Pitfalls of NMDA Receptor Modulation by Neuroactive Steroids. The Effect of Positive and Negative Modulation of NMDA Receptors in an Animal Model of Schizophrenia

. 2021 Jul 14 ; 11 (7) : . [epub] 20210714

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34356650

Grantová podpora
20-17945S Grantová Agentura České Republiky
18-09296S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_025/0007444 European Regional Development Fund project "PharmaBrain"
LO1611 "Sustainability for the National Institute of Mental Health" from the Ministry of Education, Youth and Sports of the Czech Republic

Evidence from clinical and preclinical studies implicates dysfunction of N-methyl-D-aspartate receptors (NMDARs) in schizophrenia progression and symptoms. We investigated the antipsychotic effect of two neuroactive steroids in an animal model of schizophrenia induced by systemic application of MK-801. The neuroactive steroids differ in their mechanism of action at NMDARs. MS-249 is positive, while PA-Glu is a negative allosteric NMDAR modulator. We hypothesized that the positive NMDA receptor modulator would attenuate deficits caused by MK-801 co-application more effectively than PA-Glu. The rats were tested in a battery of tests assessing spontaneous locomotion, anxiety and cognition. Contrary to our expectations, PA-Glu exhibited a superior antipsychotic effect to MS-249. The performance of MS-249-treated rats in cognitive tests differed depending on the level of stress the rats were exposed to during test sessions. In particular, with the increasing severity of stress exposure, the performance of animals worsened. Our results demonstrate that enhancement of NMDAR function may result in unspecific behavioral responses. Positive NMDAR modulation can influence other neurobiological processes besides memory formation, such as anxiety and response to stress.

Zobrazit více v PubMed

Gibb J., Hayley S., Gandhi R., Poulter M.O., Anisman H. Synergistic and additive actions of a psychosocial stressor and endotoxin challenge: Circulating and brain cytokines, plasma corticosterone and behavioral changes in mice. Brain Behav. Immun. 2008;22:573–589. doi: 10.1016/j.bbi.2007.12.001. PubMed DOI

Snyder M.A., Gao W.J. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front. Cell. Neurosci. 2013;7:1–12. doi: 10.3389/fncel.2013.00031. PubMed DOI PMC

Kehrer C. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front. Mol. Neurosci. 2008 doi: 10.3389/neuro.02.006.2008. PubMed DOI PMC

Vyklicky V., Korinek M., Smejkalova T., Balik A., Krausova B., Kaniakova M., Lichnerova K., Cerny J., Krusek J., Dittert I., et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 2014;63:S191–S203. doi: 10.33549/physiolres.932678. PubMed DOI

Augustine G.J., Santamaria F., Tanaka K. Local calcium signaling in neurons. Neuron. 2003;40:331–346. doi: 10.1016/S0896-6273(03)00639-1. PubMed DOI

Evans R.C., Blackwell K.T. Calcium: Amplitude, duration, or location? Biol. Bull. 2015 doi: 10.1086/BBLv228n1p75. PubMed DOI PMC

Berridge M.J., Lipp P., Bootman M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000;1:11–21. doi: 10.1038/35036035. PubMed DOI

Orrenius S., Zhivotovsky B., Nicotera P. Regulation of cell death: The calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 2003;4:552–565. doi: 10.1038/nrm1150. PubMed DOI

Le Meur K., Galante M., Angulo M.C., Audinat E. Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J. Physiol. 2007 doi: 10.1113/jphysiol.2006.123570. PubMed DOI PMC

Yao L., Grand T., Hanson J., Paoletti P., Zhou Q. Higher ambient synaptic glutamate at inhibitory versus excitatory neurons differentially impacts NMDA receptor activity. Nat. Commun. 2018 doi: 10.1038/s41467-018-06512-7. PubMed DOI PMC

Lester R.A.J., Clements J.D., Westbrook G.L., Jahr C.E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature. 1990 doi: 10.1038/346565a0. PubMed DOI

Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC

Marx C.E., Keefe R.S.E., Buchanan R.W., Hamer R.M., Kilts J.D., Bradford D.W., Strauss J.L., Naylor J.C., Payne V.M., Lieberman J.A., et al. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology. 2009 doi: 10.1038/npp.2009.26. PubMed DOI PMC

Marx C.E., Lee J., Subramaniam M., Rapisarda A., Bautista D.C.T., Chan E., Kilts J.D., Buchanan R.W., Wai E.P., Verma S., et al. Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacology. 2014 doi: 10.1007/s00213-014-3673-4. PubMed DOI

