Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28690599
PubMed Central
PMC5479914
DOI
10.3389/fmicb.2017.01157
Knihovny.cz E-zdroje
- Klíčová slova
- adaptive immune system, gut microbiota, inflammation, obesity,
- Publikační typ
- časopisecké články MeSH
A mutual interplay exists between adaptive immune system and gut microbiota. Altered gut microbial ecosystems are associated with the metabolic syndrome, occurring in most obese individuals. However, it is unknown why 10-25% of obese individuals are metabolically healthy, while normal weight individuals can develop inflammation and atherosclerosis. We modeled these specific metabolic conditions in mice fed with a chow diet, an obesogenic but not inflammatory diet-mimicking healthy obesity, or Paigen diet-mimicking inflammation in the lean subjects. We analyzed a range of markers and cytokines in the aorta, heart, abdominal fat, liver and spleen, and metagenomics analyses were performed on stool samples. T lymphocytes infiltration was found in the aorta and in the liver upon both diets, however a significant increase in CD4+ and CD8+ cells was found only in the heart of Paigen-fed animals, paralleled by increased expression of IL-1, IL-4, IL-6, IL-17, and IFN-γ. Bacteroidia, Deltaproteobacteria, and Verrucomicrobia dominated in mice fed Paigen diet, while Gammaproteobacteria, Delataproteobacteria, and Erysipelotrichia were more abundant in obese mice. Mice reproducing human metabolic exceptions displayed gut microbiota phylogenetically distinct from normal diet-fed mice, and correlated with specific adaptive immune responses. Diet composition thus has a pervasive role in co-regulating adaptive immunity and the diversity of microbiota.
Department of Primary Care and Population Health University College LondonLondon United Kingdom
Gastroenterology Unit IRCCS Casa Sollievo della Sofferenza HospitalSan Giovanni Rotondo Italy
Zobrazit více v PubMed
Alberti K. G., Zimmet P., Shaw J. (2005). Group IDFETFC. The metabolic syndrome–a new worldwide definition. Lancet 366, 1059–1062. 10.1016/S0140-6736(05)67402-8 PubMed DOI
Arinell K., Sahdo B., Evans A. L., Arnemo J. M., Baandrup U., Frobert O. (2012). Brown bears ( PubMed DOI PMC
Bartman C., Chong A. S., Alegre M. L. (2015). The influence of the microbiota on the immune response to transplantation. Curr. Opin. Organ Transplant. 20, 1–7. 10.1097/MOT.0000000000000150 PubMed DOI PMC
Belkaid Y., Hand T. W. (2014). Role of the microbiota in immunity and inflammation. Cell 157, 121–141. 10.1016/j.cell.2014.03.011 PubMed DOI PMC
Benegiamo G., Mazzoccoli G., Cappello F., Rappa F., Scibetta N., Oben J., et al. (2013). Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes. PLoS ONE 8:e60527. 10.1371/journal.pone.0060527 PubMed DOI PMC
Cederroth C. R., Vinciguerra M., Gjinovci A., Kuhne F., Klein M., Cederroth M., et al. (2008). Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism. Diabetes 57, 1176–1185. 10.2337/db07-0630 PubMed DOI
Clarke G., Stilling R. M., Kennedy P. J., Stanton C., Cryan J. F., Dinan T. G. (2014). Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238. 10.1210/me.2014-1108 PubMed DOI PMC
Cox A. J., West N. P., Cripps A. W. (2015). Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 3, 207–215. 10.1016/S2213-8587(14)70134-2 PubMed DOI
David L. A., Maurice C. F., Carmody R. N., Gootenberg D. B., Button J. E., Wolfe B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563. 10.1038/nature12820 PubMed DOI PMC
De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J. B., Massart S., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107, 14691–14696. 10.1073/pnas.1005963107 PubMed DOI PMC
