• This record comes from PubMed

Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice

. 2023 Nov 05 ; 13 (1) : 19123. [epub] 20231105

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37926763
PubMed Central PMC10625986
DOI 10.1038/s41598-023-46304-8
PII: 10.1038/s41598-023-46304-8
Knihovny.cz E-resources

Obesity has a major socio-economic health impact. There are profound sex differences in adipose tissue deposition and obesity-related conditions. The underlying mechanisms driving sexual dimorphism in obesity and its associated metabolic disorders remain unclear. Histone variant macroH2A1.1 is a candidate epigenetic mechanism linking environmental and dietary factors to obesity. Here, we used a mouse model genetically depleted of macroH2A1.1 to investigate its potential epigenetic role in sex dimorphic obesity, metabolic disturbances and gut dysbiosis. Whole body macroH2A1 knockout (KO) mice, generated with the Cre/loxP technology, and their control littermates were fed a high fat diet containing 60% of energy derived from fat. The diet was administered for three months starting from 10 to 12 weeks of age. We evaluated the progression in body weight, the food intake, and the tolerance to glucose by means of a glucose tolerance test. Gut microbiota composition, visceral adipose and liver tissue morphology were assessed. In addition, adipogenic gene expression patterns were evaluated in the visceral adipose tissue. Female KO mice for macroH2A1.1 had a more pronounced weight gain induced by high fat diet compared to their littermates, while the increase in body weight in male mice was similar in the two genotypes. Food intake was generally increased upon KO and decreased by high fat diet in both sexes, with the exception of KO females fed a high fat diet that displayed the same food intake of their littermates. In glucose tolerance tests, glucose levels were significantly elevated upon high fat diet in female KO compared to a standard diet, while this effect was absent in male KO. There were no differences in hepatic histology. Upon a high fat diet, in female adipocyte cross-sectional area was larger in KO compared to littermates: activation of proadipogenic genes (ACACB, AGT, ANGPT2, FASN, RETN, SLC2A4) and downregulation of antiadipogenic genes (AXIN1, E2F1, EGR2, JUN, SIRT1, SIRT2, UCP1, CCND1, CDKN1A, CDKN1B, EGR2) was detected. Gut microbiota profiling showed increase in Firmicutes and a decrease in Bacteroidetes in females, but not males, macroH2A1.1 KO mice. MacroH2A1.1 KO mice display sexual dimorphism in high fat diet-induced obesity and in gut dysbiosis, and may represent a useful model to investigate epigenetic and metabolic differences associated to the development of obesity-associated pathological conditions in males and females.

See more in PubMed

Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA. 2015;314(10):1021–1029. doi: 10.1001/jama.2015.10029. PubMed DOI

Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol. Cell Endocrinol. 2015;402:113–119. doi: 10.1016/j.mce.2014.11.029. PubMed DOI PMC

Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016;37(3):278–316. doi: 10.1210/er.2015-1137. PubMed DOI PMC

Macotela Y, Boucher J, Tran TT, Kahn CR. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009;58(4):803–812. doi: 10.2337/db08-1054. PubMed DOI PMC

Wang C, He Y, Xu P, et al. TAp63 contributes to sexual dimorphism in POMC neuron functions and energy homeostasis. Nat. Commun. 2018;9(1):1544. doi: 10.1038/s41467-018-03796-7. PubMed DOI PMC

Corsetti JP, Sparks JD, Peterson RG, Smith RL, Sparks CE. Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis. 2000;148(2):231–241. doi: 10.1016/S0021-9150(99)00265-8. PubMed DOI

Chait A, Wang S, Goodspeed L, et al. Sexually dimorphic relationships among Saa3 (Serum Amyloid A3), inflammation, and cholesterol metabolism modulate atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2021;41(6):e299–e313. doi: 10.1161/ATVBAHA.121.316066. PubMed DOI PMC

