Novel neurosteroid pregnanolone pyroglutamate suppresses neurotoxicity syndrome induced by tetramethylenedisulfotetramine but is ineffective in a rodent model of infantile spasms

. 2023 Feb ; 75 (1) : 177-188. [epub] 20221123

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36422805

Grantová podpora
R01 NS092786 NINDS NIH HHS - United States
R21 NS118337 NINDS NIH HHS - United States
R01NS092786 NINDS NIH HHS - United States
R21NS084900 NINDS NIH HHS - United States
R21NS118337-01 NINDS NIH HHS - United States
R21 NS084900 NINDS NIH HHS - United States

Odkazy

PubMed 36422805
PubMed Central PMC10785007
DOI 10.1007/s43440-022-00437-1
PII: 10.1007/s43440-022-00437-1
Knihovny.cz E-zdroje

BACKGROUND: Neurosteroids are investigated as effective antidotes for the poisoning induced by tetramethylenedisulfotetramine (TMDT) as well as treatments for epileptic spasms during infancy. Both these conditions are quite resistant to pharmacotherapy; thus, a search for new treatments is warranted. METHODS: In this study, we determined the efficacy of two novel neurosteroids, pregnanolone glutamate (PAG) and pregnanolone pyroglutamate (PPG), and tested these drugs in doses of 1-10 mg/kg (ip) against the TMDT syndrome and in our rodent model of infantile spasms. RESULTS: Only PPG in doses 5 and 10 mg/kg suppressed the severity of the TMDT syndrome and TMDT-induced lethality, while the 1 mg/kg dose was without an effect. Interestingly, the 1 mg/kg dose of PPG in combination with 1 mg/kg of diazepam was also effective against TMDT poisoning. Neither PAG nor PPG were effective against experimental spasms in the N-methyl-D-aspartate (NMDA)-triggered model of infantile spasms. CONCLUSIONS: While evidence suggests that PAG can act through multiple actions which include allosteric inhibition of NMDA-induced and glycine receptor-evoked currents as well as augmentation of ɣ-aminobutyric acid subtype A (GABAA) receptor-induced currents, the agent appears to neither have the appropriate mechanistic signature for activity in the infantile spasm model, nor the adequate potency, relative to PPG, for ameliorating the TMDT syndrome. The full mechanisms of action of PPG, which may become a potent TMDT antidote either alone or in combination with diazepam are yet unknown and thus require further investigation.

Zobrazit více v PubMed

Sobotka P, Šafanda J. Analysis of the epileptogenic action of tetramine. Act Nerv Super (Praha). 1973;15:171–2. PubMed

Shakarjian MP, Velíšková J, Stanton PK, Velíšek L. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors. Toxicol Appl Pharmacol. 2012;265:113–21. PubMed PMC

Zolkowska D, Banks CN, Dhir A, Inceoglu B, Sanborn JR, McCoy MR, et al. Characterization of seizures induced by acute and repeated exposure to tetramethylenedisulfotetramine. J Pharmacol ExpTherap. 2012;341:435–46. PubMed PMC

Li JM, Gan J, Zeng TF, Sander JW, Zhou D. Tetramethylenedisulfotetramine intoxication presenting with de novo Status Epilepticus: a case series. NeuroToxicology. 2012;33:207–11. PubMed

Rice NC, Rauscher NA, Langston JL, Myers TM. Behavioral intoxication following voluntary oral ingestion of tetramethylenedisulfotetramine: Dose-dependent onset, severity, survival, and recovery. NeuroToxicology. 2017;63:21–32. PubMed PMC

Li Y, Gao Y, Yu X, Peng J, Ma F, Nelson L. Tetramine poisoning in China: changes over a decade viewed through the media's eye. BMC Public Health. 2014;14:842. PubMed PMC

Jett DA, Yeung DT. The CounterACT Research Network: basic mechanisms and practical applications. Proc Am Thoracic Soc. 2010;7:254–6. PubMed PMC

Bowery NG, Brown DA, Collins JF. Tetramethylenedisulphotetramine: an inhibitor of gamma-aminobutyric acid induced depolarization of the isolated superior cervical ganglion of the rat. Br J Pharmacol. 1975;53:422–4. PubMed PMC

Pressly B, Nguyen HM, Wulff H. GABAA receptor subtype selectivity of the proconvulsant rodenticide TETS. Arch Toxicol. 2018;92:833–44. PubMed PMC

Pressly B, Vasylieva N, Barnych B, Singh V, Singh L, Bruun DA, et al. Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Arch Toxicol. 2020;94:1995–2007. PubMed PMC

Moffett MC, Rauscher NA, Rice NC, Myers TM. Survey of drug therapies against acute oral tetramethylenedisulfotetramine poisoning in a rat voluntary consumption model. NeuroToxicology. 2019;74:264–71. PubMed