Despres J. P., Lemieux I., Bergeron J., Pibarot P., Mathieu P., Larose E., et al. (2008). Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 28, 1039–1049. 10.1161/ATVBAHA.107.159228 PubMed DOI
Dhana K., Koolhaas C. M., van Rossum E. F., Ikram M. A., Hofman A., Kavousi M., et al. (2016). Metabolically healthy obesity and the risk of cardiovascular disease in the elderly population. PLoS ONE 11:e0154273. 10.1371/journal.pone.0154273 PubMed DOI PMC
Flegal K. M., Kit B. K., Orpana H., Graubard B. I. (2013). Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82. 10.1001/jama.2012.113905 PubMed DOI PMC
Gaboriau-Routhiau V., Rakotobe S., Lecuyer E., Mulder I., Lan A., Bridonneau C., et al. (2009). The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689. 10.1016/j.immuni.2009.08.020 PubMed DOI
Gallego-Colon E., Sampson R. D., Sattler S., Schneider M. D., Rosenthal N., Tonkin J. (2015). Cardiac-restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction. Mediators Inflamm. 2015:484357. 10.1155/2015/484357 PubMed DOI PMC
Getz G. S., Reardon C. A. (2006). Diet and murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 242–249. 10.1161/01.ATV.0000201071.49029.17 PubMed DOI
Heidt T., Courties G., Dutta P., Sager H. B., Sebas M., Iwamoto Y., et al. (2014). Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 115, 284–295. 10.1161/CIRCRESAHA.115.303567 PubMed DOI PMC
Honda K., Littman D. R. (2016). The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84. 10.1038/nature18848 PubMed DOI
Hunter C. A., Jones S. A. (2015). IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457. 10.1038/ni.3153 PubMed DOI
Ivanov I. I., Frutos Rde L., Manel N., Yoshinaga K., Rifkin D. B., Sartor R. B., et al. (2008). Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349. 10.1016/j.chom.2008.09.009 PubMed DOI PMC
Jonasson L., Holm J., Skalli O., Bondjers G., Hansson G. K. (1986). Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6, 131–138. 10.1161/01.ATV.6.2.131 PubMed DOI
Jonsson A. L., Backhed F. (2017). Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 14, 79–87. 10.1038/nrcardio.2016.183 PubMed DOI
Karelis A. D. (2008). Metabolically healthy but obese individuals. Lancet 372, 1281–1283. 10.1016/S0140-6736(08)61531-7 PubMed DOI
Karlsson F. H., Fak F., Nookaew I., Tremaroli V., Fagerberg B., Petranovic D., et al. (2012). Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3:1245. 10.1038/ncomms2266 PubMed DOI PMC
Kato L. M., Kawamoto S., Maruya M., Fagarasan S. (2014). The role of the adaptive immune system in regulation of gut microbiota. Immunol. Rev. 260, 67–75. 10.1111/imr.12185 PubMed DOI
Kleiner D. E., Brunt E. M., Van Natta M., Behling C., Contos M. J., Cummings O. W., et al. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321. 10.1002/hep.20701 PubMed DOI
Kramer C. K., Zinman B., Retnakaran R. (2013). Are metabolically healthy overweight and obesity benign conditions?: a systematic review and meta-analysis. Ann. Intern. Med. 159, 758–769. 10.7326/0003-4819-159-11-201312030-00008 PubMed DOI
Larsen N., Vogensen F. K., van den Berg F. W., Nielsen D. S., Andreasen A. S., Pedersen B. K., et al. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085. 10.1371/journal.pone.0009085 PubMed DOI PMC
Levy M., Thaiss C. A., Elinav E. (2015). Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. Genome Med. 7:120. 10.1186/s13073-015-0249-9 PubMed DOI PMC
Lichtman A. H. (2013). Adaptive immunity and atherosclerosis: mouse tales in the AJP. Am. J. Pathol. 182, 5–9. 10.1016/j.ajpath.2012.10.006 PubMed DOI PMC
Lluch J., Servant F., Paisse S., Valle C., Valiere S., Kuchly C., et al. (2015). The Characterization of novel tissue microbiota using an optimized 16S metagenomic sequencing pipeline. PLoS ONE 10:e0142334. 10.1371/journal.pone.0142334 PubMed DOI PMC
