Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37926763
PubMed Central
PMC10625986
DOI
10.1038/s41598-023-46304-8
PII: 10.1038/s41598-023-46304-8
Knihovny.cz E-resources
- MeSH
- Diet, High-Fat adverse effects MeSH
- Dysbiosis * MeSH
- Glucose metabolism MeSH
- Histones * genetics metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Obesity genetics metabolism MeSH
- Body Weight MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glucose MeSH
- Histones * MeSH
- Macroh2a1 protein, mouse MeSH Browser
Obesity has a major socio-economic health impact. There are profound sex differences in adipose tissue deposition and obesity-related conditions. The underlying mechanisms driving sexual dimorphism in obesity and its associated metabolic disorders remain unclear. Histone variant macroH2A1.1 is a candidate epigenetic mechanism linking environmental and dietary factors to obesity. Here, we used a mouse model genetically depleted of macroH2A1.1 to investigate its potential epigenetic role in sex dimorphic obesity, metabolic disturbances and gut dysbiosis. Whole body macroH2A1 knockout (KO) mice, generated with the Cre/loxP technology, and their control littermates were fed a high fat diet containing 60% of energy derived from fat. The diet was administered for three months starting from 10 to 12 weeks of age. We evaluated the progression in body weight, the food intake, and the tolerance to glucose by means of a glucose tolerance test. Gut microbiota composition, visceral adipose and liver tissue morphology were assessed. In addition, adipogenic gene expression patterns were evaluated in the visceral adipose tissue. Female KO mice for macroH2A1.1 had a more pronounced weight gain induced by high fat diet compared to their littermates, while the increase in body weight in male mice was similar in the two genotypes. Food intake was generally increased upon KO and decreased by high fat diet in both sexes, with the exception of KO females fed a high fat diet that displayed the same food intake of their littermates. In glucose tolerance tests, glucose levels were significantly elevated upon high fat diet in female KO compared to a standard diet, while this effect was absent in male KO. There were no differences in hepatic histology. Upon a high fat diet, in female adipocyte cross-sectional area was larger in KO compared to littermates: activation of proadipogenic genes (ACACB, AGT, ANGPT2, FASN, RETN, SLC2A4) and downregulation of antiadipogenic genes (AXIN1, E2F1, EGR2, JUN, SIRT1, SIRT2, UCP1, CCND1, CDKN1A, CDKN1B, EGR2) was detected. Gut microbiota profiling showed increase in Firmicutes and a decrease in Bacteroidetes in females, but not males, macroH2A1.1 KO mice. MacroH2A1.1 KO mice display sexual dimorphism in high fat diet-induced obesity and in gut dysbiosis, and may represent a useful model to investigate epigenetic and metabolic differences associated to the development of obesity-associated pathological conditions in males and females.
Department of Anatomy and Cell Biology Research Institute of the Medical University Varna Bulgaria
Department of Biomedicine Neurosciences and Advanced Diagnostics University of Palermo Palermo Italy
International Clinical Research Center St'Anne University Hospital Brno Czech Republic
Liverpool Centre for Cardiovascular Science Liverpool John Moores University Liverpool UK
National Centre for Drug Research and Evaluation Istituto Superiore di Sanita' Rome Italy
See more in PubMed
Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA. 2015;314(10):1021–1029. doi: 10.1001/jama.2015.10029. PubMed DOI
Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol. Cell Endocrinol. 2015;402:113–119. doi: 10.1016/j.mce.2014.11.029. PubMed DOI PMC
Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016;37(3):278–316. doi: 10.1210/er.2015-1137. PubMed DOI PMC
Macotela Y, Boucher J, Tran TT, Kahn CR. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009;58(4):803–812. doi: 10.2337/db08-1054. PubMed DOI PMC
Wang C, He Y, Xu P, et al. TAp63 contributes to sexual dimorphism in POMC neuron functions and energy homeostasis. Nat. Commun. 2018;9(1):1544. doi: 10.1038/s41467-018-03796-7. PubMed DOI PMC
Corsetti JP, Sparks JD, Peterson RG, Smith RL, Sparks CE. Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis. 2000;148(2):231–241. doi: 10.1016/S0021-9150(99)00265-8. PubMed DOI
Chait A, Wang S, Goodspeed L, et al. Sexually dimorphic relationships among Saa3 (Serum Amyloid A3), inflammation, and cholesterol metabolism modulate atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2021;41(6):e299–e313. doi: 10.1161/ATVBAHA.121.316066. PubMed DOI PMC
Kurt Z, Barrere-Cain R, LaGuardia J, et al. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol. Sex Differ. 2018;9(1):46. doi: 10.1186/s13293-018-0205-7. PubMed DOI PMC
Norheim F, Hasin-Brumshtein Y, Vergnes L, et al. Gene-by-sex interactions in mitochondrial functions and cardio-metabolic traits. Cell Metab. 2019;29(4):932–949. doi: 10.1016/j.cmet.2018.12.013. PubMed DOI PMC
Yang X, Schadt EE, Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995–1004. doi: 10.1101/gr.5217506. PubMed DOI PMC
Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass index: A genome-wide analysis. Lancet. 2014;383(9933):1990–1998. doi: 10.1016/S0140-6736(13)62674-4. PubMed DOI
Ling C, Ronn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–1044. doi: 10.1016/j.cmet.2019.03.009. PubMed DOI PMC
Talbot CPJ, Dolinsky VW. Sex differences in the developmental origins of cardiometabolic disease following exposure to maternal obesity and gestational diabetes. Appl. Physiol. Nutr. Metab. 2019;44(7):687–695. doi: 10.1139/apnm-2018-0667. PubMed DOI
Si J, Meir AY, Hong X, et al. Maternal pre-pregnancy BMI, offspring epigenome-wide DNA methylation, and childhood obesity: Findings from the Boston Birth Cohort. BMC Med. 2023;21(1):317. doi: 10.1186/s12916-023-03003-5. PubMed DOI PMC
Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. 2017;18(5):299–314. doi: 10.1038/nrm.2016.166. PubMed DOI
Giallongo S, Rehakova D, Raffaele M, Lo Re O, Koutna I, Vinciguerra M. Redox and epigenetics in human pluripotent stem cells differentiation. Antioxid. Redox Signal. 2021;34(4):335–349. doi: 10.1089/ars.2019.7983. PubMed DOI
Lo Re O, Vinciguerra M. Histone MacroH2A1: A chromatin point of intersection between fasting, senescence and cellular regeneration. Genes. 2017;8(12):367. doi: 10.3390/genes8120367. PubMed DOI PMC
Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev. 2010;24(1):21–32. doi: 10.1101/gad.1876110. PubMed DOI PMC
Ruiz PD, Gamble MJ. MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Nat. Commun. 2018;9(1):5143. doi: 10.1038/s41467-018-07189-8. PubMed DOI PMC
Douet J, Corujo D, Malinverni R, et al. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. J. Cell Sci. 2017;130(9):1570–1582. PubMed
Giallongo S, Rehakova D, Biagini T, et al. Histone variant macroH2A1.1 enhances nonhomologous end joining-dependent DNA double-strand-break repair and reprogramming efficiency of human iPSCs. Stem Cells. 2022;40(1):35–48. doi: 10.1093/stmcls/sxab004. PubMed DOI PMC
Ni K, Muegge K. LSH catalyzes ATP-driven exchange of histone variants macroH2A1 and macroH2A2. Nucleic Acids Res. 2021;49(14):8024–8036. doi: 10.1093/nar/gkab588. PubMed DOI PMC
