Quercetin supplementation in metabolic syndrome: nutrigenetic interactions with the Zbtb16 gene variant in rodent models
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-DRO-VFN64165
Ministry of Health, Czech Republic - conceptual development of research organization 00064165, General University Hospital in Prague
PubMed
39455928
PubMed Central
PMC11515271
DOI
10.1186/s12263-024-00757-2
PII: 10.1186/s12263-024-00757-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cholesterol, Metabolic syndrome, Quercetin, Rats, Retroperitoneal fat, ZBTB16,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16). RESULTS: Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q. CONCLUSION: Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.
Zobrazit více v PubMed
Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11(8):215–25. PubMed PMC
Bovolini A, Garcia J, Andrade MA, Duarte JA. Metabolic syndrome pathophysiology and predisposing factors. Int J Sports Med. 2021;42(3):199–214. PubMed
Mendrick DL, Diehl AM, Topor LS, Dietert RR, Will Y, La Merrill MA, et al. Metabolic syndrome and Associated diseases: from the bench to the clinic. Toxicol Sci. 2018;162(1):36–42. PubMed PMC
Punthakee Z, Goldenberg R, Katz P, Definition. Classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 2018;42:S10–5. PubMed
Wang HH, Lee DK, Liu M, Portincasa P, Wang DQ. Novel insights into the Pathogenesis and management of the metabolic syndrome. Pediatr Gastroenterol Hepatol Nutr. 2020;23(3):189–230. PubMed PMC
Després J-P. Abdominal obesity: the most prevalent cause of the metabolic syndrome and related cardiometabolic risk. Eur Heart J Supplements. 2006;8(supplB):B4–12.
Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28(6):1039–49. PubMed
Fahed G, Aoun L, Bou Zerdan M, Allam S, Bouferraa Y, Assi HI. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23(2). PubMed PMC
Xu H, Li X, Adams H, Kubena K, Guo S. Etiology of metabolic syndrome and dietary intervention. Int J Mol Sci. 2018;20(1). PubMed PMC
Hirode G, Wong RJ. Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA. 2020;323(22):2526–8. 10.1001/jama.2020.4501. PubMed PMC
Lillich FF, Imig JD, Proschak E. Multi-target approaches in metabolic syndrome. Front Pharmacol. 2021;11:1996. PubMed PMC
Anand David AV, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84–9. PubMed PMC
Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020;78(8):615–26. PubMed
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, et al. Therapeutic potential of Quercetin: New insights and perspectives for Human Health. Acs Omega. 2020;5(20):11849–72. PubMed PMC
Aghababaei F, Hadidi M. Recent advances in potential health benefits of Quercetin. Pharmaceuticals (Basel). 2023;16(7). PubMed PMC
Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: a review. Phytother Res. 2021;35(10):5352–64. PubMed
Yi H, Peng H, Wu X, Xu X, Kuang T, Zhang J, et al. The therapeutic effects and mechanisms of Quercetin on metabolic diseases: Pharmacological Data and clinical evidence. Oxidative Med Cell Longev. 2021;2021:6678662. PubMed PMC
Jin Y, Nenseth HZ, Saatcioglu F. Role of PLZF as a tumor suppressor in prostate cancer. Oncotarget. 2017;8(41):71317–24. PubMed PMC
Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise Review: balancing Stem Cell Self-Renewal and differentiation with PLZF. Stem Cells. 2016;34(2):277–87. PubMed
Šeda O, Šedová L, Včelák J, Vaňková M, Liška F, Bendlová B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res. 2017;66(Suppl 3):S357–65. PubMed
Bendlova B, Vankova M, Hill M, Vacinova G, Lukasova P, VejraZkova D, et al. ZBTB16 gene variability influences obesity-related parameters and serum lipid levels in Czech adults. Physiol Res. 2017;66(Supplementum 3):S425–31. PubMed
Wei S, Zhang M, Zheng Y, Yan P. ZBTB16 overexpression enhances white adipogenesis and induces Brown-Like Adipocyte formation of bovine White Intramuscular Preadipocytes. Cells Tissues Organs. 2019;207(2):88–101. 10.1159/000492697. PubMed
Hu H, Sun N, Du H, He Y, Pan K, Liu X, et al. Mouse promyelocytic leukemia zinc finger protein (PLZF) regulates hepatic lipid and glucose homeostasis dependent on SIRT1. Front Pharmacol. 2022;13:1039726. PubMed PMC
Chen S, Qian J, Shi X, Gao T, Liang T, Liu C. Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol Endocrinol. 2014;28(12):1987–98. PubMed PMC
Kwitek AE. Rat models of metabolic syndrome. Methods Mol Biol. 2019;2018:269–85. PubMed PMC
Školníková E, Šedová L, Chylíková B, Kábelová A, Liška F, Šeda O. Maternal high-sucrose Diet affects phenotype outcome in adult male offspring: role of Zbtb16. Front Genet. 2020;11:529421. 10.3389/fgene.2020.529421. PubMed PMC
Kábelová A, Krupková M, Kazdová L, Šedová L, Křenová D, Liška F, et al. The effect of Zbtb16 gene on insulin sensitivity and lipid levels revealed by a single-gene congenic rat model. Atherosclerosis. 2017;263. 10.1016/j.atherosclerosis.2017.06.895.
