The opposite effects of high-sucrose and high-fat diet on Fatty Acid oxidation and very low density lipoprotein secretion in rat model of metabolic syndrome
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
23125921
PubMed Central
PMC3483727
DOI
10.1155/2012/757205
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Aims. To determine the effect of two different diets (high-sucrose (HS) and high-fat (HF)) on the main metabolic pathways potentially contributing to the development of steatosis: (1) activity of the liver lysosomal and heparin-releasable lipases; (2) fatty acid (FFA) oxidation; (3) FFA synthesis de novo; (4) VLDL output in vivo in a rat model of metabolic syndrome (MetS), hereditary hypertriglyceridemic (HHTg) rats fed HS or HF diets. Results. Both diets resulted in triacylglycerol (TAG) accumulation in the liver (HF > HS). The intracellular TAG lipolysis by lysosomal lipase was increased in both groups and positively correlated with the liver TAG content. Diet type significantly affected partitioning of intracellular TAG-derived fatty acids among FFA-utilizing metabolic pathways as HS feeding accentuated VLDL secretion and downregulated FFA oxidation while the HF diet had an entirely opposite effect. FFA de novo synthesis from glucose was significantly enhanced in the HS group (fed ≫ fasted) while being completely eradicated in the HF group. Conclusions. We found that in rats prone to the development of MetS associated diseases dietary-induced steatosis is not simply a result of impaired TAG degradation but that it depends on other mechanisms (elevated FFA synthesis or attenuated VLDL secretion) that are specific according to diet composition.
Zobrazit více v PubMed
Sarafidis PA, Nilsson PM. The metabolic syndrome: a glance at its history. Journal of Hypertension. 2006;24(4):621–626. PubMed
Nyenwe EA, Dagogo-Jack S. Metabolic syndrome, prediabetes and the science of primary prevention. Minerva Endocrinologica. 2011;36(2):129–145. PubMed
Kalopissis AD, Griglio S, Malewiak MI. Very-low-density-lipoprotein secretion by isolated hepatocytes of fat-fed rats. Biochemical Journal. 1981;198(2):373–377. PubMed PMC
Malewiak MI, Rozen R, Le Liepvre X, Griglio S. Oleate metabolism and endogenous triacylglycerol hydrolysis in isolated hepatocytes from rats fed a high-fat diet. Diabete et Metabolisme. 1988;14(3):270–276. PubMed
Oussadou L, Griffaton G, Kalopissis AD. Hepatic VLDL secretion of genetically obese Zucker rats is inhibited by a high-fat diet. American Journal of Physiology - Endocrinology and Metabolism. 1996;271(6):E952–E964. PubMed
Klimes I, Vrana A, Kunes J, et al. Hereditary hypertriglyceridemic rat: a new animal model of metabolic alterations in hypertension. Blood Pressure. 1995;4(3):137–142. PubMed
Vrana A, Kazdova L. The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transplantation Proceedings. 1990;22(6):p. 2579. PubMed
Vrána A, Fábry P, Kazdová L. Effect of dietary fructose on fatty acid synthesis in adipose tissue and on triglyceride concentration in blood in the rat. Nutrition and Metabolism. 1973;15(4):305–313. PubMed
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry. 1957;226(1):497–509. PubMed
Francone OL, Griffaton G, Kalopissis AD. Effect of a high-fat diet on the incorporation of stored triacylglycerol into hepatic VLDL. American Journal of Physiology. 1992;263(4):E615–E623. PubMed
Kawamura N, Kishimoto Y. Characterization of water-soluble products of palmitic acid β-oxidation by a rat brain preparation. Journal of Neurochemistry. 1981;36(5):1786–1791. PubMed
Belfrage P, Vaughan M. Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. Journal of Lipid Research. 1969;10(3):341–344. PubMed
Otway S, Robinson DS. The use of a non-ionic detergent (Triton WR 1339) to determine rates of triglyceride entry into the circulation of the rat under different physiological conditions. Journal of Physiology. 1967;190(2):321–332. PubMed PMC
Brooks S. A method for measuring the normal blood volume of the rat using (125-I)labelled albumin. The Australian Journal of Experimental Biology and Medical Science. 1971;49(2):241–243. PubMed
Francone OL, Kalopissis AD, Griffaton G. Contribution of cytoplasmic storage triacylglycerol to VLDL-triacylglycerol in isolated rat hepatocytes. Biochimica et Biophysica Acta. 1989;1002(1):28–36. PubMed
Knauer TE, Woods JA, Lamb RG, Fallon JH. Hepatic triacylglycerol lipase activities after induction of diabetes and administration of insulin or glucagon. Journal of Lipid Research. 1982;23(4):631–637. PubMed
Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. Journal of Lipid Research. 2003;44(7):1279–1286. PubMed
Perret B, Mabile L, Martinez L, Tercé F, Barbaras R, Collet X. Hepatic lipase: structure/function relationship, synthesis, and regulation. Journal of Lipid Research. 2002;43(8):1163–1169. PubMed
Assmann G, Krauss RM, Fredrickson DS, Levy RI. Characterization, subcellular localization, and partial purification of a heparin-released triglyceride lipase from rat liver. Journal of Biological Chemistry. 1973;248(6):1992–1999. PubMed
Shafi S, Brady SE, Bensadoun A, Havel RJ. Role of hepatic lipase in the uptake and processing of chylomicron remnants in rat liver. Journal of Lipid Research. 1994;35(4):709–720. PubMed
Hornick CA, Thouron C, DeLamatre JG, Huang J. Triacylglycerol hydrolysis in isolated hepatic endosomes. Journal of Biological Chemistry. 1992;267(5):3396–3401. PubMed
Cahova M, Dankova H, Palenickova E, Papackova Z, Kazdova : L. The autophagy-lysosomal pathway is involved in TAG degradation in the liver: the effect of high-sucrose and high-fat diet. Folia Biologica. 2010;56:173–182. PubMed
Vavřínková H, Mosinger B. Effect of glucagon, catecholamines and insulin on liver acid lipase and acid phosphatase. Biochimica et Biophysica Acta. 1971;231(2):320–326. PubMed
Teng MH, Kaplan A. Purification and properties of rat liver lysosomal lipase. Journal of Biological Chemistry. 1974;249(4):1064–1070. PubMed
Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–1135. PubMed PMC
Skop V, Cahova M, Papackova Z, et al. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver. Physiological Research. 2012;61(3):287–297. PubMed
Cahova M, Dankova H, Palenickova E, et al. The increased activity of liver lysosomal lipase in nonalcoholic fatty liver disease contributes to the development of hepatic insulin resistance. Biochemistry Research International. 2012;2012135723 PubMed PMC
Ruderman NB, Jones AL, Krauss RM, Shafrir E. A biochemical and morphologic study of very low density lipoproteins in carbohydrate-induced hypertriglyceridemia. Journal of Clinical Investigation. 1971;50(6):1355–1368. PubMed PMC
Vrana A, Fabry P, Kazdova L, Poledne R, Slabochova Z. Sucrose induced hypertriglyceridaemia: its mechanism and metabolic effects. Czechoslovak Medicine. 1982;5(1):9–15. PubMed
Parks EJ, Krauss RM, Christiansen MP, Neese RA, Hellerstein MK. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. Journal of Clinical Investigation. 1999;104(8):1087–1096. PubMed PMC
Mittendorfer B, Sidossis LS. Mechanism for the increase in plasma triacylglycerol concentrations after consumption of short-term, high-carbohydrate diets. American Journal of Clinical Nutrition. 2001;73(5):892–899. PubMed
Roberts R, Bickerton AS, Fielding BA, et al. Reduced oxidation of dietary fat after a short term high-carbohydrate diet. American Journal of Clinical Nutrition. 2008;87(4):824–831. PubMed
Parks EJ, Hellerstein MK. Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. American Journal of Clinical Nutrition. 2000;71(2):412–433. PubMed
Stolba P, Opltova H, Husek BP, et al. Adrenergic overactivity and insulin resistance in nonobese hereditary hypertriglyceridemic rats. Annals of the New York Academy of Sciences. 1993;683:281–288. PubMed
Vrana A, Kazdova L, Dobesova Z, et al. Triglyceridemia, glucoregulation, and blood pressure in various rat strains. Effects of dietary carbohydrates. Annals of the New York Academy of Sciences. 1993;683:57–68. PubMed
Durrington PN, Newton RS, Weinstein DB, Steinberg D. Effects of insulin and glucose on very low density lipoprotein triglyceride secretion by cultured rat hepatocytes. Journal of Clinical Investigation. 1982;70(1):63–73. PubMed PMC
Boogaerts JR, Malone-McNeal M, Archambault-Schexnayder J, Davis RA. Dietary carbohydrate induces lipogenesis and very-low-density lipoprotein synthesis. American Journal of Physiology. 1984;9(1):E77–E83. PubMed
Brown AM, Wiggins D, Gibbons GF. Glucose phosphorylation is essential for the turnover of neutral lipid and the second stage assembly of triacylglycerol-rich apoB-containing lipoproteins in primary hepatocyte cultures. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999;19(2):321–329. PubMed