Kurt Z, Barrere-Cain R, LaGuardia J, et al. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol. Sex Differ. 2018;9(1):46. doi: 10.1186/s13293-018-0205-7. PubMed DOI PMC

Norheim F, Hasin-Brumshtein Y, Vergnes L, et al. Gene-by-sex interactions in mitochondrial functions and cardio-metabolic traits. Cell Metab. 2019;29(4):932–949. doi: 10.1016/j.cmet.2018.12.013. PubMed DOI PMC

Yang X, Schadt EE, Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995–1004. doi: 10.1101/gr.5217506. PubMed DOI PMC

Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass index: A genome-wide analysis. Lancet. 2014;383(9933):1990–1998. doi: 10.1016/S0140-6736(13)62674-4. PubMed DOI

Ling C, Ronn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–1044. doi: 10.1016/j.cmet.2019.03.009. PubMed DOI PMC

Talbot CPJ, Dolinsky VW. Sex differences in the developmental origins of cardiometabolic disease following exposure to maternal obesity and gestational diabetes. Appl. Physiol. Nutr. Metab. 2019;44(7):687–695. doi: 10.1139/apnm-2018-0667. PubMed DOI

Si J, Meir AY, Hong X, et al. Maternal pre-pregnancy BMI, offspring epigenome-wide DNA methylation, and childhood obesity: Findings from the Boston Birth Cohort. BMC Med. 2023;21(1):317. doi: 10.1186/s12916-023-03003-5. PubMed DOI PMC

Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. 2017;18(5):299–314. doi: 10.1038/nrm.2016.166. PubMed DOI

Giallongo S, Rehakova D, Raffaele M, Lo Re O, Koutna I, Vinciguerra M. Redox and epigenetics in human pluripotent stem cells differentiation. Antioxid. Redox Signal. 2021;34(4):335–349. doi: 10.1089/ars.2019.7983. PubMed DOI

Lo Re O, Vinciguerra M. Histone MacroH2A1: A chromatin point of intersection between fasting, senescence and cellular regeneration. Genes. 2017;8(12):367. doi: 10.3390/genes8120367. PubMed DOI PMC

Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev. 2010;24(1):21–32. doi: 10.1101/gad.1876110. PubMed DOI PMC

Ruiz PD, Gamble MJ. MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Nat. Commun. 2018;9(1):5143. doi: 10.1038/s41467-018-07189-8. PubMed DOI PMC

Douet J, Corujo D, Malinverni R, et al. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. J. Cell Sci. 2017;130(9):1570–1582. PubMed

Giallongo S, Rehakova D, Biagini T, et al. Histone variant macroH2A1.1 enhances nonhomologous end joining-dependent DNA double-strand-break repair and reprogramming efficiency of human iPSCs. Stem Cells. 2022;40(1):35–48. doi: 10.1093/stmcls/sxab004. PubMed DOI PMC

Ni K, Muegge K. LSH catalyzes ATP-driven exchange of histone variants macroH2A1 and macroH2A2. Nucleic Acids Res. 2021;49(14):8024–8036. doi: 10.1093/nar/gkab588. PubMed DOI PMC

Kim J, Sturgill D, Sebastian R, et al. Replication stress shapes a protective chromatin environment across fragile genomic regions. Mol. Cell. 2018;69(1):36–47. doi: 10.1016/j.molcel.2017.11.021. PubMed DOI PMC

Lo Re O, Douet J, Buschbeck M, et al. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics. 2018;13(8):829–845. doi: 10.1080/15592294.2018.1514239. PubMed DOI PMC

Pazienza V, Borghesan M, Mazza T, et al. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging. 2014;6(1):35–47. doi: 10.18632/aging.100632. PubMed DOI PMC

Podrini C, Koffas A, Chokshi S, et al. MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat-induced steatosis. FASEB J. 2015;29(5):1676–1687. doi: 10.1096/fj.14-262717. PubMed DOI