Shakarjian MP, Ali MS, Veliskova J, Stanton PK, Heck DE, Velisek L. Combined diazepam and MK-801 therapy provides synergistic protection from tetramethylenedisulfotetramine-induced tonic-clonic seizures and lethality in mice. NeuroToxicology. 2015;48:100–8. PubMed PMC

Bruun DA, Cao Z, Inceoglu B, Vito ST, Austin AT, Hulsizer S, et al. Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology. 2015;95:332–42. PubMed PMC

Kokate TG, Svensson BE, Rogawski MA. Anticonvulsant activity of neurosteroids: correlation with gamma- aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther. 1994;270:1223–9. PubMed

Mundy PC, Pressly B, Carty DR, Yaghoobi B, Wulff H, Lein PJ. The efficacy of gamma-aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicol Appl Pharmacol. 2021;426:115643. PubMed PMC

Zolkowska D, Wu CY, Rogawski MA. Intramuscular allopregnanolone and ganaxolone in a mouse model of treatment-resistant status epilepticus. Epilepsia. 2018;59 Suppl 2:220–7. PubMed PMC

Kerrigan JF, Shields WD, Nelson TY, Bluestone DL, Dodson WE, Bourgeois BF, et al. Ganaxolone for treating intractable infantile spasms: a multicenter, open-label, add-on trial. Epilepsy Res. 2000;42:133–9. PubMed

Dulac O, Soufflet C, Chiron C, Kaminska A. What is West syndrome? Int Rev Neurobiol. 2002;49:1–22. PubMed

Shao LR, Stafstrom CE. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models. Semin Pediatr Neurol. 2016;23:98–107. PubMed

O'Callaghan FJK, Edwards SW, Alber FD, Cortina Borja M, Hancock E, Johnson AL, et al. Vigabatrin with hormonal treatment versus hormonal treatment alone (ICISS) for infantile spasms: 18-month outcomes of an open-label, randomised controlled trial. Lancet Child Adolesc Health. 2018;2:715–25. PubMed

Lux AL, Edwards SW, Hancock E, Johnson AL, Kennedy CR, Newton RW, et al. The United Kingdom Infantile Spasms Study (UKISS) comparing hormone treatment with vigabatrin on developmental and epilepsy outcomes to age 14 months: a multicentre randomised trial. Lancet Neurol. 2005;4:712–7. PubMed

Riikonen R, Donner M. ACTH therapy in infantile spasms: side effects. Arch Dis Child. 1980;55:664–72. PubMed PMC

Riikonen RS. Steroids or vigabatrin in the treatment of infantile spasms? Pediatr Neurol. 2000;23:403–8. PubMed

Stafstrom CE, Arnason BG, Baram TZ, Catania A, Cortez MA, Glauser TA, et al. Treatment of infantile spasms: emerging insights from clinical and basic science perspectives. J Child Neurol. 2011;26:1411–21. PubMed

Velíšek L, Jehle K, Asche S, Velíšková J. Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann Neurol. 2007;61:109–19. PubMed

Velíšek L, Chachua T, Yum MS, Poon KL, Velíšková J. Model of cryptogenic infantile spasms after prenatal corticosteroid priming. Epilepsia. 2010;51 Suppl 3:145–9. PubMed PMC

Chachua T, Yum M-S, Velíšková J, Velíšek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia. 2011;52:1666–77. PubMed PMC

Yum MS, Lee M, Ko TS, Velíšek L. A potential effect of ganaxolone in an animal model of infantile spasms. Epilepsy Res. 2014;108:1492–500. PubMed

Rambousek L, Bubeníková-Valešová V, Kačer P, Syslová K, Kenney J, Holubová K, et al. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-d-aspartate receptor 3alpha5beta-pregnanolone glutamate. Neuropharmacology. 2011;61:61–8. PubMed

Kletečková L, Tsenov G, Kubová H, Stuchlík A, Valeš K. Neuroprotective effect of the 3alpha5beta-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci Lett. 2014;564:11–5. PubMed

Holubová K, Nekovářová T, Pistovčáková J, Šulcová A, Stuchlík A, Valeš K. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models. Front Behav Neurosci. 2014;8:130. PubMed PMC

Borovská J, Vyklický V, Šťastná E, Kapras V, Slavíková B, Horák M, et al. Access of inhibitory neurosteroids to the NMDA receptor. Br J Pharmacol. 2012;166:1069–83. PubMed PMC

Kudová E, Chodounská H, Slavíková B, Budešinský M, Nekardová M, Vyklický V, et al. A New Class of Potent N-Methyl-D-Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications. J Med Chem. 2015;58:5950–66. PubMed

Vyklický V, Šmejkalová T, Krausová B, Balík A, Kořínek M, Borovská J, et al. Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives. J Neurosci. 2016;36:2161–75. PubMed PMC

Cao Z, Hammock BD, McCoy M, Rogawski M, Lein P, Pessah I. Tetramethylenedisulfotetramine Alters Ca2+ Dynamics in Cultured Hippocampal Neurons: Mitigation by NMDA Blockade and GABAA Receptor Positive Modulation. Toxicol Sci. 2012; 130:362–372. PubMed PMC

Kudová E, Chodounská H, Mareš P, Valeš K. 3alpha, 5beta-neuroactive steroids for the treatment of epilepsy and seizure diseases. US Patent Application Publication US20220162257A1, 26 May 2022.

