Detection of cell-free histones in the cerebrospinal fluid of pediatric central nervous system malignancies by imaging flow cytometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38028540
PubMed Central
PMC10646437
DOI
10.3389/fmolb.2023.1254699
PII: 1254699
Knihovny.cz E-zdroje
- Klíčová slova
- epigenetics, histones, imaging, liquid biopsy, pediatric brain tumors,
- Publikační typ
- časopisecké články MeSH
Introduction: Pediatric brain tumours (PBT) are one of the most common malignancies during childhood, with variable severity according to the location and histological type. Certain types of gliomas, such a glioblastoma and diffuse intrinsic pontine glioma (DIPG), have a much higher mortality than ependymoma and medulloblastoma. Early detection of PBT is essential for diagnosis and therapeutic interventions. Liquid biopsies have been demonstrated using cerebrospinal fluid (CSF), mostly restricted to cell free DNA, which display limitations of quantity and integrity. In this pilot study, we sought to demonstrate the detectability and robustness of cell free histones in the CSF. Methods: We collected CSF samples from a pilot cohort of 8 children with brain tumours including DIPG, medulloblastoma, glioblastoma, ependymoma and others. As controls, we collected CSF samples from nine children with unrelated blood malignancies and without brain tumours. We applied a multichannel flow imaging approach on ImageStream(X) to image indiviual histone or histone complexes on different channels. Results: Single histones (H2A, macroH2A1.1, macroH2A1.2 H2B, H3, H4 and histone H3 bearing the H3K27M mutation), and histone complexes are specifically detectable in the CSF of PBT patients. H2A and its variants macroH2A1.1/macroH2A1/2 displayed the strongest signal and abundance, together with disease associated H3K27M. In contrast, mostly H4 is detectable in the CSF of pediatric patients with blood malignancies. Discussion: In conclusion, free histones and histone complexes are detectable with a strong signal in the CSF of children affected by brain tumours, using ImageStream(X) technology and may provide additive diagnostic and predictive information.
Department of Adaptive Biotechnologies Global Change Research Institute CAS Brno Czechia
Department of Medical Genetics Medical University of Varna Varna Bulgaria
Faculty of Health Liverpool John Moores University Liverpool United Kingdom
International Clinical Research Center St Anne's University Hospital Brno Czechia
Zobrazit více v PubMed
Andersson D., Fagman H., Dalin M. G., Stahlberg A. (2020). Circulating cell-free tumor DNA analysis in pediatric cancers. Mol. Asp. Med. 72, 100819. 10.1016/j.mam.2019.09.003 PubMed DOI
Azad T. D., Jin M. C., Bernhardt L. J., Bettegowda C. (2020). Liquid biopsy for pediatric diffuse midline glioma: a review of circulating tumor DNA and cerebrospinal fluid tumor DNA. Neurosurg. Focus 48 (1), E9. 10.3171/2019.9.FOCUS19699 PubMed DOI PMC
Baade P. D., Youlden D. R., Valery P. C., Hassall T., Ward L., Green A. C., et al. (2010). Trends in incidence of childhood cancer in Australia, 1983-2006. Br. J. Cancer 102 (3), 620–626. 10.1038/sj.bjc.6605503 PubMed DOI PMC
Babicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A., et al. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44 (W1), W147–W153. 10.1093/nar/gkw419 PubMed DOI PMC
Bauden M., Pamart D., Ansari D., Herzog M., Eccleston M., Micallef J., et al. (2015). Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer. Clin. Epigenetics 7, 106. 10.1186/s13148-015-0139-4 PubMed DOI PMC
Bereshchenko O., Lo Re O., Nikulenkov F., Flamini S., Kotaskova J., Mazza T., et al. (2019). Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Clin. Epigenetics 11 (1), 121. 10.1186/s13148-019-0724-z PubMed DOI PMC
