Novel neurosteroid pregnanolone pyroglutamate suppresses neurotoxicity syndrome induced by tetramethylenedisulfotetramine but is ineffective in a rodent model of infantile spasms
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 NS092786
NINDS NIH HHS - United States
R21 NS118337
NINDS NIH HHS - United States
R01NS092786
NINDS NIH HHS - United States
R21NS084900
NINDS NIH HHS - United States
R21NS118337-01
NINDS NIH HHS - United States
R21 NS084900
NINDS NIH HHS - United States
PubMed
36422805
PubMed Central
PMC10785007
DOI
10.1007/s43440-022-00437-1
PII: 10.1007/s43440-022-00437-1
Knihovny.cz E-zdroje
- Klíčová slova
- Antidote, Neurosteroids, Neurotoxicity, Severe seizures, Tetramethylenedisulfotetramine,
- MeSH
- diazepam farmakologie MeSH
- hlodavci MeSH
- křeče u dětí * chemicky indukované farmakoterapie MeSH
- kyselina glutamová MeSH
- kyselina pyrrolidonkarboxylová MeSH
- N-methylaspartát toxicita terapeutické užití MeSH
- neurosteroidy * MeSH
- neurotoxické syndromy * MeSH
- pregnanolon škodlivé účinky MeSH
- spasmus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diazepam MeSH
- kyselina glutamová MeSH
- kyselina pyrrolidonkarboxylová MeSH
- N-methylaspartát MeSH
- neurosteroidy * MeSH
- pregnanolon MeSH
- tetramethylenedisulfotetramine MeSH Prohlížeč
BACKGROUND: Neurosteroids are investigated as effective antidotes for the poisoning induced by tetramethylenedisulfotetramine (TMDT) as well as treatments for epileptic spasms during infancy. Both these conditions are quite resistant to pharmacotherapy; thus, a search for new treatments is warranted. METHODS: In this study, we determined the efficacy of two novel neurosteroids, pregnanolone glutamate (PAG) and pregnanolone pyroglutamate (PPG), and tested these drugs in doses of 1-10 mg/kg (ip) against the TMDT syndrome and in our rodent model of infantile spasms. RESULTS: Only PPG in doses 5 and 10 mg/kg suppressed the severity of the TMDT syndrome and TMDT-induced lethality, while the 1 mg/kg dose was without an effect. Interestingly, the 1 mg/kg dose of PPG in combination with 1 mg/kg of diazepam was also effective against TMDT poisoning. Neither PAG nor PPG were effective against experimental spasms in the N-methyl-D-aspartate (NMDA)-triggered model of infantile spasms. CONCLUSIONS: While evidence suggests that PAG can act through multiple actions which include allosteric inhibition of NMDA-induced and glycine receptor-evoked currents as well as augmentation of ɣ-aminobutyric acid subtype A (GABAA) receptor-induced currents, the agent appears to neither have the appropriate mechanistic signature for activity in the infantile spasm model, nor the adequate potency, relative to PPG, for ameliorating the TMDT syndrome. The full mechanisms of action of PPG, which may become a potent TMDT antidote either alone or in combination with diazepam are yet unknown and thus require further investigation.
Department of Cell Biology and Anatomy New York Medical College Valhalla NY USA
Department of Neurology New York Medical College Valhalla NY USA
Department of Obstetrics and Gynecology New York Medical College Valhalla NY USA
Department of Pediatrics New York Medical College Valhalla NY USA
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Sobotka P, Šafanda J. Analysis of the epileptogenic action of tetramine. Act Nerv Super (Praha). 1973;15:171–2. PubMed
Shakarjian MP, Velíšková J, Stanton PK, Velíšek L. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors. Toxicol Appl Pharmacol. 2012;265:113–21. PubMed PMC
Zolkowska D, Banks CN, Dhir A, Inceoglu B, Sanborn JR, McCoy MR, et al. Characterization of seizures induced by acute and repeated exposure to tetramethylenedisulfotetramine. J Pharmacol ExpTherap. 2012;341:435–46. PubMed PMC
Li JM, Gan J, Zeng TF, Sander JW, Zhou D. Tetramethylenedisulfotetramine intoxication presenting with de novo Status Epilepticus: a case series. NeuroToxicology. 2012;33:207–11. PubMed
Rice NC, Rauscher NA, Langston JL, Myers TM. Behavioral intoxication following voluntary oral ingestion of tetramethylenedisulfotetramine: Dose-dependent onset, severity, survival, and recovery. NeuroToxicology. 2017;63:21–32. PubMed PMC
Li Y, Gao Y, Yu X, Peng J, Ma F, Nelson L. Tetramine poisoning in China: changes over a decade viewed through the media's eye. BMC Public Health. 2014;14:842. PubMed PMC
Jett DA, Yeung DT. The CounterACT Research Network: basic mechanisms and practical applications. Proc Am Thoracic Soc. 2010;7:254–6. PubMed PMC
Bowery NG, Brown DA, Collins JF. Tetramethylenedisulphotetramine: an inhibitor of gamma-aminobutyric acid induced depolarization of the isolated superior cervical ganglion of the rat. Br J Pharmacol. 1975;53:422–4. PubMed PMC
Pressly B, Nguyen HM, Wulff H. GABAA receptor subtype selectivity of the proconvulsant rodenticide TETS. Arch Toxicol. 2018;92:833–44. PubMed PMC
Pressly B, Vasylieva N, Barnych B, Singh V, Singh L, Bruun DA, et al. Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Arch Toxicol. 2020;94:1995–2007. PubMed PMC
Moffett MC, Rauscher NA, Rice NC, Myers TM. Survey of drug therapies against acute oral tetramethylenedisulfotetramine poisoning in a rat voluntary consumption model. NeuroToxicology. 2019;74:264–71. PubMed
Shakarjian MP, Ali MS, Veliskova J, Stanton PK, Heck DE, Velisek L. Combined diazepam and MK-801 therapy provides synergistic protection from tetramethylenedisulfotetramine-induced tonic-clonic seizures and lethality in mice. NeuroToxicology. 2015;48:100–8. PubMed PMC
Bruun DA, Cao Z, Inceoglu B, Vito ST, Austin AT, Hulsizer S, et al. Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology. 2015;95:332–42. PubMed PMC
Kokate TG, Svensson BE, Rogawski MA. Anticonvulsant activity of neurosteroids: correlation with gamma- aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther. 1994;270:1223–9. PubMed
Mundy PC, Pressly B, Carty DR, Yaghoobi B, Wulff H, Lein PJ. The efficacy of gamma-aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicol Appl Pharmacol. 2021;426:115643. PubMed PMC
Zolkowska D, Wu CY, Rogawski MA. Intramuscular allopregnanolone and ganaxolone in a mouse model of treatment-resistant status epilepticus. Epilepsia. 2018;59 Suppl 2:220–7. PubMed PMC
Kerrigan JF, Shields WD, Nelson TY, Bluestone DL, Dodson WE, Bourgeois BF, et al. Ganaxolone for treating intractable infantile spasms: a multicenter, open-label, add-on trial. Epilepsy Res. 2000;42:133–9. PubMed
Dulac O, Soufflet C, Chiron C, Kaminska A. What is West syndrome? Int Rev Neurobiol. 2002;49:1–22. PubMed
Shao LR, Stafstrom CE. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models. Semin Pediatr Neurol. 2016;23:98–107. PubMed
O'Callaghan FJK, Edwards SW, Alber FD, Cortina Borja M, Hancock E, Johnson AL, et al. Vigabatrin with hormonal treatment versus hormonal treatment alone (ICISS) for infantile spasms: 18-month outcomes of an open-label, randomised controlled trial. Lancet Child Adolesc Health. 2018;2:715–25. PubMed
Lux AL, Edwards SW, Hancock E, Johnson AL, Kennedy CR, Newton RW, et al. The United Kingdom Infantile Spasms Study (UKISS) comparing hormone treatment with vigabatrin on developmental and epilepsy outcomes to age 14 months: a multicentre randomised trial. Lancet Neurol. 2005;4:712–7. PubMed
Riikonen R, Donner M. ACTH therapy in infantile spasms: side effects. Arch Dis Child. 1980;55:664–72. PubMed PMC
Riikonen RS. Steroids or vigabatrin in the treatment of infantile spasms? Pediatr Neurol. 2000;23:403–8. PubMed
Stafstrom CE, Arnason BG, Baram TZ, Catania A, Cortez MA, Glauser TA, et al. Treatment of infantile spasms: emerging insights from clinical and basic science perspectives. J Child Neurol. 2011;26:1411–21. PubMed
Velíšek L, Jehle K, Asche S, Velíšková J. Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann Neurol. 2007;61:109–19. PubMed
Velíšek L, Chachua T, Yum MS, Poon KL, Velíšková J. Model of cryptogenic infantile spasms after prenatal corticosteroid priming. Epilepsia. 2010;51 Suppl 3:145–9. PubMed PMC
Chachua T, Yum M-S, Velíšková J, Velíšek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia. 2011;52:1666–77. PubMed PMC
Yum MS, Lee M, Ko TS, Velíšek L. A potential effect of ganaxolone in an animal model of infantile spasms. Epilepsy Res. 2014;108:1492–500. PubMed
Rambousek L, Bubeníková-Valešová V, Kačer P, Syslová K, Kenney J, Holubová K, et al. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-d-aspartate receptor 3alpha5beta-pregnanolone glutamate. Neuropharmacology. 2011;61:61–8. PubMed
Kletečková L, Tsenov G, Kubová H, Stuchlík A, Valeš K. Neuroprotective effect of the 3alpha5beta-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci Lett. 2014;564:11–5. PubMed
Holubová K, Nekovářová T, Pistovčáková J, Šulcová A, Stuchlík A, Valeš K. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models. Front Behav Neurosci. 2014;8:130. PubMed PMC
Borovská J, Vyklický V, Šťastná E, Kapras V, Slavíková B, Horák M, et al. Access of inhibitory neurosteroids to the NMDA receptor. Br J Pharmacol. 2012;166:1069–83. PubMed PMC
Kudová E, Chodounská H, Slavíková B, Budešinský M, Nekardová M, Vyklický V, et al. A New Class of Potent N-Methyl-D-Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications. J Med Chem. 2015;58:5950–66. PubMed
Vyklický V, Šmejkalová T, Krausová B, Balík A, Kořínek M, Borovská J, et al. Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives. J Neurosci. 2016;36:2161–75. PubMed PMC
Cao Z, Hammock BD, McCoy M, Rogawski M, Lein P, Pessah I. Tetramethylenedisulfotetramine Alters Ca2+ Dynamics in Cultured Hippocampal Neurons: Mitigation by NMDA Blockade and GABAA Receptor Positive Modulation. Toxicol Sci. 2012; 130:362–372. PubMed PMC
Kudová E, Chodounská H, Mareš P, Valeš K. 3alpha, 5beta-neuroactive steroids for the treatment of epilepsy and seizure diseases. US Patent Application Publication US20220162257A1, 26 May 2022.
Chern CR, Chern CJ, Velíšková J, Velíšek L. AQB-565 shows promise in preclinical testing in the model of epileptic spasms during infancy: Head-to-head comparison with ACTH. Epilepsy Res. 2019;152:31–4. PubMed PMC
Adla SK, Slaviková B, Chodounská H, Vyklický V, Ladislav M, Hubálková P, et al. Strong Inhibitory Effect, Low Cytotoxicity and High Plasma Stability of Steroidal Inhibitors of N-Methyl-D-Aspartate Receptors With C-3 Amide Structural Motif. Front Pharmacol. 2018;9:1299. PubMed PMC
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia. 2017;58:181–221. PubMed
Lamb YN. Ganaxolone: First Approval. Drugs. 2022;82:933–40. PubMed
Perry MS. New and Emerging Medications for Treatment of Pediatric Epilepsy. Pediatr Neurol. 2020;107:24–7. PubMed
Bukanova JV, Solntseva EI, Kolbaev SN, Kudová E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3alpha5beta-pregnanolone derivatives. Neurochem Int. 2018;118:145–51. PubMed
Hawkinson JE, Kimbrough CL, Belelli D, Lambert JJ, Purdy RH, Lan NC. Correlation of neuroactive steroid modulation of [35S]t-butylbicyclophosphorothionate and [3H]flunitrazepam binding and gamma-aminobutyric acidA receptor function. Mol Pharmacol. 1994;46:977–85. PubMed
Holubova K, Chvojkova M, Hrcka Krausova B, Vyklicky V, Kudova E, Chodounska H, et al. Pitfalls of NMDA Receptor Modulation by Neuroactive Steroids. The Effect of Positive and Negative Modulation of NMDA Receptors in an Animal Model of Schizophrenia. Biomolecules. 2021;11. PubMed PMC
Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232:1004–7. PubMed
Cole LM, Casida JE. Polychlorocycloalkane insecticide-induced convulsions in mice in relation to disruption of the GABA-regulated chloride ionophore. Life Sci. 1986;39:1855–62. PubMed
Schottler C, Krisch K. Hydrolysis of steroid hormone esters by an unspecific carboxylesterase from pig liver microsomes. Biochem Pharmacol. 1974;23:2867–75. PubMed
Gee KW, Lan NC. Gamma-aminobutyric acidA receptor complexes in rat frontal cortex and spinal cord show differential responses to steroid modulation. Mol Pharmacol. 1991;40:995–9. PubMed
Belelli D, Lambert JJ, Peters JA, Gee KW, Lan NC. Modulation of human recombinant GABAA receptors by pregnanediols. Neuropharmacology. 1996;35:1223–31. PubMed
Weir CJ, Ling AT, Belelli D, Wildsmith JA, Peters JA, Lambert JJ. The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br J Anaesth. 2004;92:704–11. PubMed
Mareš P, Kudová E, Valeš K, Kubová H. Three neurosteroids as well as GABAergic drugs do not convert immediate postictal potentiation to depression in immature rats. Pharmacol Rep. 2020;72:1573–8. PubMed
Vyklický V, Krausová B, Černý J, Balík A, Zápotocký M, Novotný M, et al. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci Rep. 2015;5:10935. PubMed PMC
Analeptics Hahn F. Pharmacol Rev. 1960;12:447–530. PubMed
Zhao C, Hwang SH, Buchholz BA, Carpenter TS, Lightstone FC, Yang J, et al. GABAA receptor target of tetramethylenedisulfotetramine. Proc Natl Acad Sci U S A. 2014;111:8607–12. PubMed PMC
Chern CR, Chern CJ, Velíšková J, Velíšek L. ACTON PROLONGATUM(R) suppresses spasms head to head with Acthar(R) Gel in the model of infantile spasms. Epilepsy Behav. 2020;105:106950. PubMed
Dingledine R, Kleckner NW, McBain CJ. The glycine coagonist site of the NMDA receptor. Adv Exp Med Biol. 1990;268:17–26. PubMed
Johnson JW, Ascher P. Modulation of the NMDA response by glycine. In: Barnard EA, Costa E, editors. Allosteric modulation of amino acid receptors: Therapeutic implications. New York: Raven Press; 1989. p. 259–64.
Košťálová T. Účinky neuroaktivního steroidu na motoriku mláďat laboratorního potkana [in Czech]; Effects of neuroactive steroid on motor behaviors in developing rats. Praha: Charles University, 2nd Faculty of Medicine; 2020.