SHR-Zbtb16 minimal congenic strain reveals nutrigenetic interaction between Zbtb16 and high-sucrose diet
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32469238
PubMed Central
PMC8648307
DOI
10.33549/physiolres.934423
PII: 934423
Knihovny.cz E-zdroje
- MeSH
- cholesterol metabolismus MeSH
- hypertenze genetika metabolismus MeSH
- konzumní sacharóza metabolismus MeSH
- krysa rodu Rattus MeSH
- metabolický syndrom etiologie metabolismus patologie MeSH
- modely nemocí na zvířatech MeSH
- nutrigenomika metody MeSH
- potkani inbrední SHR MeSH
- protein promyelocytické leukemie s motivem zinkového prstu genetika metabolismus MeSH
- sladidla metabolismus MeSH
- těhotenství MeSH
- triglyceridy metabolismus MeSH
- zvířata kongenní MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- konzumní sacharóza MeSH
- protein promyelocytické leukemie s motivem zinkového prstu MeSH
- sladidla MeSH
- triglyceridy MeSH
- ZBTB16 protein, rat MeSH Prohlížeč
Both prenatal and postnatal excessive consumption of dietary sucrose or fructose was shown to be detrimental to health and contributing to pathogenesis of metabolic syndrome. Our knowledge of genetic determinants of individual sensitivity to sucrose-driven metabolic effects is limited. In this study, we have tested the hypothesis that a variation of metabolic syndrome-related gene, Zbtb16 (Zinc Finger and BTB Domain Containing 16 will affect the reaction to high-sucrose diet (HSD) content in "matched" nutritional exposition settings, i.e. maternal HSD with re-exposition to HSD in adulthood vs. standard diet. We compared metabolic profiles of adult males of spontaneously hypertensive rats (SHR) and a single-gene, minimal congenic strain SHR-Zbtb16 fed either standard diet or exposed to HSD prenatally throughout gestation and nursing and again at the age of 6 months for the period of 14 days. HSD exposition led to increased adiposity in both strains and decrease of glucose tolerance and cholesterol (Ch) concentrations in majority of low-density lipoprotein (LDL) particle classes and in very large and large high-density lipoprotein (HDL) in SHR-Zbtb16 male offspring. There was a similar pattern of HSD-induced increase of triacylglycerols in chylomicrons and very low-density lipoprotein (VLDL) of both strains, though the increase of (triacylglycerol) TAG content was clearly more pronounced in SHR. We observed significant STRAIN*DIET interactions for the smallest LDL particles as their TAG content decreased in SHR-Zbtb16 and did not change in SHR in response to HSD. In summary, we provide evidence of nutrigenetic interaction between Zbtb16 and HSD in context of pathogenesis of metabolic syndrome.
Zobrazit více v PubMed
BENDLOVA B, VANKOVA M, HILL M, VACINOVA G, LUKASOVA P, VEJRAZKOVA D, SEDOVA L, SEDA O, VCELAK J. ZBTB16 gene variability influences obesity-related parameters and serum lipid levels in Czech adults. Physiol Res. 2017;66(Suppl 3):S425–S431. doi: 10.33549/physiolres.933731. PubMed DOI
BURESOVA M, ZIDEK V, MUSILOVA A, SIMAKOVA M, FUCIKOVA A, BILA V, KREN V, KAZDOVA L, Di NICOLANTONIO R, PRAVENEC M. Genetic relationship between placental and fetal weights and markers of the metabolic syndrome in rat recombinant inbred strains. Physiol Genomics. 2006;26:226–231. doi: 10.1152/physiolgenomics.00056.2006. PubMed DOI
CAHOVA M, VAVRINKOVA H, KAZDOVA L. Glucose-fatty acid interaction in skeletal muscle and adipose tissue in insulin resistance. Physiol Res. 2007;56:1–15. PubMed
DEHGHAN M, MENTE A, ZHANG X, SWAMINATHAN S, LI W, MOHAN V, IQBAL R, KUMAR R, WENTZEL-VILJOEN E, ROSENGREN A, AMMA LI, AVEZUM A, CHIFAMBA J, DIAZ R, KHATIB R, LEAR S, LOPEZ-JARAMILLO P, LIU X, GUPTA R, MOHAMMADIFARD N, GAO N, OGUZ A, RAMLI AS, SERON P, SUN Y, SZUBA A, TSOLEKILE L, WIELGOSZ A, YUSUF R, HUSSEIN YUSUFALI A, TEO KK, RANGARAJAN S, DAGENAIS G, BANGDIWALA SI, ISLAM S, ANAND SS, YUSUF S PROSPECTIVE URBAN RURAL EPIDEMIOLOGY STUDY I. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017;390:2050–2062. doi: 10.1093/ajcn/nqz348. PubMed DOI
FABIANI R, NALDINI G, CHIAVARINI M. Dietary patterns and metabolic syndrome in adult subjects: a systematic review and meta-analysis. Nutrients. 2019;11:2056. doi: 10.3390/nu11092056. PubMed DOI PMC
FLEMING TP, WATKINS AJ, VELAZQUEZ MA, MATHERS JC, PRENTICE AM, STEPHENSON J, BARKER M, SAFFERY R, YAJNIK CS, ECKERT JJ, HANSON MA, FORRESTER T, GLUCKMAN PD, GODFREY KM. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391:1842–1852. doi: 10.1016/s0140-6736(18)30312-x. PubMed DOI PMC
HANSON MA, GLUCKMAN PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014;94:1027–76. doi: 10.1152/physrev.00029.2013. PubMed DOI PMC