Ritsner M.S., Bawakny H., Kreinin A. Pregnenolone treatment reduces severity of negative symptoms in recent-onset schizophrenia: An 8-week, double-blind, randomized add-on two-center trial. Psychiatry Clin. Neurosci. 2014 doi: 10.1111/pcn.12150. PubMed DOI

Kreinin A., Bawakny N., Ritsner M.S. Adjunctive pregnenolone ameliorates the cognitive deficits in recent-onset schizophrenia: An 8-week, randomized, double-blind, placebo-controlled trial. Clin. Schizophr. Relat. Psychoses. 2017 doi: 10.3371/CSRP.KRBA.013114. PubMed DOI

Brown E.S., Park J., Marx C.E., Hynan L.S., Gardner C., Davila D., Nakamura A., Sunderajan P., Lo A., Holmes T. A randomized, double-blind, placebo-controlled trial of pregnenolone for bipolar depression. Neuropsychopharmacology. 2014 doi: 10.1038/npp.2014.138. PubMed DOI PMC

Sripada R.K., Marx C.E., King A.P., Rampton J.C., Ho S.S., Liberzon I. Allopregnanolone elevations following pregnenolone administration are associated with enhanced activation of emotion regulation neurocircuits. Biol. Psychiatry. 2013 doi: 10.1016/j.biopsych.2012.12.008. PubMed DOI PMC

Stein D.G. Progesterone in the treatment of acute traumatic brain injury: A clinical perspective and update. Neuroscience. 2011;191:101–106. doi: 10.1016/j.neuroscience.2011.04.013. PubMed DOI

Rajagopal L., Soni D., Meltzer H.Y. Neurosteroid pregnenolone sulfate, alone, and as augmentation of lurasidone or tandospirone, rescues phencyclidine-induced deficits in cognitive function and social interaction. Behav. Brain Res. 2018 doi: 10.1016/j.bbr.2018.05.005. PubMed DOI

Korinek M., Kapras V., Vyklicky V., Adamusova E., Borovska J., Vales K., Stuchlik A., Horak M., Chodounska H., Vyklicky L. Neurosteroid modulation of N-methyl-d-aspartate receptors: Molecular mechanism and behavioral effects. Steroids. 2011;76:1409–1418. doi: 10.1016/j.steroids.2011.09.002. PubMed DOI

Horak M., Vlcek K., Petrovic M., Chodounska H., Vyklicky L. Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. J. Neurosci. 2004 doi: 10.1523/JNEUROSCI.2099-04.2004. PubMed DOI PMC

Horak M., Vlcek K., Chodounska H., Vyklicky L. Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience. 2006 doi: 10.1016/j.neuroscience.2005.08.058. PubMed DOI

Krausova B.H., Kysilov B., Cerny J., Vyklicky V., Smejkalova T., Ladislav M., Balik A., Korinek M., Chodounska H., Kudova E., et al. Site of action of brain neurosteroid pregnenolone sulfate at the N-methyl-D-aspartate receptor. J. Neurosci. 2020 doi: 10.1523/JNEUROSCI.3010-19.2020. PubMed DOI PMC

Flood J.F., Morley J.E., Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc. Natl. Acad. Sci. USA. 1992 doi: 10.1073/pnas.89.5.1567. PubMed DOI PMC

Mathis C., Paul S.M., Crawley J.N. The neurosteroid pregnenolone sulfate blocks NMDA antagonist-induced deficits in a passive avoidance memory task. Psychopharmacology. 1994 doi: 10.1007/BF02245063. PubMed DOI

Lee K.H., Cho J.H., Choi I.S., Park H.M., Lee M.G., Choi B.J., Jang I.S. Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release. Neuroscience. 2010;171:106–116. doi: 10.1016/j.neuroscience.2010.07.057. PubMed DOI

Cheney D.L., Uzunov D., Guidotti A. Pregnenolone sulfate antagonizes dizocilpine amnesia: Role for allopregnanolone. Neuroreport. 1995 doi: 10.1097/00001756-199508000-00025. PubMed DOI

Reddy D.S., Kulkarni S.K. Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment. Brain Res. 1998;799:215–229. doi: 10.1016/S0006-8993(98)00419-3. PubMed DOI

Marx C.E., Bradford D.W., Hamer R.M., Naylor J.C., Allen T.B., Lieberman J.A., Strauss J.L., Kilts J.D. Pregnenolone as a novel therapeutic candidate in schizophrenia: Emerging preclinical and clinical evidence. Neuroscience. 2011;191:78–90. doi: 10.1016/j.neuroscience.2011.06.076. PubMed DOI

Vallée M., Mayo W., Darnaudéry M., Corpéchot C., Young J., Koehl M., Le Moal M., Baulieu E.E., Robel P., Simon H. Neurosteroids: Deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc. Natl. Acad. Sci. USA. 1997 doi: 10.1073/pnas.94.26.14865. PubMed DOI PMC

Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., Lichnerova K., Smejkalova T., Kaniakova M., Korinek M., et al. Block of NMDA receptor channels by endogenous neurosteroids: Implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 2015 doi: 10.1038/srep10935. PubMed DOI PMC

Kussius C.L., Kaur N., Popescu G.K. Pregnanolone sulfate promotes desensitization of activated NMDA receptors. J. Neurosci. 2009 doi: 10.1523/JNEUROSCI.0281-09.2009. PubMed DOI PMC

Covey D.F., Evers A.S., Mennerick S., Zorumski C.F., Purdy R.H. Recent developments in structure-activity relationships for steroid modulators of GABAA receptors. Brain Res. Rev. 2001;37:91–97. doi: 10.1016/S0165-0173(01)00126-6. PubMed DOI

Sedláček M., Kořínek M., Petrovic M., Cais O., Adamusová E., Chodounská H., Vyklický L. Neurosteroid modulation of ionotropic glutamate receptors and excitatory synaptic transmission. Physiol. Res. 2008;57:S49–S57. doi: 10.33549/physiolres.931600. PubMed DOI

Maksay G., Laube B., Betz H. Subunit-specific modulation of glycine receptors by neurosteroids. Neuropharmacology. 2001 doi: 10.1016/S0028-3908(01)00071-5. PubMed DOI

Kobayashi T., Washiyama K., Ikeda K. Pregnenolone sulfate potentiates the inwardly rectifying K+ channel Kir2.3. PLoS ONE. 2009;4:e6311. doi: 10.1371/journal.pone.0006311. PubMed DOI PMC

Horishita T., Ueno S., Yanagihara N., Sudo Y., Uezono Y., Okura D., Sata T. Inhibition by pregnenolone sulphate, a metabolite of the neurosteroid pregnenolone, of voltage-gated sodium channels expressed in Xenopus oocytes. J. Pharmacol. Sci. 2012 doi: 10.1254/jphs.12106SC. PubMed DOI

Schumacher M., Liere P., Akwa Y., Rajkowski K., Griffiths W., Bodin K., Sjövall J., Baulieu E.E. Pregnenolone sulfate in the brain: A controversial neurosteroid. Neurochem. Int. 2008 doi: 10.1016/j.neuint.2007.08.022. PubMed DOI

Vyklicky V., Smejkalova T., Krausova B., Balik A., Korinek M., Borovska J., Horak M., Chvojkova M., Kleteckova L., Vales K., et al. Preferential inhibition of tonically over phasically activated nmda receptors by pregnane derivatives. J. Neurosci. 2016 doi: 10.1523/JNEUROSCI.3181-15.2016. PubMed DOI PMC

Rambousek L., Bubenikova-Valesova V., Kacer P., Syslova K., Kenney J., Holubova K., Najmanova V., Zach P., Svoboda J., Stuchlik A., et al. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-D-aspartate receptor 3α5β-pregnanolone glutamate. Neuropharmacology. 2011;61 doi: 10.1016/j.neuropharm.2011.02.018. PubMed DOI

Vales K., Rambousek L., Holubova K., Svoboda J., Bubenikova-Valesova V., Chodounska H., Vyklicky L., Stuchlik A. 3α5β-Pregnanolone glutamate, a use-dependent NMDA antagonist, reversed spatial learning deficit in an animal model of schizophrenia. Behav. Brain Res. 2012;235 doi: 10.1016/j.bbr.2012.07.020. PubMed DOI

Holubova K., Nekovarova T., Pistovcakova J., Sulcova A., Stuchlík A., Vales K. Pregnanolone glutamate, a novel use-dependent NMDA receptor inhibitor, exerts antidepressant-like properties in animal models. Front. Behav. Neurosci. 2014;8 doi: 10.3389/fnbeh.2014.00130. PubMed DOI PMC

Borovska J., Vyklicky V., Stastna E., Kapras V., Slavikova B., Horak M., Chodounska H., Vyklicky L. Access of inhibitory neurosteroids to the NMDA receptor. Br. J. Pharmacol. 2012 doi: 10.1111/j.1476-5381.2011.01816.x. PubMed DOI PMC

Stuchlík A., Petrásek T., Prokopová I., Holubová K., Hatalová H., Valeš K., Kubík S., Dockery C., Wesierska M. Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 2013;62:S1–S19. doi: 10.33549/physiolres.932635. PubMed DOI

Hawkinson J.E., Kimbrough C.L., Belelli D., Lambert J.J., Purdy R.H., Lan N.C. Correlation of neuroactive steroid modulation of [35S]t- butylbicyclophosphorothionate and [3H]flunitrazepam binding and γ- aminobutyric acid(A) receptor function. Mol. Pharmacol. 1994;46:977–985. PubMed

Majewska M.D., Harrison N.L., Schwartz R.D., Barker J.L., Paul S.M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986 doi: 10.1126/science.2422758. PubMed DOI

Wang X., Luo C., Mao X.Y., Li X., Yin J.Y., Zhang W., Zhou H.H., Liu Z.Q. Metformin reverses the schizophrenia-like behaviors induced by MK-801 in rats. Brain Res. 2019;1719:30–39. doi: 10.1016/j.brainres.2019.05.023. PubMed DOI

Hackler E.A., Byun N.E., Jones C.K., Williams J.M., Baheza R., Sengupta S., Grier M.D., Avison M., Conn P.J., Gore J.C. Selective potentiation of the metabotropic glutamate receptor subtype 2 blocks phencyclidine-induced hyperlocomotion and brain activation. Neuroscience. 2010;168:209–218. doi: 10.1016/j.neuroscience.2010.02.057. PubMed DOI PMC

Ghedim F.V., Fraga D.D., Deroza P.F., Oliveira M.B., Valvassori S.S., Steckert A.V., Budni J., Dal-Pizzol F., Quevedo J., Zugno A.I. Evaluation of behavioral and neurochemical changes induced by ketamine in rats: Implications as an animal model of mania. J. Psychiatr. Res. 2012;46:1569–1575. doi: 10.1016/j.jpsychires.2012.08.010. PubMed DOI

Inostroza M., Cid E., Brotons-Mas J., Gal B., Aivar P., Uzcateg Y.G., Sandi C., de la Prida L.M. Hippocampal-Dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS ONE. 2011;6:e22372. doi: 10.1371/journal.pone.0022372. PubMed DOI PMC

Shoji H., Miyakawa T. Effects of test experience, closed-arm wall color, and illumination level on behavior and plasma corticosterone response in an elevated plus maze in male C57BL/6J mice: A challenge against conventional interpretation of the test. Mol. Brain. 2021 doi: 10.1186/s13041-020-00721-2. PubMed DOI PMC

Shoji H., Miyakawa T. Relationships between the acoustic startle response and prepulse inhibition in C57BL/6J mice: A large-scale meta-analytic study. Mol. Brain. 2018;11:1–9. doi: 10.1186/s13041-018-0382-7. PubMed DOI PMC

Swerdlow N.R., Light G.A., Thomas M.L., Sprock J., Calkins M.E., Green M.F., Greenwood T.A., Gur R.E., Gur R.C., Lazzeroni L.C., et al. Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophr. Res. 2018;198:6–15. doi: 10.1016/j.schres.2017.05.013. PubMed DOI PMC

Kawabe K., Miyamoto E. Effects of early postnatal MK-801 treatment on behavioral properties in rats: Differences according to treatment schedule. Behav. Brain Res. 2019;370 doi: 10.1016/j.bbr.2019.111926. PubMed DOI

Jurado-Barba R., Morales-Muñoz I., del Manzano B.Á., Fernández-Guinea S., Caballero M., Martínez-Gras I., Rubio-Valladolid G. Relationship between measures of inhibitory processes in patients with schizophrenia: Role of substance abuse disorders. Psychiatry Res. 2011;190:187–192. doi: 10.1016/j.psychres.2011.06.002. PubMed DOI

Wang X., Ding S., Lu Y., Jiao Z., Zhang L., Zhang Y., Yang Y., Zhang Y., Li W., Lv L. Effects of sodium nitroprusside in the acute dizocilpine (MK-801) animal model of schizophrenia. Brain Res. Bull. 2019 doi: 10.1016/j.brainresbull.2019.02.008. PubMed DOI