Chern CR, Chern CJ, Velíšková J, Velíšek L. AQB-565 shows promise in preclinical testing in the model of epileptic spasms during infancy: Head-to-head comparison with ACTH. Epilepsy Res. 2019;152:31–4. PubMed PMC

Adla SK, Slaviková B, Chodounská H, Vyklický V, Ladislav M, Hubálková P, et al. Strong Inhibitory Effect, Low Cytotoxicity and High Plasma Stability of Steroidal Inhibitors of N-Methyl-D-Aspartate Receptors With C-3 Amide Structural Motif. Front Pharmacol. 2018;9:1299. PubMed PMC

Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia. 2017;58:181–221. PubMed

Lamb YN. Ganaxolone: First Approval. Drugs. 2022;82:933–40. PubMed

Perry MS. New and Emerging Medications for Treatment of Pediatric Epilepsy. Pediatr Neurol. 2020;107:24–7. PubMed

Bukanova JV, Solntseva EI, Kolbaev SN, Kudová E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3alpha5beta-pregnanolone derivatives. Neurochem Int. 2018;118:145–51. PubMed

Hawkinson JE, Kimbrough CL, Belelli D, Lambert JJ, Purdy RH, Lan NC. Correlation of neuroactive steroid modulation of [35S]t-butylbicyclophosphorothionate and [3H]flunitrazepam binding and gamma-aminobutyric acidA receptor function. Mol Pharmacol. 1994;46:977–85. PubMed

Holubova K, Chvojkova M, Hrcka Krausova B, Vyklicky V, Kudova E, Chodounska H, et al. Pitfalls of NMDA Receptor Modulation by Neuroactive Steroids. The Effect of Positive and Negative Modulation of NMDA Receptors in an Animal Model of Schizophrenia. Biomolecules. 2021;11. PubMed PMC

Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232:1004–7. PubMed

Cole LM, Casida JE. Polychlorocycloalkane insecticide-induced convulsions in mice in relation to disruption of the GABA-regulated chloride ionophore. Life Sci. 1986;39:1855–62. PubMed

Schottler C, Krisch K. Hydrolysis of steroid hormone esters by an unspecific carboxylesterase from pig liver microsomes. Biochem Pharmacol. 1974;23:2867–75. PubMed

Gee KW, Lan NC. Gamma-aminobutyric acidA receptor complexes in rat frontal cortex and spinal cord show differential responses to steroid modulation. Mol Pharmacol. 1991;40:995–9. PubMed

Belelli D, Lambert JJ, Peters JA, Gee KW, Lan NC. Modulation of human recombinant GABAA receptors by pregnanediols. Neuropharmacology. 1996;35:1223–31. PubMed

Weir CJ, Ling AT, Belelli D, Wildsmith JA, Peters JA, Lambert JJ. The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br J Anaesth. 2004;92:704–11. PubMed

Mareš P, Kudová E, Valeš K, Kubová H. Three neurosteroids as well as GABAergic drugs do not convert immediate postictal potentiation to depression in immature rats. Pharmacol Rep. 2020;72:1573–8. PubMed

Vyklický V, Krausová B, Černý J, Balík A, Zápotocký M, Novotný M, et al. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci Rep. 2015;5:10935. PubMed PMC

Analeptics Hahn F. Pharmacol Rev. 1960;12:447–530. PubMed

Zhao C, Hwang SH, Buchholz BA, Carpenter TS, Lightstone FC, Yang J, et al. GABAA receptor target of tetramethylenedisulfotetramine. Proc Natl Acad Sci U S A. 2014;111:8607–12. PubMed PMC

Chern CR, Chern CJ, Velíšková J, Velíšek L. ACTON PROLONGATUM(R) suppresses spasms head to head with Acthar(R) Gel in the model of infantile spasms. Epilepsy Behav. 2020;105:106950. PubMed

Dingledine R, Kleckner NW, McBain CJ. The glycine coagonist site of the NMDA receptor. Adv Exp Med Biol. 1990;268:17–26. PubMed

Johnson JW, Ascher P. Modulation of the NMDA response by glycine. In: Barnard EA, Costa E, editors. Allosteric modulation of amino acid receptors: Therapeutic implications. New York: Raven Press; 1989. p. 259–64.

Košťálová T. Účinky neuroaktivního steroidu na motoriku mláďat laboratorního potkana [in Czech]; Effects of neuroactive steroid on motor behaviors in developing rats. Praha: Charles University, 2nd Faculty of Medicine; 2020.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace