current knowledge on the immune microenvironment and emerging immunotherapies in diffuse midline glioma. EBioMedicine. 2021;69: 103453. https://doi.org/10.1016/j.ebiom.2021.103453 . PubMed DOI PMC
Pericoli G, Galardi A, Paolini A, Petrilli LL, Pepe G, Palma A, Colletti M, Ferretti M, Ferretti R, Giorda E, Levi Mortera S, Burford A, Carai A, Mastronuzzi A, Mackay A, Putignani L, Jones C, Pascucci L, Peinado H, Helmer-Citterich M, de Billly E, Masotti A, Locatelli F, Di Giannatale A, Vinci M. Inhibition of exosome biogenesis affects cell motility in heterogeneous sub-populations of paediatric-type diffuse high-grade gliomas. Cell Biosci. 2023;13(1):207. https://doi.org/10.1186/s13578-023-01166-5 . PubMed DOI PMC
Del Baldo G, Carai A, Abbas R, Cacchione A, Vinci M, Di Ruscio V, Colafati GS, Rossi S, Diomedi Camassei F, Maestro N, Temelso S, Pericoli G, De Billy E, Giovannoni I, Carboni A, Rinelli M, Agolini E, Mackay A, Jones C, Chiesa S, Balducci M, Locatelli F, Mastronuzzi A. Targeted therapy for pediatric diffuse intrinsic pontine glioma: a single-center experience. Ther Adv Med Oncol. 2022;14:17588359221113692. https://doi.org/10.1177/17588359221113693 . PubMed DOI PMC