Single-Gene Congenic Strain Reveals the Effect of Zbtb16 on Dexamethasone-Induced Insulin Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29731739
PubMed Central
PMC5919955
DOI
10.3389/fendo.2018.00185
Knihovny.cz E-zdroje
- Klíčová slova
- ZBTB16, congenic strain, dexamethasone, insulin resistance, pharmacogenetics and pharmacogenomics, rat models,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases. Both their therapeutic and adverse effects display significant interindividual variation, partially attributable to genetic factors. We have previously isolated a seven-gene region of rat chromosome 8 sensitizing to dexamethasone (DEX)-induced dyslipidemia and insulin resistance (IR) of skeletal muscle. Using two newly derived congenic strains, we aimed to investigate the effect of one of the prime candidates for this pharmacogenetic interaction, the Zbtb16 gene. METHODS: Adult male rats of SHR-Lx.PD5PD-Zbtb16 (n = 9) and SHR-Lx.PD5SHR-Zbtb16 (n = 8) were fed standard diet (STD) and subsequently treated with DEX in drinking water (2.6 µg/ml) for 3 days. The morphometric and metabolic profiles of both strains including oral glucose tolerance test, triacylglycerols (TGs), free fatty acids, insulin, and C-reactive protein levels were assessed before and after the DEX treatment. Insulin sensitivity of skeletal muscle and visceral adipose tissue was determined by incorporation of radioactively labeled glucose. RESULTS: The differential segment of SHR-Lx.PD5SHR-Zbtb16 rat strain spans 563 kb and contains six genes: Htr3a, Htr3b, Usp28, Zw10, Tmprss5, and part of Drd2. The SHR-Lx.PD5PD-Zbtb16 minimal congenic strain contains only Zbtb16 gene on SHR genomic background and its differential segment spans 254 kb. Total body weight was significantly increased in SHR-Lx.PD5PD-Zbtb16 strain compared with SHR-Lx.PD5SHR-Zbtb16 , however, no differences in the weights of adipose tissue depots were observed. While STD-fed rats of both strains did not show major differences in their metabolic profiles, after DEX treatment the SHR-Lx.PD5PD-Zbtb16 congenic strain showed increased levels of TGs, glucose, and blunted inhibition of lipolysis by insulin. Both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were significantly reduced in SHR-Lx.PD5PD-Zbtb16 strain, but the insulin sensitivity of adipose tissue was comparable between the two strains. CONCLUSION: The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.
Zobrazit více v PubMed
Vandewalle J, Luypaert A, De Bosscher K, Libert C. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab (2018) 29(1):42–54.10.1016/j.tem.2017.10.010 PubMed DOI
Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet (2009) 373(9678):1905–17.10.1016/S0140-6736(09)60326-3 PubMed DOI
Hampl R, Vondra K. Peripheral sensitivity to steroids revisited. Physiol Res (2017) 66(Suppl 3):S295–303. PubMed
Brotman DJ, Girod JP, Garcia MJ, Patel JV, Gupta M, Posch A, et al. Effects of short-term glucocorticoids on cardiovascular biomarkers. J Clin Endocrinol Metab (2005) 90(6):3202–8.10.1210/jc.2004-2379 PubMed DOI
Cuzzoni E, De Iudicibus S, Franca R, Stocco G, Lucafo M, Pelin M, et al. Glucocorticoid pharmacogenetics in pediatric idiopathic nephrotic syndrome. Pharmacogenomics (2015) 16(14):1631–48.10.2217/pgs.15.101 PubMed DOI
Jackson RK, Irving JA, Veal GJ. Personalization of dexamethasone therapy in childhood acute lymphoblastic leukaemia. Br J Haematol (2016) 173(1):13–24.10.1111/bjh.13924 PubMed DOI
Nicolaides NC, Charmandari E. Novel insights into the molecular mechanisms underlying generalized glucocorticoid resistance and hypersensitivity syndromes. Hormones (Athens) (2017) 16(2):124–38.10.14310/horm.2002.1728 PubMed DOI
Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med (2011) 365(13):1173–83.10.1056/NEJMoa0911353 PubMed DOI PMC