Kraeuter A.K., Mashavave T., Suvarna A., van den Buuse M., Sarnyai Z. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology. 2020 doi: 10.1007/s00213-020-05467-2. PubMed DOI

Geyer M.A., Krebs-Thomson K., Braff D.L., Swerdlow N.R. Pharmacological Studies of Prepulse Inhibition Models of Sensorimotor Gating Deficits in Schizophrenia: A Decade in Review. Psychopharmacology. 2001;156:117–154. doi: 10.1007/s002130100811. PubMed DOI

Bukanova J.V., Solntseva E.I., Kolbaev S.N., Kudova E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3α5β-pregnanolone derivatives. Neurochem. Int. 2018 doi: 10.1016/j.neuint.2018.06.002. PubMed DOI

Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood–brain barrier in the adult male rat. J. Neurochem. 2017 doi: 10.1111/jnc.14117. PubMed DOI PMC

Romeo E., Cheney D.L., Zivkovic I., Costa E., Guidotti A. Mitochondrial diazepam-binding inhibitor receptor complex agonists antagonize dizocilpine amnesia: Putative role for allopregnanolone. J. Pharmacol. Exp. Ther. 1994;270:89–96. PubMed

Grillon C., Duncko R., Covington M.F., Kopperman L., Kling M.A. Acute Stress Potentiates Anxiety in Humans. Biol. Psychiatry. 2007;62:1183–1186. doi: 10.1016/j.biopsych.2007.06.007. PubMed DOI PMC

Reznikov L.R., Grillo C.A., Piroli G.G., Pasumarthi R.K., Reagan L.P., Fadel J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: Differential effects of antidepressant treatment. Eur. J. Neurosci. 2007;25:3109–3114. doi: 10.1111/j.1460-9568.2007.05560.x. PubMed DOI

Yuen E.Y., Liu W., Karatsoreos I.N., Feng J., McEwen B.S., Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl. Acad. Sci. USA. 2009 doi: 10.1073/pnas.0906791106. PubMed DOI PMC

Treccani G., Musazzi L., Perego C., Milanese M., Nava N., Bonifacino T., Lamanna J., Malgaroli A., Drago F., Racagni G., et al. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol. Psychiatry. 2014;19:433–443. doi: 10.1038/mp.2014.5. PubMed DOI

Shields G.S., Sazma M.A., Yonelinas A.P. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci. Biobehav. Rev. 2016;68:651–668. doi: 10.1016/j.neubiorev.2016.06.038. PubMed DOI PMC

Biggio G., Concas A., Follesa P., Sanna E., Serra M. Stress, ethanol, and neuroactive steroids. Pharmacol. Ther. 2007;116:140–171. doi: 10.1016/j.pharmthera.2007.04.005. PubMed DOI PMC

Barbaccia M.L., Roscetti G., Trabucchi M., Mostallino M.C., Concas A., Purdy R.H., Biggio G. Time-dependent changes in rat brain neuroactive steroid concentrations and gabaa receptor function after acute stress. Neuroendocrinology. 1996 doi: 10.1159/000126953. PubMed DOI

Grunze H.C.R., Rainnie D.G., Hasselmo M.E., Barkai E., Hearn E.F., McCarley R.W., Greene R.W. NMDA-dependent modulation of CA1 local circuit inhibition. J. Neurosci. 1996;16:2034–2043. doi: 10.1523/JNEUROSCI.16-06-02034.1996. PubMed DOI PMC

Homayoun H., Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J. Neurosci. 2007 doi: 10.1523/JNEUROSCI.2213-07.2007. PubMed DOI PMC

Kudo K., Tachikawa E., Kashimoto T. Inhibition by pregnenolone sulfate of nicotinic acetylcholine response in adrenal chromaffin cells. Eur. J. Pharmacol. 2002;456:19–27. doi: 10.1016/S0014-2999(02)02623-7. PubMed DOI

Shirakawa H., Katsuki H., Kume T., Kaneko S., Akaike A. Pregnenolone sulphate attenuates AMPA cytotoxicity on rat cortical neurons. Eur. J. Neurosci. 2005;21:2329–2335. doi: 10.1111/j.1460-9568.2005.04079.x. PubMed DOI

Boero G., Porcu P., Morrow A.L. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol. Stress. 2020;12:100203. doi: 10.1016/j.ynstr.2019.100203. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...