Pazienza V, Panebianco C, Rappa F, et al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin. 2016;9:45. doi: 10.1186/s13072-016-0098-9. PubMed DOI PMC

Posavec Marjanovic M, Hurtado-Bages S, Lassi M, et al. MacroH2A11 regulates mitochondrial respiration by limiting nuclear NAD+ consumption. Nat. Struct. Mol. Biol. 2017;24(11):902–910. doi: 10.1038/nsmb.3481. PubMed DOI PMC

Recoules L, Heurteau A, Raynal F, et al. The histone variant macroH2A1.1 regulates RNA polymerase II-paused genes within defined chromatin interaction landscapes. J. Cell Sci. 2022;135(7):jcs59456. doi: 10.1242/jcs.259456. PubMed DOI PMC

Bereshchenko O, Lo Re O, Nikulenkov F, et al. Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Clin. Epigenetics. 2019;11(1):121. doi: 10.1186/s13148-019-0724-z. PubMed DOI PMC

Chiodi V, Domenici MR, Biagini T, et al. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J. 2021;35(8):e21793. doi: 10.1096/fj.202100569R. PubMed DOI

Changolkar LN, Costanzi C, Leu NA, Chen D, McLaughlin KJ, Pehrson JR. Developmental changes in histone macroH2A1-mediated gene regulation. Mol. Cell Biol. 2007;27(7):2758–2764. doi: 10.1128/MCB.02334-06. PubMed DOI PMC

Sheedfar F, Vermeer M, Pazienza V, et al. Genetic ablation of macrohistone H2A1 leads to increased leanness, glucose tolerance and energy expenditure in mice fed a high-fat diet. Int. J. Obes. 2015;39(2):331–338. doi: 10.1038/ijo.2014.91. PubMed DOI

Boulard M, Storck S, Cong R, Pinto R, Delage H, Bouvet P. Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Epigenetics Chromatin. 2010;3(1):8. doi: 10.1186/1756-8935-3-8. PubMed DOI PMC

Anastassiadis K, Fu J, Patsch C, et al. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis. Model. Mech. 2009;2(9–10):508–515. doi: 10.1242/dmm.003087. PubMed DOI

Datta P, Zhang Y, Parousis A, et al. High-fat diet-induced acceleration of osteoarthritis is associated with a distinct and sustained plasma metabolite signature. Sci. Rep. 2017;7(1):8205. doi: 10.1038/s41598-017-07963-6. PubMed DOI PMC

Bordeleau M, Comin CH, Fernandez de Cossio L, et al. Maternal high-fat diet in mice induces cerebrovascular, microglial and long-term behavioural alterations in offspring. Commun. Biol. 2022;5(1):26. doi: 10.1038/s42003-021-02947-9. PubMed DOI PMC

Tiedemann K, Muthu ML, Reinhardt DP, Komarova SV. Male Marfan mice are predisposed to high-fat diet-induced obesity, diabetes, and fatty liver. Am. J. Physiol. Cell Physiol. 2022;323(2):C354–C366. doi: 10.1152/ajpcell.00062.2022. PubMed DOI

Veyrat-Durebex C, Montet X, Vinciguerra M, et al. The Lou/C rat: A model of spontaneous food restriction associated with improved insulin sensitivity and decreased lipid storage in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2009;296(5):E1120–E1132. doi: 10.1152/ajpendo.90592.2008. PubMed DOI

Raffaele M, Kovacovicova K, Frohlich J, et al. Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell. Commun. Signal. 2021;19(1):44. doi: 10.1186/s12964-021-00731-0. PubMed DOI PMC

Mouralidarane A, Soeda J, Sugden D, et al. Maternal obesity programs offspring non-alcoholic fatty liver disease through disruption of 24-h rhythms in mice. Int. J. Obes. 2015;39(9):1339–1348. doi: 10.1038/ijo.2015.85. PubMed DOI

Benegiamo G, Mazzoccoli G, Cappello F, et al. Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes. PLoS One. 2013;8(4):e60527. doi: 10.1371/journal.pone.0060527. PubMed DOI PMC

Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi: 10.1002/hep.20701. PubMed DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 1995;57(1):290–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Longo M, Zatterale F, Naderi J, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019;20(9):2358. doi: 10.3390/ijms20092358. PubMed DOI PMC

Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18(5):515–520. doi: 10.1097/MCO.0000000000000209. PubMed DOI PMC

Daniel H, Gholami AM, Berry D, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8(2):295–308. doi: 10.1038/ismej.2013.155. PubMed DOI PMC

Pindjakova J, Sartini C, Lo Re O, et al. Gut dysbiosis and adaptive immune response in diet-induced obesity vs systemic inflammation. Front. Microbiol. 2017;8:1157. doi: 10.3389/fmicb.2017.01157. PubMed DOI PMC

Borghesan M, Mazzoccoli G, Sheedfar F, Oben J, Pazienza V, Vinciguerra M. Histone variants and lipid metabolism. Biochem. Soc. Trans. 2014;42(5):1409–1413. doi: 10.1042/BST20140119. PubMed DOI

Jufvas A, Stralfors P, Vener AV. Histone variants and their post-translational modifications in primary human fat cells. PLoS One. 2011;6(1):e15960. doi: 10.1371/journal.pone.0015960. PubMed DOI PMC

Wan D, Liu C, Sun Y, Wang W, Huang K, Zheng L. MacroH2A1.1 cooperates with EZH2 to promote adipogenesis by regulating Wnt signaling. J. Mol. Cell Biol. 2017;9(4):325–337. doi: 10.1093/jmcb/mjx027. PubMed DOI

Couture JP, Nolet G, Beaulieu E, Blouin R, Gevry N. The p400/Brd8 chromatin remodeling complex promotes adipogenesis by incorporating histone variant H2A.Z at PPARgamma target genes. Endocrinology. 2012;153(12):5796–5808. doi: 10.1210/en.2012-1380. PubMed DOI

Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes: Differences in immunostimulation. Cell Death Dis. 2016;7(12):e2518. doi: 10.1038/cddis.2016.410. PubMed DOI PMC

Fellows R, Varga-Weisz P. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk. Mol. Metab. 2020;38:100925. doi: 10.1016/j.molmet.2019.12.005. PubMed DOI PMC

Wu SE, Hashimoto-Hill S, Woo V, et al. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature. 2020;586(7827):108–112. doi: 10.1038/s41586-020-2604-2. PubMed DOI PMC

Kuang Z, Wang Y, Li Y, et al. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science. 2019;365(6460):1428–1434. doi: 10.1126/science.aaw3134. PubMed DOI PMC

Rosser EC, de Gruijter NM, Matei DE. Mini-review: Gut-microbiota and the sex-bias in autoimmunity—Lessons learnt from animal models. Front. Med. 2022;9:910561. doi: 10.3389/fmed.2022.910561. PubMed DOI PMC

Wang B, Kong Q, Li X, et al. A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients. 2020;12(10):3197. doi: 10.3390/nu12103197. PubMed DOI PMC

Xiao L, Sonne SB, Feng Q, et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome. 2017;5(1):43. doi: 10.1186/s40168-017-0258-6. PubMed DOI PMC

Stojanov S, Berlec A, Strukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1715. doi: 10.3390/microorganisms8111715. PubMed DOI PMC

Cedeno RJ, Nakauka-Ddamba A, Yousefi M, et al. The histone variant macroH2A confers functional robustness to the intestinal stem cell compartment. PLoS One. 2017;12(9):e0185196. doi: 10.1371/journal.pone.0185196. PubMed DOI PMC

Borghesan M, Fusilli C, Rappa F, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 2016;76(3):594–606. doi: 10.1158/0008-5472.CAN-15-1336. PubMed DOI PMC

