Quercetin supplementation alters adipose tissue and hepatic transcriptomes and ameliorates adiposity, dyslipidemia, and glucose intolerance in adult male rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36245490
PubMed Central
PMC9558266
DOI
10.3389/fnut.2022.952065
Knihovny.cz E-zdroje
- Klíčová slova
- glucose intolerance, insulin, metabolic syndrome, quercetin, retroperitoneal fat, triglycerides,
- Publikační typ
- časopisecké články MeSH
Quercetin, a flavonoid present in many fruits and vegetables, exhibits beneficial effects toward abnormalities related to metabolic syndrome. In this study, to further investigate metabolic and transcriptomic responses to quercetin supplementation, we used a genetic model of metabolic syndrome. Adult male rats of the PD/Cub strain were fed either a high-sucrose diet (HSD; control PD rats) or HSD fortified with quercetin (10 g quercetin/kg diet; PD-Q rats). Morphometric and metabolic parameters, along with transcriptomic profiles of the liver and retroperitoneal fat, were assessed. The relative weights of epididymal and retroperitoneal fat were significantly decreased in quercetin-treated animals. Furthermore, a smaller area under the glycemic curve along with a decreased level of fasting insulin were detected in PD-Q rats. While no changes in total cholesterol levels were observed, the overall level of triglycerides decreased in the serum and the liver of the PD-Q rats. The transcriptomic profile of the liver and the adipose tissue corroborated the metabolic and morphometric findings, revealing the pattern consistent with insulin-sensitizing changes, with major regulator nodes being Pparg, Adipoq, Nos2, and Mir378. In conclusion, quercetin supplementation improves abnormalities related to metabolic syndrome, namely adiposity, dyslipidemia and glucose intolerance.
Zobrazit více v PubMed
Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res. (2017) 183:57–70. 10.1016/j.trsl.2017.01.001 PubMed DOI PMC
Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. (2018) 42:S10–5. 10.1016/j.jcjd.2017.10.003 PubMed DOI
Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. (2017) 11:215–25. 10.1177/1753944717711379 PubMed DOI PMC
Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. (2014) 220:T1–23. 10.1530/joe-13-0327 PubMed DOI PMC
Grundy SM. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur J Clin Invest. (2015) 45:1209–17. 10.1111/eci.12519 PubMed DOI PMC
McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. (2018) 36:14–20. 10.1016/j.clindermatol.2017.09.004 PubMed DOI
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. (2019) 129:3990–4000. 10.1172/jci129187 PubMed DOI PMC
Scholze J, Alegria E, Ferri C, Langham S, Stevens W, Jeffries D, et al. Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model. BMC Public Health. (2010) 10:529. 10.1186/1471-2458-10-529 PubMed DOI PMC
Hirode G, Wong RJ. Trends in the prevalence of metabolic syndrome in the united states, 2011-2016. JAMA. (2020) 323:2526–8. 10.1001/jama.2020.4501 PubMed DOI PMC
Pérez-Martínez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI, et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev. (2017) 75:307–26. 10.1093/nutrit/nux014 PubMed DOI PMC
Lillich FF, Imig JD, Proschak E. Multi-target approaches in metabolic syndrome. Front Pharmacol. (2021) 11:554961. 10.3389/fphar.2020.554961 PubMed DOI PMC
Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. (2016) 10:84–9. 10.4103/0973-7847.194044 PubMed DOI PMC
Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity. (2008) 16:2081–7. 10.1038/oby.2008.315 PubMed DOI
Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Med Inflammation. (2016) 2016:9340637. 10.1155/2016/9340637 PubMed DOI PMC
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem. (2018) 155:889–904. 10.1016/j.ejmech.2018.06.053 PubMed DOI
Panchal SK, Poudyal H, Brown L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J Nutr. (2012) 142:1026–32. 10.3945/jn.111.157263 PubMed DOI
Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: a review. Phytother Res. (2021) 35:5352–64. 10.1002/ptr.7144 PubMed DOI