Kim J, Sturgill D, Sebastian R, et al. Replication stress shapes a protective chromatin environment across fragile genomic regions. Mol. Cell. 2018;69(1):36–47. doi: 10.1016/j.molcel.2017.11.021. PubMed DOI PMC
Lo Re O, Douet J, Buschbeck M, et al. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics. 2018;13(8):829–845. doi: 10.1080/15592294.2018.1514239. PubMed DOI PMC
Pazienza V, Borghesan M, Mazza T, et al. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging. 2014;6(1):35–47. doi: 10.18632/aging.100632. PubMed DOI PMC
Podrini C, Koffas A, Chokshi S, et al. MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat-induced steatosis. FASEB J. 2015;29(5):1676–1687. doi: 10.1096/fj.14-262717. PubMed DOI
Pazienza V, Panebianco C, Rappa F, et al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin. 2016;9:45. doi: 10.1186/s13072-016-0098-9. PubMed DOI PMC
Posavec Marjanovic M, Hurtado-Bages S, Lassi M, et al. MacroH2A11 regulates mitochondrial respiration by limiting nuclear NAD+ consumption. Nat. Struct. Mol. Biol. 2017;24(11):902–910. doi: 10.1038/nsmb.3481. PubMed DOI PMC
Recoules L, Heurteau A, Raynal F, et al. The histone variant macroH2A1.1 regulates RNA polymerase II-paused genes within defined chromatin interaction landscapes. J. Cell Sci. 2022;135(7):jcs59456. doi: 10.1242/jcs.259456. PubMed DOI PMC
Bereshchenko O, Lo Re O, Nikulenkov F, et al. Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Clin. Epigenetics. 2019;11(1):121. doi: 10.1186/s13148-019-0724-z. PubMed DOI PMC
Chiodi V, Domenici MR, Biagini T, et al. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J. 2021;35(8):e21793. doi: 10.1096/fj.202100569R. PubMed DOI
Changolkar LN, Costanzi C, Leu NA, Chen D, McLaughlin KJ, Pehrson JR. Developmental changes in histone macroH2A1-mediated gene regulation. Mol. Cell Biol. 2007;27(7):2758–2764. doi: 10.1128/MCB.02334-06. PubMed DOI PMC
Sheedfar F, Vermeer M, Pazienza V, et al. Genetic ablation of macrohistone H2A1 leads to increased leanness, glucose tolerance and energy expenditure in mice fed a high-fat diet. Int. J. Obes. 2015;39(2):331–338. doi: 10.1038/ijo.2014.91. PubMed DOI
Boulard M, Storck S, Cong R, Pinto R, Delage H, Bouvet P. Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Epigenetics Chromatin. 2010;3(1):8. doi: 10.1186/1756-8935-3-8. PubMed DOI PMC
Anastassiadis K, Fu J, Patsch C, et al. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis. Model. Mech. 2009;2(9–10):508–515. doi: 10.1242/dmm.003087. PubMed DOI
Datta P, Zhang Y, Parousis A, et al. High-fat diet-induced acceleration of osteoarthritis is associated with a distinct and sustained plasma metabolite signature. Sci. Rep. 2017;7(1):8205. doi: 10.1038/s41598-017-07963-6. PubMed DOI PMC
Bordeleau M, Comin CH, Fernandez de Cossio L, et al. Maternal high-fat diet in mice induces cerebrovascular, microglial and long-term behavioural alterations in offspring. Commun. Biol. 2022;5(1):26. doi: 10.1038/s42003-021-02947-9. PubMed DOI PMC
Tiedemann K, Muthu ML, Reinhardt DP, Komarova SV. Male Marfan mice are predisposed to high-fat diet-induced obesity, diabetes, and fatty liver. Am. J. Physiol. Cell Physiol. 2022;323(2):C354–C366. doi: 10.1152/ajpcell.00062.2022. PubMed DOI
Veyrat-Durebex C, Montet X, Vinciguerra M, et al. The Lou/C rat: A model of spontaneous food restriction associated with improved insulin sensitivity and decreased lipid storage in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2009;296(5):E1120–E1132. doi: 10.1152/ajpendo.90592.2008. PubMed DOI
Raffaele M, Kovacovicova K, Frohlich J, et al. Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell. Commun. Signal. 2021;19(1):44. doi: 10.1186/s12964-021-00731-0. PubMed DOI PMC
Mouralidarane A, Soeda J, Sugden D, et al. Maternal obesity programs offspring non-alcoholic fatty liver disease through disruption of 24-h rhythms in mice. Int. J. Obes. 2015;39(9):1339–1348. doi: 10.1038/ijo.2015.85. PubMed DOI
Benegiamo G, Mazzoccoli G, Cappello F, et al. Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes. PLoS One. 2013;8(4):e60527. doi: 10.1371/journal.pone.0060527. PubMed DOI PMC
Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi: 10.1002/hep.20701. PubMed DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 1995;57(1):290–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Longo M, Zatterale F, Naderi J, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019;20(9):2358. doi: 10.3390/ijms20092358. PubMed DOI PMC
Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18(5):515–520. doi: 10.1097/MCO.0000000000000209. PubMed DOI PMC
Daniel H, Gholami AM, Berry D, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8(2):295–308. doi: 10.1038/ismej.2013.155. PubMed DOI PMC
Pindjakova J, Sartini C, Lo Re O, et al. Gut dysbiosis and adaptive immune response in diet-induced obesity vs systemic inflammation. Front. Microbiol. 2017;8:1157. doi: 10.3389/fmicb.2017.01157. PubMed DOI PMC
Borghesan M, Mazzoccoli G, Sheedfar F, Oben J, Pazienza V, Vinciguerra M. Histone variants and lipid metabolism. Biochem. Soc. Trans. 2014;42(5):1409–1413. doi: 10.1042/BST20140119. PubMed DOI
Jufvas A, Stralfors P, Vener AV. Histone variants and their post-translational modifications in primary human fat cells. PLoS One. 2011;6(1):e15960. doi: 10.1371/journal.pone.0015960. PubMed DOI PMC
Wan D, Liu C, Sun Y, Wang W, Huang K, Zheng L. MacroH2A1.1 cooperates with EZH2 to promote adipogenesis by regulating Wnt signaling. J. Mol. Cell Biol. 2017;9(4):325–337. doi: 10.1093/jmcb/mjx027. PubMed DOI
Couture JP, Nolet G, Beaulieu E, Blouin R, Gevry N. The p400/Brd8 chromatin remodeling complex promotes adipogenesis by incorporating histone variant H2A.Z at PPARgamma target genes. Endocrinology. 2012;153(12):5796–5808. doi: 10.1210/en.2012-1380. PubMed DOI
Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes: Differences in immunostimulation. Cell Death Dis. 2016;7(12):e2518. doi: 10.1038/cddis.2016.410. PubMed DOI PMC
Fellows R, Varga-Weisz P. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk. Mol. Metab. 2020;38:100925. doi: 10.1016/j.molmet.2019.12.005. PubMed DOI PMC
Wu SE, Hashimoto-Hill S, Woo V, et al. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature. 2020;586(7827):108–112. doi: 10.1038/s41586-020-2604-2. PubMed DOI PMC
Kuang Z, Wang Y, Li Y, et al. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science. 2019;365(6460):1428–1434. doi: 10.1126/science.aaw3134. PubMed DOI PMC
Rosser EC, de Gruijter NM, Matei DE. Mini-review: Gut-microbiota and the sex-bias in autoimmunity—Lessons learnt from animal models. Front. Med. 2022;9:910561. doi: 10.3389/fmed.2022.910561. PubMed DOI PMC
Wang B, Kong Q, Li X, et al. A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients. 2020;12(10):3197. doi: 10.3390/nu12103197. PubMed DOI PMC
Xiao L, Sonne SB, Feng Q, et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome. 2017;5(1):43. doi: 10.1186/s40168-017-0258-6. PubMed DOI PMC
Stojanov S, Berlec A, Strukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1715. doi: 10.3390/microorganisms8111715. PubMed DOI PMC