Changolkar LN, Singh G, Cui K, et al. Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol. Cell Biol. 2010;30(23):5473–5483. doi: 10.1128/MCB.00518-10. PubMed DOI PMC

Dell’Orso S, Wang AH, Shih HY, et al. The histone variant MacroH2A1.2 is necessary for the activation of muscle enhancers and recruitment of the transcription factor Pbx1. Cell Rep. 2016;14(5):1156–1168. doi: 10.1016/j.celrep.2015.12.103. PubMed DOI PMC

Costanzi C, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature. 1998;393(6685):599–601. doi: 10.1038/31275. PubMed DOI

Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 1999;147(7):1399–1408. doi: 10.1083/jcb.147.7.1399. PubMed DOI PMC

Mietton F, Sengupta AK, Molla A, et al. Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol. Cell Biol. 2009;29(1):150–156. doi: 10.1128/MCB.00997-08. PubMed DOI PMC

Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J. Cell Biol. 2000;150(5):1189–1198. doi: 10.1083/jcb.150.5.1189. PubMed DOI PMC

Sebastian R, Hosogane EK, Sun EG, et al. Epigenetic regulation of DNA repair pathway choice by MacroH2A1 splice variants ensures genome stability. Mol. Cell. 2020;79(5):836–845. doi: 10.1016/j.molcel.2020.06.028. PubMed DOI PMC

Rasmussen TP, Huang T, Mastrangelo MA, Loring J, Panning B, Jaenisch R. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res. 1999;27(18):3685–3689. doi: 10.1093/nar/27.18.3685. PubMed DOI PMC

Chen X, McClusky R, Chen J, et al. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet. 2012;8(5):e1002709. doi: 10.1371/journal.pgen.1002709. PubMed DOI PMC

Reue K. Sex differences in obesity: X chromosome dosage as a risk factor for increased food intake, adiposity and co-morbidities. Physiol. Behav. 2017;176:174–182. doi: 10.1016/j.physbeh.2017.02.040. PubMed DOI PMC

Zore T, Palafox M, Reue K. Sex differences in obesity, lipid metabolism, and inflammation-A role for the sex chromosomes? Mol. Metab. 2018;15:35–44. doi: 10.1016/j.molmet.2018.04.003. PubMed DOI PMC

Mousavi MJ, Mahmoudi M, Ghotloo S. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol. Med. 2020;26(1):127. doi: 10.1186/s10020-020-00256-1. PubMed DOI PMC

Lo Re O, Fusilli C, Rappa F, et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2018;67(2):636–650. doi: 10.1002/hep.29519. PubMed DOI

Giallongo S, Lo Re O, Vinciguerra M. Macro histone variants: Emerging rheostats of gastrointestinal cancers. Cancers. 2019;11(5):676. doi: 10.3390/cancers11050676. PubMed DOI PMC

Hsu CJ, Meers O, Buschbeck M, Heidel FH. The role of MacroH2A histone variants in cancer. Cancers. 2021;13(12):3003. doi: 10.3390/cancers13123003. PubMed DOI PMC

O'Sullivan J, Lysaght J, Donohoe CL, Reynolds JV. Obesity and gastrointestinal cancer: The interrelationship of adipose and tumour microenvironments. Nat. Rev. Gastroenterol. Hepatol. 2018;15(11):699–714. doi: 10.1038/s41575-018-0069-7. PubMed DOI

Gupta A, Das A, Majumder K, et al. Obesity is independently associated with increased risk of hepatocellular cancer-related mortality: A systematic review and meta-analysis. Am. J. Clin. Oncol. 2018;41(9):874–881. doi: 10.1097/COC.0000000000000388. PubMed DOI PMC

Zheng D, Trynda J, Williams C, et al. Sexual dimorphism in the incidence of human cancers. BMC Cancer. 2019;19(1):684. doi: 10.1186/s12885-019-5902-z. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...