Vedi M, Smith JR, Thomas Hayman G, Tutaj M, Brodie KC, De Pons JL et al. 2022 updates to the rat genome database: a findable, accessible, interoperable, and Reusable (FAIR) resource. Genetics. 2023;224(1). PubMed PMC
Liška F, Mancini M, Krupková M, Chylíková B, Křenová D, Šeda O, et al. Plzf as a candidate gene predisposing the spontaneously hypertensive rat to hypertension, left ventricular hypertrophy, and interstitial fibrosis. Am J Hypertens. 2014;27(1):99–106. PubMed
Krupková M, Liška F, Kazdová L, Šedová L, Kábelová A, Křenová D, et al. Single-gene congenic strain reveals the effect of Zbtb16 on metabolic syndrome-related traits. Front Endocrinol (Lausanne). 2018;9:185. 10.3389/fendo.2018.00185. PubMed PMC
Cahova M, Dankova H, Palenickova E, Papackova Z, Kazdova L. The opposite effects of high-sucrose and high-fat diet on fatty acid oxidation and very low density lipoprotein secretion in rat model of metabolic syndrome. J Nutr Metab. 2012;2012:757205. PubMed PMC
Panchal SK, Poudyal H, Brown L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J Nutr. 2012;142(6):1026–32. PubMed
Kábelová A, Malínská H, Marková I, Hűttl M, Chylíková B, Šeda O. Quercetin supplementation alters adipose tissue and hepatic transcriptomes and ameliorates adiposity, dyslipidemia, and glucose intolerance in adult male rats. Front Nutr. 2022;9:952065. PubMed PMC
Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–30. PubMed PMC
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. PubMed
Scholze J, Alegria E, Ferri C, Langham S, Stevens W, Jeffries D, et al. Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model. BMC Public Health. 2010;10(1):529. PubMed PMC
Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003–2012. Jama-Journal Am Med Association. 2015;313(19):1973–4. PubMed
Bitew ZW, Alemu A, Ayele EG, Tenaw Z, Alebel A, Worku T. Metabolic syndrome among children and adolescents in low and middle income countries: a systematic review and meta-analysis. Diabetol Metab Syndr. 2020;12:93. PubMed PMC
Seo MJ, Lee YJ, Hwang JH, Kim KJ, Lee BY. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J Nutr Biochem. 2015;26(11):1308–16. PubMed
Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of Quercetin on inflammation, obesity, and type 2 diabetes. Mediat Inflamm. 2016;2016:9340637. PubMed PMC
Zhao Y, Chen B, Shen J, Wan L, Zhu Y, Yi T, et al. The Beneficial effects of Quercetin, Curcumin, and resveratrol in obesity. Oxid Med Cell Longev. 2017;2017:1459497. PubMed PMC
Ahn J, Lee H, Kim S, Park J, Ha T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun. 2008;373(4):545–9. PubMed
Choi H, Kim CS, Yu R. Quercetin Upregulates uncoupling protein 1 in White/Brown adipose tissues through sympathetic stimulation. J Obes Metab Syndr. 2018;27(2):102–9. PubMed PMC
Zhang X, Li X, Fang H, Guo F, Li F, Chen A, et al. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr Metab (Lond). 2019;16:47. PubMed PMC
Michala AS, Pritsa A, Quercetin. A molecule of great biochemical and clinical value and its beneficial effect on diabetes and Cancer. Diseases. 2022;10(3):37. 10.3390/diseases10030037. PubMed PMC
Perdicaro DJ, Rodriguez Lanzi C, Gambarte Tudela J, Miatello RM, Oteiza PI, Vazquez Prieto MA. Quercetin attenuates adipose hypertrophy, in part through activation of adipogenesis in rats fed a high-fat diet. J Nutr Biochem. 2020;79:108352. PubMed