HOFFMAN DJ, REYNOLDS RM, HARDY DB. Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr Rev. 2017;75:951–970. doi: 10.1093/nutrit/nux053. PubMed DOI
CHEN S, QIAN J, SHI X, GAO T, LIANG T, LIU C. Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol Endocrinol. 2014;28:1987–1998. doi: 10.1210/me.2014-1164. PubMed DOI PMC
JAMEEL F, PHANG M, WOOD LG, GARG ML. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. Lipids Health Dis. 2014;13:195. doi: 10.1186/1476-511x-13-195. PubMed DOI PMC
KHAN TA, SIEVENPIPER JL. Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur J Nutr. 2016;55:25–43. doi: 10.1007/s00394-016-1345-3. PubMed DOI PMC
KRUPKOVA M, LISKA F, KAZDOVA L, SEDOVA L, KABELOVA A, KRENOVA D, KREN V, SEDA O. Single-Gene congenic strain reveals the effect of Zbtb16 on dexamethasone-induced insulin resistance. Front Endocrinol (Lausanne) 2018;9:185. doi: 10.3389/fendo.2018.00185. PubMed DOI PMC
KUNES J, VANECKOVA I, MIKULASKOVA B, BEHULIAK M, MALETINSKA L, ZICHA J. Epigenetics and a new look on metabolic syndrome. Physiol Res. 2015;64:611–620. doi: 10.33549/physiolres.933174. PubMed DOI
KUNES J, ZICHA J. Developmental windows and environment as important factors in the expression of genetic information: a cardiovascular physiologist’s view. Clin Sci (Lond) 2006;111:295–305. doi: 10.1042/cs20050271. PubMed DOI
LISKA F, LANDA V, ZIDEK V, MLEJNEK P, SILHAVY J, SIMAKOVA M, STRNAD H, TRNOVSKA J, SKOP V, KAZDOVA L, STARKER CG, VOYTAS DF, IZSVAK Z, MANCINI M, SEDA O, KREN V, PRAVENEC M. Downregulation of Plzf gene ameliorates metabolic and cardiac traits in the spontaneously hypertensive rat. Hypertension. 2017;69:1084–1091. doi: 10.1161/hypertensionaha.116.08798. PubMed DOI
LISKA F, MANCINI M, KRUPKOVA M, CHYLIKOVA B, KRENOVA D, SEDA O, SILHAVY J, MLEJNEK P, LANDA V, ZIDEK V, D’AMATI G, PRAVENEC M, KREN V. Plzf as a candidate gene predisposing the spontaneously hypertensive rat to hypertension, left ventricular hypertrophy, and interstitial fibrosis. Am J Hypertens. 2014;27:99–106. doi: 10.1093/ajh/hpt156. PubMed DOI
NICHOLAS LM, OZANNE SE. Early life programming in mice by maternal overnutrition: mechanistic insights and interventional approaches. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180116. doi: 10.1098/rstb.2018.0116. PubMed DOI PMC
PAUSOVA Z, PAUS T, SEDOVA L, BERUBE J. Prenatal exposure to nicotine modifies kidney weight and blood pressure in genetically susceptible rats: a case of gene-environment interaction. Kidney Int. 2003;64:829–835. doi: 10.1046/j.1523-1755.2003.00172.x. PubMed DOI
PLAISIER CL, BENNETT BJ, HE A, GUAN B, LUSIS AJ, REUE K, VERGNES L. Zbtb16 has a role in brown adipocyte bioenergetics. Nutr Diabetes. 2012;2:e46. doi: 10.1038/nutd.2012.21. PubMed DOI PMC
SEDA O, KAZDOVA L, KRENOVA D, KREN V. Rosiglitazone improves insulin resistance, lipid profile and promotes adiposity in a genetic model of metabolic syndrome X. Folia Biol (Praha) 2002;48:237–241. PubMed
SEDA O, LISKA F, PRAVENEC M, VERNEROVA Z, KAZDOVA L, KRENOVA D, ZIDEK V, SEDOVA L, KRUPKOVA M, KREN V. Connexin 50 mutation lowers blood pressure in spontaneously hypertensive rat. Physiol Res. 2017a;66:15–28. doi: 10.33549/physiolres.933432. PubMed DOI
SEDA O, SEDOVA L, VCELAK J, VANKOVA M, LISKA F, BENDLOVA B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res. 2017b;66(Suppl 3):S357–S365. doi: 10.33549/physiolres.933730. PubMed DOI
SEDOVA L, KAZDOVA L, SEDA O, KRENOVA D, KREN V. Rat inbred PD/cub strain as a model of dyslipidemia and insulin resistance. Folia Biol (Praha) 2000;46:99–106. doi: 10.2217/pgs.09.113. PubMed DOI
SEDOVA L, SEDA O, KAZDOVA L, CHYLIKOVA B, HAMET P, TREMBLAY J, KREN V, KRENOVA D. Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. Am J Physiol Endocrinol Metab. 2007;292:E1318–E1324. doi: 10.1152/ajpendo.00526.2006. PubMed DOI
SKOLNIKOVA E, SEDOVA L, KRENOVA D, KREN V, SEDA O. Mutation in ZBTB16 gene plays a role in lipid profiles of pregnant rats and their offspring after high-sucrose diet feeding. Atherosclerosis. 2017;263:e36–e37. doi: 10.1016/j.atherosclerosis.2017.06.136. DOI
USUI S, HARA Y, HOSAKI S, OKAZAKI M. A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res. 2002;43:805–814. PubMed
WEI S, ZHANG M, ZHENG Y, YAN P. ZBTB16 overexpression enhances white adipogenesis and induces brown-like adipocyte formation of bovine white intramuscular preadipocytes. Cell Physiol Biochem. 2018;48:2528–2538. doi: 10.1159/000492697. PubMed DOI
Parental overnutrition by carbohydrates in developmental origins of metabolic syndrome