Bonner E. R., Bornhorst M., Packer R. J., Nazarian J. (2018). Liquid biopsy for pediatric central nervous system tumors. NPJ Precis. Oncol. 2, 29. 10.1038/s41698-018-0072-z PubMed DOI PMC
Borghesan M., Fusilli C., Rappa F., Panebianco C., Rizzo G., Oben J. A., et al. (2016). DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 76 (3), 594–606. 10.1158/0008-5472.CAN-15-1336 PubMed DOI PMC
Bounajem M. T., Karsy M., Jensen R. L. (2020). Liquid biopsies for the diagnosis and surveillance of primary pediatric central nervous system tumors: a review for practicing neurosurgeons. Neurosurg. Focus 48 (1), E8. 10.3171/2019.9.FOCUS19712 PubMed DOI
Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., et al. (2004). Neutrophil extracellular traps kill bacteria. Science 303 (5663), 1532–1535. 10.1126/science.1092385 PubMed DOI
Buschbeck M., Hake S. B. (2017). Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell. Biol. 18 (5), 299–314. 10.1038/nrm.2016.166 PubMed DOI
Buzova D., Braghini M. R., Bianco S. D., Lo Re O., Raffaele M., Frohlich J., et al. (2022). Profiling of cell-free DNA methylation and histone signatures in pediatric NAFLD: a pilot study. Hepatol. Commun. 6 (12), 3311–3323. 10.1002/hep4.2082 PubMed DOI PMC
Buzova D., Maugeri A., Liguori A., Napodano C., Lo Re O., Oben J., et al. (2020). Circulating histone signature of human lean metabolic-associated fatty liver disease (MAFLD). Clin. Epigenetics 12 (1), 126. 10.1186/s13148-020-00917-2 PubMed DOI PMC
Demagny J., Roussel C., Le Guyader M., Guiheneuf E., Harrivel V., Boyer T., et al. (2022). Combining imaging flow cytometry and machine learning for high-throughput schistocyte quantification: a SVM classifier development and external validation cohort. EBioMedicine 83, 104209. 10.1016/j.ebiom.2022.104209 PubMed DOI PMC
Di Meo A., Bartlett J., Cheng Y., Pasic M. D., Yousef G. M. (2017). Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol. Cancer 16 (1), 80. 10.1186/s12943-017-0644-5 PubMed DOI PMC
Dominical V., Samsel L., McCoy J. P., Jr. (2017). Masks in imaging flow cytometry. Methods 112, 9–17. 10.1016/j.ymeth.2016.07.013 PubMed DOI PMC
Gojo J., Pavelka Z., Zapletalova D., Schmook M. T., Mayr L., Madlener S., et al. (2019). Personalized treatment of H3K27m-mutant pediatric diffuse gliomas provides improved therapeutic opportunities. Front. Oncol. 9, 1436. 10.3389/fonc.2019.01436 PubMed DOI PMC
Hargrave D. R., Zacharoulis S. (2007). Pediatric CNS tumors: current treatment and future directions. Expert Rev. Neurother. 7 (8), 1029–1042. 10.1586/14737175.7.8.1029 PubMed DOI
Holdenrieder S., Stieber P., von Pawel J., Raith H., Nagel D., Feldmann K., et al. (2004). Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 10 (181), 5981–5987. 10.1158/1078-0432.CCR-04-0625 PubMed DOI
Humphries J. M., Penno M. A., Weiland F., Klingler-Hoffmann M., Zuber A., Boussioutas A., et al. (2014). Identification and validation of novel candidate protein biomarkers for the detection of human gastric cancer. Biochim. Biophys. Acta 1844 (5), 1051–1058. 10.1016/j.bbapap.2014.01.018 PubMed DOI
Jessa S., Blanchet-Cohen A., Krug B., Vladoiu M., Coutelier M., Faury D., et al. (2019). Stalled developmental programs at the root of pediatric brain tumors. Nat. Genet. 51 (12), 1702–1713. 10.1038/s41588-019-0531-7 PubMed DOI PMC
Johnson K. J., Cullen J., Barnholtz-Sloan J. S., Ostrom Q. T., Langer C. E., Turner M. C., et al. (2014). Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol. Biomarkers Prev. 23 (12), 2716–2736. 10.1158/1055-9965.EPI-14-0207 PubMed DOI PMC
Li D., Bonner E. R., Wierzbicki K., Panditharatna E., Huang T., Lulla R., et al. (2021). Standardization of the liquid biopsy for pediatric diffuse midline glioma using ddPCR. Sci. Rep. 11 (1), 5098. 10.1038/s41598-021-84513-1 PubMed DOI PMC