Wang SY, Duan KM, Li Y, Mei Y, Sheng H, Liu H, et al. Effect of quercetin on P-glycoprotein transport ability in Chinese healthy subjects. Eur J Clin Nutr. 2013;67(4):390–4. PubMed
Duan KM, Wang SY, Ouyang W, Mao YM, Yang LJ. Effect of quercetin on CYP3A activity in Chinese healthy participants. J Clin Pharmacol. 2012;52(6):940–6. PubMed
Braun JL, Geromella MS, Hamstra SI, Fajardo VA. Neuronatin regulates whole-body metabolism: is thermogenesis involved? FASEB Bioadv. 2020;2(10):579–86. PubMed PMC
Choi KM, Ko CY, An SM, Cho SH, Rowland DJ, Kim JH, et al. Regulation of beige adipocyte thermogenesis by the cold-repressed ER protein NNAT. Mol Metab. 2023;69:101679. PubMed PMC
Parrillo L, Spinelli R, Longo M, Desiderio A, Mirra P, Nigro C, et al. Altered hepatic SIRT6/AMPK pathway as a potential link between Diet and insulin resistance in non-alcoholic fatty liver disease. Epigenomics. 2020;12(10):873–88. 10.2217/epi-2019-0267. PubMed
Benchoula K, Arya A, Parhar IS, Hwa WE. FoxO1 signaling as a therapeutic target for type 2 diabetes and obesity. Eur J Pharmacol. 2021;891:173758. PubMed
Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A. 2000;97(23):12729–34. PubMed PMC
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in male physiology. Physiol Rev. 2017;97(3):995–1043. PubMed PMC
Kuipers EN, Dam ADV, Held NM, Mol IM, Houtkooper RH, Rensen PCN et al. Quercetin lowers plasma triglycerides accompanied by White Adipose tissue Browning in Diet-Induced obese mice. Int J Mol Sci. 2018;19(6). PubMed PMC
Jung CH, Cho I, Ahn J, Jeon TI, Ha TY. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother Res. 2013;27(1):139–43. PubMed
Hoek-van den Hil EF, van Schothorst EM, van der Stelt I, Swarts HJ, Venema D, Sailer M, et al. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice. Genes Nutr. 2014;9(5):418. PubMed PMC
Eid HM, Haddad PS. The antidiabetic potential of Quercetin: underlying mechanisms. Curr Med Chem. 2017;24(4):355–64. PubMed
Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to Improve Blood Sugar levels. Biomolecules. 2019;9(9). PubMed PMC
Ansari P, Choudhury ST, Seidel V, Rahman AB, Aziz MA, Richi AE et al. Therapeutic potential of Quercetin in the management of Type-2 diabetes Mellitus. Life (Basel). 2022;12(8). PubMed PMC
Youl E, Bardy G, Magous R, Cros G, Sejalon F, Virsolvy A, et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol. 2010;161(4):799–814. PubMed PMC
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B et al. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr. 2022:1–24. PubMed
Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother. 2022;146:112560. PubMed
Paublini H, López González AA, Busquets-Cortés C, Tomas-Gil P, Riutord-Sbert P, Ramírez-Manent JI. Relationship between atherogenic dyslipidaemia and Lipid Triad and scales that assess insulin resistance. Nutrients. 2023;15(9). PubMed PMC
Musunuru K. Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids. 2010;45(10):907–14. PubMed PMC
Guo W, Gong X, Li M. Quercetin actions on lipid profiles in overweight and obese individuals: a systematic review and Meta-analysis. Curr Pharm Des. 2019;25(28):3087–95. PubMed
Wang M, Wang B, Wang S, Lu H, Wu H, Ding M, et al. Effect of quercetin on lipids metabolism through modulating the gut microbial and AMPK/PPAR Signaling Pathway in Broilers. Front Cell Dev Biology. 2021;9:165. PubMed PMC