Ramsey LB, Pounds S, Cheng C, Cao X, Yang W, Smith C, et al. Genetics of pleiotropic effects of dexamethasone. Pharmacogenet Genomics (2017) 27(8):294–302.10.1097/FPC.0000000000000293 PubMed DOI PMC
Seda O, Liska F, Krenova D, Kazdova L, Sedova L, Zima T, et al. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol Genomics (2005) 21(2):243–52.10.1152/physiolgenomics.00230.2004 PubMed DOI
Krupkova M, Sedova L, Liska F, Krenova D, Kren V, Seda O. Pharmacogenetic interaction between dexamethasone and Cd36-deficient segment of spontaneously hypertensive rat chromosome 4 affects triacylglycerol and cholesterol distribution into lipoprotein fractions. Lipids Health Dis (2010) 9:38.10.1186/1476-511X-9-38 PubMed DOI PMC
Seda O, Liska F, Sedova L, Kazdova L, Krenova D, Kren V. A 14-gene region of rat chromosome 8 in SHR-derived polydactylous congenic substrain affects muscle-specific insulin resistance, dyslipidaemia and visceral adiposity. Folia Biol (Praha) (2005) 51(3):53–61. PubMed
Doris PA. Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol Genomics (2017) 49(11):601–17.10.1152/physiolgenomics.00065.2017 PubMed DOI PMC
Pravenec M, Kren V, Landa V, Mlejnek P, Musilova A, Silhavy J, et al. Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res (2014) 63(Suppl 1):S1–8. PubMed
Sedova L, Kazdova L, Seda O, Krenova D, Kren V. Rat inbred PD/cub strain as a model of dyslipidemia and insulin resistance. Folia Biol (Praha) (2000) 46(3):99–106. PubMed
Sedova L, Seda O, Krenova D, Kren V, Kazdova L. Isotretinoin and fenofibrate induce adiposity with distinct effect on metabolic profile in a rat model of the insulin resistance syndrome. Int J Obes Relat Metab Disord (2004) 28(5):719–25.10.1038/sj.ijo.0802613 PubMed DOI
Sedova L, Seda O, Kazdova L, Chylikova B, Hamet P, Tremblay J, et al. Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. Am J Physiol Endocrinol Metab (2007) 292(5):E1318–24.10.1152/ajpendo.00526.2006 PubMed DOI
Seda O, Sedova L, Oliyarnyk O, Kazdova L, Krenova D, Corbeil G, et al. Pharmacogenomics of metabolic effects of rosiglitazone. Pharmacogenomics (2008) 9(2):141–55.10.2217/14622416.9.2.141 PubMed DOI
Liska F, Mancini M, Krupkova M, Chylikova B, Krenova D, Seda O, et al. Plzf as a candidate gene predisposing the spontaneously hypertensive rat to hypertension, left ventricular hypertrophy, and interstitial fibrosis. Am J Hypertens (2014) 27(1):99–106.10.1093/ajh/hpt156 PubMed DOI
Seda O, Sedova L, Vcelak J, Vankova M, Liska F, Bendlova B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res (2017) 66(Suppl 3):S357–65. PubMed
Shimoyama M, Smith JR, Bryda E, Kuramoto T, Saba L, Dwinell M. Rat genome and model resources. ILAR J (2017) 58(1):42–58.10.1093/ilar/ilw041 PubMed DOI PMC
Sedova L, Liska F, Krenova D, Kazdova L, Tremblay J, Krupkova M, et al. CD36-deficient congenic strains show improved glucose tolerance and distinct shifts in metabolic and transcriptomic profiles. Heredity (Edinb) (2012) 109(1):63–70.10.1038/hdy.2012.14 PubMed DOI PMC
Sedova L, Pravenec M, Krenova D, Kazdova L, Zidek V, Krupkova M, et al. Isolation of a genomic region affecting most components of metabolic syndrome in a chromosome-16 congenic rat model. PLoS One (2016) 11(3):e0152708.10.1371/journal.pone.0152708 PubMed DOI PMC
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res (2012) 40(15):e115.10.1093/nar/gks596 PubMed DOI PMC
Wasim M, Mansha M, Kofler A, Awan AR, Babar ME, Kofler R. Promyelocytic leukemia zinc finger protein (PLZF) enhances glucocorticoid-induced apoptosis in leukemic cell line NALM6. Pak J Pharm Sci (2012) 25(3):617–21. PubMed
Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet (2004) 36(6):653–9.10.1038/ng1367 PubMed DOI
Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise review: balancing stem cell self-renewal and differentiation with PLZF. Stem Cells (2016) 34(2):277–87.10.1002/stem.2270 PubMed DOI
Maeda T. Regulation of hematopoietic development by ZBTB transcription factors. Int J Hematol (2016) 104(3):310–23.10.1007/s12185-016-2035-x PubMed DOI PMC
Barna M, Hawe N, Niswander L, Pandolfi PP. Plzf regulates limb and axial skeletal patterning. Nat Genet (2000) 25(2):166–72.10.1038/76014 PubMed DOI
Liska F, Snajdr P, Sedova L, Seda O, Chylikova B, Slamova P, et al. Deletion of a conserved noncoding sequence in Plzf intron leads to Plzf down-regulation in limb bud and polydactyly in the rat. Dev Dyn (2009) 238(3):673–84.10.1002/dvdy.21859 PubMed DOI
Plaisier CL, Bennett BJ, He A, Guan B, Lusis AJ, Reue K, et al. Zbtb16 has a role in brown adipocyte bioenergetics. Nutr Diabetes (2012) 2:e46.10.1038/nutd.2012.21 PubMed DOI PMC
Chen S, Qian J, Shi X, Gao T, Liang T, Liu C. Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol Endocrinol (2014) 28(12):1987–98.10.1210/me.2014-1164 PubMed DOI PMC
Weinstein SP, Paquin T, Pritsker A, Haber RS. Glucocorticoid-induced insulin resistance: dexamethasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin- and non-insulin-related stimuli. Diabetes (1995) 44(4):441–5.10.2337/diabetes.44.4.441 PubMed DOI
Buren J, Lai YC, Lundgren M, Eriksson JW, Jensen J. Insulin action and signalling in fat and muscle from dexamethasone-treated rats. Arch Biochem Biophys (2008) 474(1):91–101.10.1016/j.abb.2008.02.034 PubMed DOI
Morgan SA, Gathercole LL, Simonet C, Hassan-Smith ZK, Bujalska I, Guest P, et al. Regulation of lipid metabolism by glucocorticoids and 11beta-HSD1 in skeletal muscle. Endocrinology (2013) 154(7):2374–84.10.1210/en.2012-2214 PubMed DOI
Fahnenstich J, Nandy A, Milde-Langosch K, Schneider-Merck T, Walther N, Gellersen B. Promyelocytic leukaemia zinc finger protein (PLZF) is a glucocorticoid- and progesterone-induced transcription factor in human endometrial stromal cells and myometrial smooth muscle cells. Mol Hum Reprod (2003) 9(10):611–23.10.1093/molehr/gag080 PubMed DOI
Almon RR, Dubois DC, Jin JY, Jusko WJ. Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle. J Endocrinol (2005) 184(1):219–32.10.1677/joe.1.05953 PubMed DOI PMC
Kuo T, Harris CA, Wang JC. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol (2013) 380(1–2):79–88.10.1016/j.mce.2013.03.003 PubMed DOI PMC
Shimizu N, Maruyama T, Yoshikawa N, Matsumiya R, Ma Y, Ito N, et al. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling. Nat Commun (2015) 6:6693.10.1038/ncomms7693 PubMed DOI PMC
John K, Marino JS, Sanchez ER, Hinds TD, Jr. The glucocorticoid receptor: cause of or cure for obesity? Am J Physiol Endocrinol Metab (2016) 310(4):E249–57.10.1152/ajpendo.00478.2015 PubMed DOI PMC
Liska F, Landa V, Zidek V, Mlejnek P, Silhavy J, Simakova M, et al. Downregulation of Plzf gene ameliorates metabolic and cardiac traits in the spontaneously hypertensive rat. Hypertension (2017) 69(6):1084–91.10.1161/HYPERTENSIONAHA.116.08798 PubMed DOI
Kamagate A, Dong HH. FoxO1 integrates insulin signaling to VLDL production. Cell Cycle (2008) 7(20):3162–70.10.4161/cc.7.20.6882 PubMed DOI PMC
Oh CM, Namkung J, Go Y, Shong KE, Kim K, Kim H, et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun (2015) 6:6794.10.1038/ncomms7794 PubMed DOI PMC
Seda O, Tremblay J, Gaudet D, Brunelle PL, Gurau A, Merlo E, et al. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension (2008) 51(4):1156–62.10.1161/HYPERTENSIONAHA.107.105247 PubMed DOI
Bendlova B, Vankova M, Hill M, Vacinova G, Lukasova P, VejraZkova D, et al. ZBTB16 gene variability influences obesity-related parameters and serum lipid levels in Czech adults. Physiol Res (2017) 66(Suppl 3):S425–31. PubMed
Maternal High-Sucrose Diet Affects Phenotype Outcome in Adult Male Offspring: Role of Zbtb16