Liu A. P., Northcott P. A., Robinson G. W., Gajjar A. (2022). Circulating tumor DNA profiling for childhood brain tumors: technical challenges and evidence for utility. Lab. Invest. 102 (2), 134–142. 10.1038/s41374-021-00719-x PubMed DOI
Lo Re O., Douet J., Buschbeck M., Fusilli C., Pazienza V., Panebianco C., et al. (2018a). Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics 13 (8), 829–845. 10.1080/15592294.2018.1514239 PubMed DOI PMC
Lo Re O., Fusilli C., Rappa F., Van Haele M., Douet J., Pindjakova J., et al. (2018b). Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology 67 (2), 636–650. 10.1002/hep.29519 PubMed DOI
Lo Re O., Maugeri A., Hruskova J., Jakubik J., Kucera J., Bienertova-Vasku J., et al. (2019). Obesity-induced nucleosome release predicts poor cardio-metabolic health. Clin. Epigenetics 12 (1), 2. 10.1186/s13148-019-0797-8 PubMed DOI PMC
Lo Re O., Mazza T., Giallongo S., Sanna P., Rappa F., Vinh Luong T., et al. (2020). Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4(+)CD25(+)FoxP3(+) regulatory T cells activation. Theranostics 10 (2), 910–924. 10.7150/thno.35045 PubMed DOI PMC
Louis D. N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W. K., et al. (2016). The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131 (6), 803–820. 10.1007/s00401-016-1545-1 PubMed DOI
Lu V. M., Alvi M. A., McDonald K. L., Daniels D. J. (2018). Impact of the H3K27M mutation on survival in pediatric high-grade glioma: a systematic review and meta-analysis. J. Neurosurg. Pediatr. 23 (3), 308–316. 10.3171/2018.9.PEDS18419 PubMed DOI
Luger K., Mader A. W., Richmond R. K., Sargent D. F., Richmond T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389 (6648), 251–260. 10.1038/38444 PubMed DOI
Manda-Handzlik A., Demkow U. (2019). The brain entangled: the contribution of neutrophil extracellular traps to the diseases of the central nervous system. Cells 8 (12), 1477. 10.3390/cells8121477 PubMed DOI PMC
McEwen A. E., Leary S. E. S., Lockwood C. M. (2020). Beyond the blood: CSF-derived cfDNA for diagnosis and characterization of CNS tumors. Front. Cell. Dev. Biol. 8, 45. 10.3389/fcell.2020.00045 PubMed DOI PMC
Mehrotra M., Singh R. R., Loghavi S., Duose D. Y., Barkoh B. A., Behrens C., et al. (2018). Detection of somatic mutations in cell-free DNA in plasma and correlation with overall survival in patients with solid tumors. Oncotarget 9 (12), 10259–10271. 10.18632/oncotarget.21982 PubMed DOI PMC
Miller D. C. (2023). The world health organization classification of tumors of the central nervous system, fifth edition, 2021: a critical analysis. Adv. Tech. Stand Neurosurg. 46, 1–21. 10.1007/978-3-031-28202-7_1 PubMed DOI
Northcott P. A., Buchhalter I., Morrissy A. S., Hovestadt V., Weischenfeldt J., Ehrenberger T., et al. (2017). The whole-genome landscape of medulloblastoma subtypes. Nature 547 (7663), 311–317. 10.1038/nature22973 PubMed DOI PMC
Ogle L. F., Orr J. G., Willoughby C. E., Hutton C., McPherson S., Plummer R., et al. (2016). Imagestream detection and characterisation of circulating tumour cells - a liquid biopsy for hepatocellular carcinoma? J. Hepatol. 65 (2), 305–313. 10.1016/j.jhep.2016.04.014 PubMed DOI
Panditharatna E., Kilburn L. B., Aboian M. S., Kambhampati M., Gordish-Dressman H., Magge S. N., et al. (2018). Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin. Cancer Res. 24 (23), 5850–5859. 10.1158/1078-0432.CCR-18-1345 PubMed DOI PMC
Parpart-Li S., Bartlett B., Popoli M., Adleff V., Tucker L., Steinberg R., et al. (2017). The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin. Cancer Res. 23 (10), 2471–2477. 10.1158/1078-0432.CCR-16-1691 PubMed DOI
Parsons D. W., Li M., Zhang X., Jones S., Leary R. J., Lin J. C., et al. (2011). The genetic landscape of the childhood cancer medulloblastoma. Science 331 (6016), 435–439. 10.1126/science.1198056 PubMed DOI PMC