Cedeno RJ, Nakauka-Ddamba A, Yousefi M, et al. The histone variant macroH2A confers functional robustness to the intestinal stem cell compartment. PLoS One. 2017;12(9):e0185196. doi: 10.1371/journal.pone.0185196. PubMed DOI PMC
Borghesan M, Fusilli C, Rappa F, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy-induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 2016;76(3):594–606. doi: 10.1158/0008-5472.CAN-15-1336. PubMed DOI PMC
Changolkar LN, Singh G, Cui K, et al. Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol. Cell Biol. 2010;30(23):5473–5483. doi: 10.1128/MCB.00518-10. PubMed DOI PMC
Dell’Orso S, Wang AH, Shih HY, et al. The histone variant MacroH2A1.2 is necessary for the activation of muscle enhancers and recruitment of the transcription factor Pbx1. Cell Rep. 2016;14(5):1156–1168. doi: 10.1016/j.celrep.2015.12.103. PubMed DOI PMC
Costanzi C, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature. 1998;393(6685):599–601. doi: 10.1038/31275. PubMed DOI
Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 1999;147(7):1399–1408. doi: 10.1083/jcb.147.7.1399. PubMed DOI PMC
Mietton F, Sengupta AK, Molla A, et al. Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol. Cell Biol. 2009;29(1):150–156. doi: 10.1128/MCB.00997-08. PubMed DOI PMC
Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J. Cell Biol. 2000;150(5):1189–1198. doi: 10.1083/jcb.150.5.1189. PubMed DOI PMC
Sebastian R, Hosogane EK, Sun EG, et al. Epigenetic regulation of DNA repair pathway choice by MacroH2A1 splice variants ensures genome stability. Mol. Cell. 2020;79(5):836–845. doi: 10.1016/j.molcel.2020.06.028. PubMed DOI PMC
Rasmussen TP, Huang T, Mastrangelo MA, Loring J, Panning B, Jaenisch R. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res. 1999;27(18):3685–3689. doi: 10.1093/nar/27.18.3685. PubMed DOI PMC
Chen X, McClusky R, Chen J, et al. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet. 2012;8(5):e1002709. doi: 10.1371/journal.pgen.1002709. PubMed DOI PMC
Reue K. Sex differences in obesity: X chromosome dosage as a risk factor for increased food intake, adiposity and co-morbidities. Physiol. Behav. 2017;176:174–182. doi: 10.1016/j.physbeh.2017.02.040. PubMed DOI PMC
Zore T, Palafox M, Reue K. Sex differences in obesity, lipid metabolism, and inflammation-A role for the sex chromosomes? Mol. Metab. 2018;15:35–44. doi: 10.1016/j.molmet.2018.04.003. PubMed DOI PMC
Mousavi MJ, Mahmoudi M, Ghotloo S. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol. Med. 2020;26(1):127. doi: 10.1186/s10020-020-00256-1. PubMed DOI PMC
Lo Re O, Fusilli C, Rappa F, et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2018;67(2):636–650. doi: 10.1002/hep.29519. PubMed DOI
Giallongo S, Lo Re O, Vinciguerra M. Macro histone variants: Emerging rheostats of gastrointestinal cancers. Cancers. 2019;11(5):676. doi: 10.3390/cancers11050676. PubMed DOI PMC
Hsu CJ, Meers O, Buschbeck M, Heidel FH. The role of MacroH2A histone variants in cancer. Cancers. 2021;13(12):3003. doi: 10.3390/cancers13123003. PubMed DOI PMC
O'Sullivan J, Lysaght J, Donohoe CL, Reynolds JV. Obesity and gastrointestinal cancer: The interrelationship of adipose and tumour microenvironments. Nat. Rev. Gastroenterol. Hepatol. 2018;15(11):699–714. doi: 10.1038/s41575-018-0069-7. PubMed DOI
Gupta A, Das A, Majumder K, et al. Obesity is independently associated with increased risk of hepatocellular cancer-related mortality: A systematic review and meta-analysis. Am. J. Clin. Oncol. 2018;41(9):874–881. doi: 10.1097/COC.0000000000000388. PubMed DOI PMC
Zheng D, Trynda J, Williams C, et al. Sexual dimorphism in the incidence of human cancers. BMC Cancer. 2019;19(1):684. doi: 10.1186/s12885-019-5902-z. PubMed DOI PMC