Yi H, Peng H, Wu X, Xu X, Kuang T, Zhang J, et al. The therapeutic effects and mechanisms of quercetin on metabolic diseases: pharmacological data and clinical evidence. Oxid Med Cell Longev. (2021) 2021:6678662. 10.1155/2021/6678662 PubMed DOI PMC
Bendlova B, Vankova M, Hill M, Vacinova G, Lukasova P, Vejrazkova D, et al. ZBTB16 gene variability influences obesity-related parameters and serum lipid levels in Czechia adults. Physiol Res. (2017) 66:S425–31. 10.33549/physiolres.933731 PubMed DOI
Šeda O, Šedová L, Vèelák J, Vaòková M, Liška F, Bendlová B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res. (2017) 66:S357–65. 10.33549/physiolres.933730 PubMed DOI
Bíla V, Kren V, Liska F. The influence of the genetic background on the interaction of retinoic acid with Lx mutation of the rat. Folia Biol. (2000) 46:264–72. PubMed
Liska F, Snajdr P, Sedova L, Seda O, Chylikova B, Slamova P, et al. Deletion of a conserved noncoding sequence in Plzf intron leads to Plzf down-regulation in limb bud and polydactyly in the rat. Dev Dyn. (2009) 238:673–84. 10.1002/dvdy.21859 PubMed DOI
Sedová L, Kazdová L, Seda O, Krenová D, Kren V. Rat inbred PD/cub strain as a model of dyslipidemia and insulin resistance. Folia Biol. (2000) 46:99–106. PubMed
Krupkova M, Liska F, Kazdova L, Sedova L, Kabelova A, Krenova D, et al. Single-gene congenic strain reveals the effect of Zbtb16 on dexamethasone-induced insulin resistance. Front Endocrinol. (2018) 9:185. 10.3389/fendo.2018.00185 PubMed DOI PMC
Sedová L, Seda O, Kazdová L, Chylíková B, Hamet P, Tremblay J, et al. Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. Am J Physiol Endocrinol Metab. (2007) 292:E1318–24. 10.1152/ajpendo.00526.2006 PubMed DOI
Cahova M, Dankova H, Palenickova E, Papackova Z, Kazdova L. The opposite effects of high-sucrose and high-fat diet on fatty acid oxidation and very low density lipoprotein secretion in rat model of metabolic syndrome. J Nutr Metab. (2012) 2012:757205. 10.1155/2012/757205 PubMed DOI PMC
de Boer VC, Dihal AA, van der Woude H, Arts IC, Wolffram S, Alink GM, et al. Tissue distribution of quercetin in rats and pigs. J Nutr. (2005) 135:1718–25. 10.1093/jn/135.7.1718 PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. (2001) 25:402–8. 10.1006/meth.2001.1262 PubMed DOI
Després J-P. Abdominal obesity: the most prevalent cause of the metabolic syndrome and related cardiometabolic risk. Eur Heart J Suppl. (2006) 8:B4–12. 10.1093/eurheartj/sul002 DOI
Moon J, Do H-J, Kim OY, Shin M-J. Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol. (2013) 58:347–54. 10.1016/j.fct.2013.05.006 PubMed DOI
Pfeuffer M, Auinger A, Bley U, Kraus-Stojanowic I, Laue C, Winkler P, et al. Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutr Metab Cardiovasc Dis. (2013) 23:403–9. 10.1016/j.numecd.2011.08.010 PubMed DOI
Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem. (2015) 179:305–10. 10.1016/j.foodchem.2015.02.006 PubMed DOI
Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. (2008) 28:1039–49. 10.1161/atvbaha.107.159228 PubMed DOI
Patel P, Abate N. Body fat distribution and insulin resistance. Nutrients. (2013) 5:2019–27. 10.3390/nu5062019 PubMed DOI PMC
Bule M, Abdurahman A, Nikfar S, Abdollahi M, Amini M. Antidiabetic effect of quercetin: a systematic review and meta-analysis of animal studies. Food Chem Toxicol. (2019) 125:494–502. 10.1016/j.fct.2019.01.037 PubMed DOI
Shi G-J, Li Y, Cao Q-H, Wu H-X, Tang X-Y, Gao X-H, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother. (2019) 109:1085–99. 10.1016/j.biopha.2018.10.130 PubMed DOI
Gomes I, Porto M, Santos MC, Campagnaro B, Gava A, Meyrelles S, et al. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice. Front Physiol. (2015) 6:247. 10.3389/fphys.2015.00247 PubMed DOI PMC
Xie J, Song W, Liang X, Zhang Q, Shi Y, Liu W, et al. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed Pharmacother. (2020) 127:110147. 10.1016/j.biopha.2020.110147 PubMed DOI
Chai GR, Liu S, Yang HW, Chen XL. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression. Neural Regen Res. (2021) 16:1344–50. 10.4103/1673-5374.301027 PubMed DOI PMC
Eid HM, Haddad PS. The antidiabetic potential of quercetin: underlying mechanisms. Curr Med Chem. (2017) 24:355–64. 10.2174/0929867323666160909153707 PubMed DOI
Li J-M, Wang W, Fan C-Y, Wang M-X, Zhang X, Hu Q-H, et al. Quercetin preserves β-cell mass and function in fructose-induced hyperinsulinemia through modulating pancreatic Akt/FoxO1 activation. Evid Based Complement Alter Med. (2013) 2013:303902. 10.1155/2013/303902 PubMed DOI PMC
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother. (2019) 111:947–57. 10.1016/j.biopha.2018.12.127 PubMed DOI
Musunuru K. Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids. (2010) 45:907–14. 10.1007/s11745-010-3408-1 PubMed DOI PMC
Nilsson PM, Tuomilehto J, Rydén L. The metabolic syndrome – What is it and how should it be managed? Eur J Prev Cardiol. (2019) 26:33–46. 10.1177/2047487319886404 PubMed DOI
Guo W, Gong X, Li M. Quercetin actions on lipid profiles in overweight and obese individuals: a systematic review and meta-analysis. Curr Pharm Des. (2019) 25:3087–95. 10.2174/1381612825666190829153552 PubMed DOI
Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. (2020) 78:615–26. 10.1093/nutrit/nuz071 PubMed DOI
Sahebkar A. Effects of quercetin supplementation on lipid profile: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. (2017) 57:666–76. 10.1080/10408398.2014.948609 PubMed DOI
Kuipers EN, Dam ADV, Held NM, Mol IM, Houtkooper RH, Rensen PCN, et al. Quercetin lowers plasma triglycerides accompanied by white adipose tissue browning in diet-induced obese mice. Int J Mol Sci. (2018) 19:1786. 10.3390/ijms19061786 PubMed DOI PMC
Wang M, Wang B, Wang S, Lu H, Wu H, Ding M, et al. Effect of quercetin on lipids metabolism through modulating the gut microbial and AMPK/PPAR signaling pathway in broilers. Front Cell Dev Biol. (2021) 9:616219. 10.3389/fcell.2021.616219 PubMed DOI PMC
Wang Q, Sharma VP, Shen H, Xiao Y, Zhu Q, Xiong X, et al. The hepatokine Tsukushi gates energy expenditure via brown fat sympathetic innervation. Nat Metab. (2019) 1:251–60. 10.1038/s42255-018-0020-9 PubMed DOI PMC
Norheim F, Hui ST, Kulahcioglu E, Mehrabian M, Cantor RM, Pan C, et al. Genetic and hormonal control of hepatic steatosis in female and male mice. J Lipid Res. (2017) 58:178–87. 10.1194/jlr.M071522 PubMed DOI PMC
Li J, Bardag-Gorce F, Oliva J, Dedes J, French BA, French SW. Gene expression modifications in the liver caused by binge drinking and S-adenosylmethionine feeding. The role of epigenetic changes. Genes Nutr. (2010) 5:169–79. 10.1007/s12263-009-0158-x PubMed DOI PMC
Covill-Cooke C, Toncheva VS, Drew J, Birsa N, Lopez-Domenech G, Kittler JT. Peroxisomal fission is modulated by the mitochondrial Rho-GTPases. Miro1 and Miro2. EMBO Rep. (2020) 21:e49865. 10.15252/embr.201949865 PubMed DOI PMC
Ruskovska T, Budiæ-Leto I, Corral-Jara KF, Ajdžanoviæ V, Arola-Arnal A, Bravo FI, et al. Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans - Evidence from untargeted mRNA and miRNA studies. Ageing Res Rev. (2022) 79:101649. 10.1016/j.arr.2022.101649 PubMed DOI
Yuan K, Ai WB, Wan LY, Tan X, Wu JF. The miR-290-295 cluster as multi-faceted players in mouse embryonic stem cells. Cell Biosci. (2017) 7:38. 10.1186/s13578-017-0166-2 PubMed DOI PMC
Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci USA. (2012) 109:15330–5. 10.1073/pnas.1207605109 PubMed DOI PMC
Seda O, Sedova L. Peroxisome proliferator-activated receptors as molecular targets in relation to obesity and type 2 diabetes. Pharmacogenomics. (2007) 8:587–96. 10.2217/14622416.8.6.587 PubMed DOI
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. (2019) 15:507–24. 10.1038/s41574-019-0230-6 PubMed DOI
Coppi L, Ligorio S, Mitro N, Caruso D, De Fabiani E, Crestani M. PGC1s and beyond: disentangling the complex regulation of mitochondrial and cellular metabolism. Int J Mol Sci. (2021) 22:6913. 10.3390/ijms22136913 PubMed DOI PMC
McDowell SAC, Luo RBE, Arabzadeh A, Dore S, Bennett NC, Breton V, et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat Cancer. (2021) 2:545–62. 10.1038/s43018-021-00194-9 PubMed DOI
Šeda O, Tremblay J, Gaudet D, Brunelle P-L, Gurau A, Merlo E, et al. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in french canadians. Hypertension. (2008) 51:1156–62. 10.1161/HYPERTENSIONAHA.107.105247 PubMed DOI