Paugh B. S., Qu C., Jones C., Liu Z., Adamowicz-Brice M., Zhang J., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. 28 (18), 3061–3068. 10.1200/JCO.2009.26.7252 PubMed DOI PMC
Pazienza V., Borghesan M., Mazza T., Sheedfar F., Panebianco C., Williams R., et al. (2014). SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY) 6 (1), 35–47. 10.18632/aging.100632 PubMed DOI PMC
Rahier J. F., Druez A., Faugeras L., Martinet J. P., Gehenot M., Josseaux E., et al. (2017). Circulating nucleosomes as new blood-based biomarkers for detection of colorectal cancer. Clin. Epigenetics 9, 53. 10.1186/s13148-017-0351-5 PubMed DOI PMC
Rees P., Summers H. D., Filby A., Carpenter A. E., Doan M. (2022). Imaging flow cytometry: a primer. Nat. Rev. Methods Prim. 2, 86. 10.1038/s43586-022-00167-x PubMed DOI PMC
Salloum R., McConechy M. K., Mikael L. G., Fuller C., Drissi R., DeWire M., et al. (2017). Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathol. Commun. 5 (1), 78. 10.1186/s40478-017-0479-8 PubMed DOI PMC
Saratsis A. M., Yadavilli S., Magge S., Rood B. R., Perez J., Hill D. A., et al. (2012). Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol. 14 (5), 547–560. 10.1093/neuonc/nos067 PubMed DOI PMC
Schilde L. M., Kosters S., Steinbach S., Schork K., Eisenacher M., Galozzi S., et al. (2018). Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research. PLoS One 13 (11), e0206478. 10.1371/journal.pone.0206478 PubMed DOI PMC
Seoane J., De Mattos-Arruda L., Le Rhun E., Bardelli A., Weller M. (2019). Cerebrospinal fluid cell-free tumour DNA as a liquid biopsy for primary brain tumours and central nervous system metastases. Ann. Oncol. 30 (2), 211–218. 10.1093/annonc/mdy544 PubMed DOI
Sexton-Oates A., MacGregor D., Dodgshun A., Saffery R. (2015). The potential for epigenetic analysis of paediatric CNS tumours to improve diagnosis, treatment and prognosis. Ann. Oncol. 26 (7), 1314–1324. 10.1093/annonc/mdv024 PubMed DOI
Siddiq M. M., Hannila S. S., Zorina Y., Nikulina E., Rabinovich V., Hou J., et al. (2021). Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration. Brain Commun. 3 (4), fcab271. 10.1093/braincomms/fcab271 PubMed DOI PMC
Sperling R., Bustin M. (1976). Histone dimers: a fundamental unit in histone assembly. Nucleic Acids Res. 3 (5), 1263–1275. 10.1093/nar/3.5.1263 PubMed DOI PMC
Stallard S., Savelieff M. G., Wierzbicki K., Mullan B., Miklja Z., Bruzek A., et al. (2018). CSF H3F3A K27M circulating tumor DNA copy number quantifies tumor growth and in vitro treatment response. Acta Neuropathol. Commun. 6 (1), 80. 10.1186/s40478-018-0580-7 PubMed DOI PMC
Sun Y., Li M., Ren S., Liu Y., Zhang J., Li S., et al. (2021). Exploring genetic alterations in circulating tumor DNA from cerebrospinal fluid of pediatric medulloblastoma. Sci. Rep. 11 (1), 5638. 10.1038/s41598-021-85178-6 PubMed DOI PMC
Taylor M. D., Northcott P. A., Korshunov A., Remke M., Cho Y. J., Clifford S. C., et al. (2012). Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123 (4), 465–472. 10.1007/s00401-011-0922-z PubMed DOI PMC
Thomas J. O., Kornberg R. D. (1975). An octamer of histones in chromatin and free in solution. Proc. Natl. Acad. Sci. U. S. A. 72 (7), 2626–2630. 10.1073/pnas.72.7.2626 PubMed DOI PMC
Tsoneva D. K., Ivanov M. N., Conev N. V., Manev R., Stoyanov D. S., Vinciguerra M. (2023). Circulating histones to detect and monitor the progression of cancer. Int. J. Mol. Sci. 24 (2), 942. 10.3390/ijms24020942 PubMed DOI PMC
Wu D., Ingram A., Lahti J. H., Mazza B., Grenet J., Kapoor A., et al. (2002). Apoptotic release of histones from nucleosomes. J. Biol. Chem. 277 (14), 12001–12008. 10.1074/jbc.M109219200 PubMed DOI
Extracellular Histones Profiles of Pediatric H3K27-Altered Diffuse Midline Glioma