Marchesi J. R., Adams D. H., Fava F., Hermes G. D., Hirschfield G. M., Hold G., et al. (2016). The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339. 10.1136/gutjnl-2015-309990 PubMed DOI PMC
Million M., Lagier J. C., Yahav D., Paul M. (2013). Gut bacterial microbiota and obesity. Clin. Microbiol. Infect. 19, 305–313. 10.1111/1469-0691.12172 PubMed DOI
Munoz-Garach A., Cornejo-Pareja I., Tinahones F. J. (2016). Does metabolically healthy obesity exist? Nutrients 8:E320. 10.3390/nu8060320 PubMed DOI PMC
Nishimura S., Manabe I., Nagasaki M., Eto K., Yamashita H., Ohsugi M., et al. (2009). CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920. 10.1038/nm.1964 PubMed DOI
Paisse S., Valle C., Servant F., Courtney M., Burcelin R., Amar J., et al. (2016). Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 56, 1138–1147. 10.1111/trf.13477 PubMed DOI
Pazienza V., Panebianco C., Rappa F., Memoli D., Borghesan M., Cannito S., et al. (2016). Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin 9:45. 10.1186/s13072-016-0098-9 PubMed DOI PMC
Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60. 10.1038/nature11450 PubMed DOI
Sell H., Habich C., Eckel J. (2012). Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8, 709–716. 10.1038/nrendo.2012.114 PubMed DOI
Serino M., Luche E., Gres S., Baylac A., Berge M., Cenac C., et al. (2012). Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61, 543–553. 10.1136/gutjnl-2011-301012 PubMed DOI PMC
Shen L., Chng M. H., Alonso M. N., Yuan R., Winer D. A., Engleman E. G. (2015). B-1a lymphocytes attenuate insulin resistance. Diabetes 64, 593–603. 10.2337/db14-0554 PubMed DOI PMC
Shin N. R., Whon T. W., Bae J. W. (2015). Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503. 10.1016/j.tibtech.2015.06.011 PubMed DOI
Sommer F., Stahlman M., Ilkayeva O., Arnemo J. M., Kindberg J., Josefsson J., et al. (2016). The gut microbiota modulates energy metabolism in the hibernating brown bear PubMed DOI
Taleb S., Tedgui A., Mallat Z. (2015). IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler. Thromb. Vasc. Biol. 35, 258–264. 10.1161/ATVBAHA.114.303567 PubMed DOI
Thaiss C. A., Levy M., Suez J., Elinav E. (2014). The interplay between the innate immune system and the microbiota. Curr. Opin. Immunol. 26, 41–48. 10.1016/j.coi.2013.10.016 PubMed DOI
Van Tassell B. W., Toldo S., Mezzaroma E., Abbate A. (2013). Targeting interleukin-1 in heart disease. Circulation 128, 1910–1923. 10.1161/CIRCULATIONAHA.113.003199 PubMed DOI PMC
Vergnes L., Phan J., Strauss M., Tafuri S., Reue K. (2003). Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J. Biol. Chem. 278, 42774–42784. 10.1074/jbc.M306022200 PubMed DOI
Wang Z., Klipfell E., Bennett B. J., Koeth R., Levison B. S., Dugar B., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63. 10.1038/nature09922 PubMed DOI PMC
Winer S., Paltser G., Chan Y., Tsui H., Engleman E., Winer D., et al. (2009). Obesity predisposes to Th17 bias. Eur. J. Immunol. 39, 2629–2635. 10.1002/eji.200838893 PubMed DOI
Zarzycka B., Nicolaes G. A., Lutgens E. (2015). Targeting the adaptive immune system: new strategies in the treatment of atherosclerosis. Expert Rev. Clin. Pharmacol. 8, 297–313. 10.1586/17512433.2015.1025052 PubMed DOI
Zhang H., Luo X. M. (2015). Control of commensal microbiota by the adaptive immune system. Gut Microbes 6, 156–160. 10.1080/19490976.2015.1031946 PubMed DOI PMC
Zupancic M. L., Cantarel B. L., Liu Z., Drabek E. F., Ryan K. A., Cirimotich S., et al. (2012). Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome. PLoS ONE 7:e43052. 10.1371/journal.pone.0043052 PubMed DOI PMC
Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice