Pitfalls of NMDA Receptor Modulation by Neuroactive Steroids. The Effect of Positive and Negative Modulation of NMDA Receptors in an Animal Model of Schizophrenia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20-17945S
Grantová Agentura České Republiky
18-09296S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_025/0007444
European Regional Development Fund project "PharmaBrain"
LO1611
"Sustainability for the National Institute of Mental Health" from the Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34356650
PubMed Central
PMC8301783
DOI
10.3390/biom11071026
PII: biom11071026
Knihovny.cz E-zdroje
- Klíčová slova
- MK-801, anxiety, cognition, neurosteroids, schizophrenia, stress,
- MeSH
- antipsychotika farmakologie MeSH
- bicyklické sloučeniny heterocyklické metabolismus MeSH
- chování zvířat účinky léků MeSH
- dizocilpinmaleát farmakologie MeSH
- HEK293 buňky MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani Long-Evans MeSH
- potkani Wistar MeSH
- pregnenolon metabolismus farmakologie MeSH
- receptory N-methyl-D-aspartátu antagonisté a inhibitory metabolismus MeSH
- schizofrenie farmakoterapie metabolismus MeSH
- steroidy farmakologie MeSH
- test vyvýšeného křížového bludiště MeSH
- úleková reakce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antipsychotika MeSH
- bicyklické sloučeniny heterocyklické MeSH
- dizocilpinmaleát MeSH
- pregnenolon MeSH
- pregnenolone sulfate MeSH Prohlížeč
- receptory N-methyl-D-aspartátu MeSH
- steroidy MeSH
- tert-butylbicyclophosphorothionate MeSH Prohlížeč
Evidence from clinical and preclinical studies implicates dysfunction of N-methyl-D-aspartate receptors (NMDARs) in schizophrenia progression and symptoms. We investigated the antipsychotic effect of two neuroactive steroids in an animal model of schizophrenia induced by systemic application of MK-801. The neuroactive steroids differ in their mechanism of action at NMDARs. MS-249 is positive, while PA-Glu is a negative allosteric NMDAR modulator. We hypothesized that the positive NMDA receptor modulator would attenuate deficits caused by MK-801 co-application more effectively than PA-Glu. The rats were tested in a battery of tests assessing spontaneous locomotion, anxiety and cognition. Contrary to our expectations, PA-Glu exhibited a superior antipsychotic effect to MS-249. The performance of MS-249-treated rats in cognitive tests differed depending on the level of stress the rats were exposed to during test sessions. In particular, with the increasing severity of stress exposure, the performance of animals worsened. Our results demonstrate that enhancement of NMDAR function may result in unspecific behavioral responses. Positive NMDAR modulation can influence other neurobiological processes besides memory formation, such as anxiety and response to stress.
Institute of Physiology CAS Videnska 1083 14220 Prague Czech Republic
National Institute of Mental Health Topolova 748 25067 Klecany Czech Republic
Zobrazit více v PubMed
Gibb J., Hayley S., Gandhi R., Poulter M.O., Anisman H. Synergistic and additive actions of a psychosocial stressor and endotoxin challenge: Circulating and brain cytokines, plasma corticosterone and behavioral changes in mice. Brain Behav. Immun. 2008;22:573–589. doi: 10.1016/j.bbi.2007.12.001. PubMed DOI
Snyder M.A., Gao W.J. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front. Cell. Neurosci. 2013;7:1–12. doi: 10.3389/fncel.2013.00031. PubMed DOI PMC
Kehrer C. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front. Mol. Neurosci. 2008 doi: 10.3389/neuro.02.006.2008. PubMed DOI PMC
Vyklicky V., Korinek M., Smejkalova T., Balik A., Krausova B., Kaniakova M., Lichnerova K., Cerny J., Krusek J., Dittert I., et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 2014;63:S191–S203. doi: 10.33549/physiolres.932678. PubMed DOI
Augustine G.J., Santamaria F., Tanaka K. Local calcium signaling in neurons. Neuron. 2003;40:331–346. doi: 10.1016/S0896-6273(03)00639-1. PubMed DOI
Evans R.C., Blackwell K.T. Calcium: Amplitude, duration, or location? Biol. Bull. 2015 doi: 10.1086/BBLv228n1p75. PubMed DOI PMC
Berridge M.J., Lipp P., Bootman M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000;1:11–21. doi: 10.1038/35036035. PubMed DOI
Orrenius S., Zhivotovsky B., Nicotera P. Regulation of cell death: The calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 2003;4:552–565. doi: 10.1038/nrm1150. PubMed DOI
Le Meur K., Galante M., Angulo M.C., Audinat E. Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J. Physiol. 2007 doi: 10.1113/jphysiol.2006.123570. PubMed DOI PMC
Yao L., Grand T., Hanson J., Paoletti P., Zhou Q. Higher ambient synaptic glutamate at inhibitory versus excitatory neurons differentially impacts NMDA receptor activity. Nat. Commun. 2018 doi: 10.1038/s41467-018-06512-7. PubMed DOI PMC
Lester R.A.J., Clements J.D., Westbrook G.L., Jahr C.E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature. 1990 doi: 10.1038/346565a0. PubMed DOI
Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC
Marx C.E., Keefe R.S.E., Buchanan R.W., Hamer R.M., Kilts J.D., Bradford D.W., Strauss J.L., Naylor J.C., Payne V.M., Lieberman J.A., et al. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology. 2009 doi: 10.1038/npp.2009.26. PubMed DOI PMC
Marx C.E., Lee J., Subramaniam M., Rapisarda A., Bautista D.C.T., Chan E., Kilts J.D., Buchanan R.W., Wai E.P., Verma S., et al. Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacology. 2014 doi: 10.1007/s00213-014-3673-4. PubMed DOI
Ritsner M.S., Bawakny H., Kreinin A. Pregnenolone treatment reduces severity of negative symptoms in recent-onset schizophrenia: An 8-week, double-blind, randomized add-on two-center trial. Psychiatry Clin. Neurosci. 2014 doi: 10.1111/pcn.12150. PubMed DOI
Kreinin A., Bawakny N., Ritsner M.S. Adjunctive pregnenolone ameliorates the cognitive deficits in recent-onset schizophrenia: An 8-week, randomized, double-blind, placebo-controlled trial. Clin. Schizophr. Relat. Psychoses. 2017 doi: 10.3371/CSRP.KRBA.013114. PubMed DOI
Brown E.S., Park J., Marx C.E., Hynan L.S., Gardner C., Davila D., Nakamura A., Sunderajan P., Lo A., Holmes T. A randomized, double-blind, placebo-controlled trial of pregnenolone for bipolar depression. Neuropsychopharmacology. 2014 doi: 10.1038/npp.2014.138. PubMed DOI PMC
Sripada R.K., Marx C.E., King A.P., Rampton J.C., Ho S.S., Liberzon I. Allopregnanolone elevations following pregnenolone administration are associated with enhanced activation of emotion regulation neurocircuits. Biol. Psychiatry. 2013 doi: 10.1016/j.biopsych.2012.12.008. PubMed DOI PMC
Stein D.G. Progesterone in the treatment of acute traumatic brain injury: A clinical perspective and update. Neuroscience. 2011;191:101–106. doi: 10.1016/j.neuroscience.2011.04.013. PubMed DOI
Rajagopal L., Soni D., Meltzer H.Y. Neurosteroid pregnenolone sulfate, alone, and as augmentation of lurasidone or tandospirone, rescues phencyclidine-induced deficits in cognitive function and social interaction. Behav. Brain Res. 2018 doi: 10.1016/j.bbr.2018.05.005. PubMed DOI
Korinek M., Kapras V., Vyklicky V., Adamusova E., Borovska J., Vales K., Stuchlik A., Horak M., Chodounska H., Vyklicky L. Neurosteroid modulation of N-methyl-d-aspartate receptors: Molecular mechanism and behavioral effects. Steroids. 2011;76:1409–1418. doi: 10.1016/j.steroids.2011.09.002. PubMed DOI
Horak M., Vlcek K., Petrovic M., Chodounska H., Vyklicky L. Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. J. Neurosci. 2004 doi: 10.1523/JNEUROSCI.2099-04.2004. PubMed DOI PMC
Horak M., Vlcek K., Chodounska H., Vyklicky L. Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience. 2006 doi: 10.1016/j.neuroscience.2005.08.058. PubMed DOI
Krausova B.H., Kysilov B., Cerny J., Vyklicky V., Smejkalova T., Ladislav M., Balik A., Korinek M., Chodounska H., Kudova E., et al. Site of action of brain neurosteroid pregnenolone sulfate at the N-methyl-D-aspartate receptor. J. Neurosci. 2020 doi: 10.1523/JNEUROSCI.3010-19.2020. PubMed DOI PMC
Flood J.F., Morley J.E., Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc. Natl. Acad. Sci. USA. 1992 doi: 10.1073/pnas.89.5.1567. PubMed DOI PMC
Mathis C., Paul S.M., Crawley J.N. The neurosteroid pregnenolone sulfate blocks NMDA antagonist-induced deficits in a passive avoidance memory task. Psychopharmacology. 1994 doi: 10.1007/BF02245063. PubMed DOI
Lee K.H., Cho J.H., Choi I.S., Park H.M., Lee M.G., Choi B.J., Jang I.S. Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release. Neuroscience. 2010;171:106–116. doi: 10.1016/j.neuroscience.2010.07.057. PubMed DOI
Cheney D.L., Uzunov D., Guidotti A. Pregnenolone sulfate antagonizes dizocilpine amnesia: Role for allopregnanolone. Neuroreport. 1995 doi: 10.1097/00001756-199508000-00025. PubMed DOI
Reddy D.S., Kulkarni S.K. Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment. Brain Res. 1998;799:215–229. doi: 10.1016/S0006-8993(98)00419-3. PubMed DOI
Marx C.E., Bradford D.W., Hamer R.M., Naylor J.C., Allen T.B., Lieberman J.A., Strauss J.L., Kilts J.D. Pregnenolone as a novel therapeutic candidate in schizophrenia: Emerging preclinical and clinical evidence. Neuroscience. 2011;191:78–90. doi: 10.1016/j.neuroscience.2011.06.076. PubMed DOI
Vallée M., Mayo W., Darnaudéry M., Corpéchot C., Young J., Koehl M., Le Moal M., Baulieu E.E., Robel P., Simon H. Neurosteroids: Deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc. Natl. Acad. Sci. USA. 1997 doi: 10.1073/pnas.94.26.14865. PubMed DOI PMC
Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., Lichnerova K., Smejkalova T., Kaniakova M., Korinek M., et al. Block of NMDA receptor channels by endogenous neurosteroids: Implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 2015 doi: 10.1038/srep10935. PubMed DOI PMC
Kussius C.L., Kaur N., Popescu G.K. Pregnanolone sulfate promotes desensitization of activated NMDA receptors. J. Neurosci. 2009 doi: 10.1523/JNEUROSCI.0281-09.2009. PubMed DOI PMC
Covey D.F., Evers A.S., Mennerick S., Zorumski C.F., Purdy R.H. Recent developments in structure-activity relationships for steroid modulators of GABAA receptors. Brain Res. Rev. 2001;37:91–97. doi: 10.1016/S0165-0173(01)00126-6. PubMed DOI
Sedláček M., Kořínek M., Petrovic M., Cais O., Adamusová E., Chodounská H., Vyklický L. Neurosteroid modulation of ionotropic glutamate receptors and excitatory synaptic transmission. Physiol. Res. 2008;57:S49–S57. doi: 10.33549/physiolres.931600. PubMed DOI
Maksay G., Laube B., Betz H. Subunit-specific modulation of glycine receptors by neurosteroids. Neuropharmacology. 2001 doi: 10.1016/S0028-3908(01)00071-5. PubMed DOI
Kobayashi T., Washiyama K., Ikeda K. Pregnenolone sulfate potentiates the inwardly rectifying K+ channel Kir2.3. PLoS ONE. 2009;4:e6311. doi: 10.1371/journal.pone.0006311. PubMed DOI PMC
Horishita T., Ueno S., Yanagihara N., Sudo Y., Uezono Y., Okura D., Sata T. Inhibition by pregnenolone sulphate, a metabolite of the neurosteroid pregnenolone, of voltage-gated sodium channels expressed in Xenopus oocytes. J. Pharmacol. Sci. 2012 doi: 10.1254/jphs.12106SC. PubMed DOI
Schumacher M., Liere P., Akwa Y., Rajkowski K., Griffiths W., Bodin K., Sjövall J., Baulieu E.E. Pregnenolone sulfate in the brain: A controversial neurosteroid. Neurochem. Int. 2008 doi: 10.1016/j.neuint.2007.08.022. PubMed DOI
Vyklicky V., Smejkalova T., Krausova B., Balik A., Korinek M., Borovska J., Horak M., Chvojkova M., Kleteckova L., Vales K., et al. Preferential inhibition of tonically over phasically activated nmda receptors by pregnane derivatives. J. Neurosci. 2016 doi: 10.1523/JNEUROSCI.3181-15.2016. PubMed DOI PMC
Rambousek L., Bubenikova-Valesova V., Kacer P., Syslova K., Kenney J., Holubova K., Najmanova V., Zach P., Svoboda J., Stuchlik A., et al. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-D-aspartate receptor 3α5β-pregnanolone glutamate. Neuropharmacology. 2011;61 doi: 10.1016/j.neuropharm.2011.02.018. PubMed DOI
Vales K., Rambousek L., Holubova K., Svoboda J., Bubenikova-Valesova V., Chodounska H., Vyklicky L., Stuchlik A. 3α5β-Pregnanolone glutamate, a use-dependent NMDA antagonist, reversed spatial learning deficit in an animal model of schizophrenia. Behav. Brain Res. 2012;235 doi: 10.1016/j.bbr.2012.07.020. PubMed DOI
Holubova K., Nekovarova T., Pistovcakova J., Sulcova A., Stuchlík A., Vales K. Pregnanolone glutamate, a novel use-dependent NMDA receptor inhibitor, exerts antidepressant-like properties in animal models. Front. Behav. Neurosci. 2014;8 doi: 10.3389/fnbeh.2014.00130. PubMed DOI PMC
Borovska J., Vyklicky V., Stastna E., Kapras V., Slavikova B., Horak M., Chodounska H., Vyklicky L. Access of inhibitory neurosteroids to the NMDA receptor. Br. J. Pharmacol. 2012 doi: 10.1111/j.1476-5381.2011.01816.x. PubMed DOI PMC
Stuchlík A., Petrásek T., Prokopová I., Holubová K., Hatalová H., Valeš K., Kubík S., Dockery C., Wesierska M. Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 2013;62:S1–S19. doi: 10.33549/physiolres.932635. PubMed DOI
Hawkinson J.E., Kimbrough C.L., Belelli D., Lambert J.J., Purdy R.H., Lan N.C. Correlation of neuroactive steroid modulation of [35S]t- butylbicyclophosphorothionate and [3H]flunitrazepam binding and γ- aminobutyric acid(A) receptor function. Mol. Pharmacol. 1994;46:977–985. PubMed
Majewska M.D., Harrison N.L., Schwartz R.D., Barker J.L., Paul S.M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986 doi: 10.1126/science.2422758. PubMed DOI
Wang X., Luo C., Mao X.Y., Li X., Yin J.Y., Zhang W., Zhou H.H., Liu Z.Q. Metformin reverses the schizophrenia-like behaviors induced by MK-801 in rats. Brain Res. 2019;1719:30–39. doi: 10.1016/j.brainres.2019.05.023. PubMed DOI
Hackler E.A., Byun N.E., Jones C.K., Williams J.M., Baheza R., Sengupta S., Grier M.D., Avison M., Conn P.J., Gore J.C. Selective potentiation of the metabotropic glutamate receptor subtype 2 blocks phencyclidine-induced hyperlocomotion and brain activation. Neuroscience. 2010;168:209–218. doi: 10.1016/j.neuroscience.2010.02.057. PubMed DOI PMC
Ghedim F.V., Fraga D.D., Deroza P.F., Oliveira M.B., Valvassori S.S., Steckert A.V., Budni J., Dal-Pizzol F., Quevedo J., Zugno A.I. Evaluation of behavioral and neurochemical changes induced by ketamine in rats: Implications as an animal model of mania. J. Psychiatr. Res. 2012;46:1569–1575. doi: 10.1016/j.jpsychires.2012.08.010. PubMed DOI
Inostroza M., Cid E., Brotons-Mas J., Gal B., Aivar P., Uzcateg Y.G., Sandi C., de la Prida L.M. Hippocampal-Dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS ONE. 2011;6:e22372. doi: 10.1371/journal.pone.0022372. PubMed DOI PMC
Shoji H., Miyakawa T. Effects of test experience, closed-arm wall color, and illumination level on behavior and plasma corticosterone response in an elevated plus maze in male C57BL/6J mice: A challenge against conventional interpretation of the test. Mol. Brain. 2021 doi: 10.1186/s13041-020-00721-2. PubMed DOI PMC
Shoji H., Miyakawa T. Relationships between the acoustic startle response and prepulse inhibition in C57BL/6J mice: A large-scale meta-analytic study. Mol. Brain. 2018;11:1–9. doi: 10.1186/s13041-018-0382-7. PubMed DOI PMC
Swerdlow N.R., Light G.A., Thomas M.L., Sprock J., Calkins M.E., Green M.F., Greenwood T.A., Gur R.E., Gur R.C., Lazzeroni L.C., et al. Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophr. Res. 2018;198:6–15. doi: 10.1016/j.schres.2017.05.013. PubMed DOI PMC
Kawabe K., Miyamoto E. Effects of early postnatal MK-801 treatment on behavioral properties in rats: Differences according to treatment schedule. Behav. Brain Res. 2019;370 doi: 10.1016/j.bbr.2019.111926. PubMed DOI
Jurado-Barba R., Morales-Muñoz I., del Manzano B.Á., Fernández-Guinea S., Caballero M., Martínez-Gras I., Rubio-Valladolid G. Relationship between measures of inhibitory processes in patients with schizophrenia: Role of substance abuse disorders. Psychiatry Res. 2011;190:187–192. doi: 10.1016/j.psychres.2011.06.002. PubMed DOI
Wang X., Ding S., Lu Y., Jiao Z., Zhang L., Zhang Y., Yang Y., Zhang Y., Li W., Lv L. Effects of sodium nitroprusside in the acute dizocilpine (MK-801) animal model of schizophrenia. Brain Res. Bull. 2019 doi: 10.1016/j.brainresbull.2019.02.008. PubMed DOI
Kraeuter A.K., Mashavave T., Suvarna A., van den Buuse M., Sarnyai Z. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology. 2020 doi: 10.1007/s00213-020-05467-2. PubMed DOI
Geyer M.A., Krebs-Thomson K., Braff D.L., Swerdlow N.R. Pharmacological Studies of Prepulse Inhibition Models of Sensorimotor Gating Deficits in Schizophrenia: A Decade in Review. Psychopharmacology. 2001;156:117–154. doi: 10.1007/s002130100811. PubMed DOI
Bukanova J.V., Solntseva E.I., Kolbaev S.N., Kudova E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3α5β-pregnanolone derivatives. Neurochem. Int. 2018 doi: 10.1016/j.neuint.2018.06.002. PubMed DOI
Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood–brain barrier in the adult male rat. J. Neurochem. 2017 doi: 10.1111/jnc.14117. PubMed DOI PMC
Romeo E., Cheney D.L., Zivkovic I., Costa E., Guidotti A. Mitochondrial diazepam-binding inhibitor receptor complex agonists antagonize dizocilpine amnesia: Putative role for allopregnanolone. J. Pharmacol. Exp. Ther. 1994;270:89–96. PubMed
Grillon C., Duncko R., Covington M.F., Kopperman L., Kling M.A. Acute Stress Potentiates Anxiety in Humans. Biol. Psychiatry. 2007;62:1183–1186. doi: 10.1016/j.biopsych.2007.06.007. PubMed DOI PMC
Reznikov L.R., Grillo C.A., Piroli G.G., Pasumarthi R.K., Reagan L.P., Fadel J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: Differential effects of antidepressant treatment. Eur. J. Neurosci. 2007;25:3109–3114. doi: 10.1111/j.1460-9568.2007.05560.x. PubMed DOI
Yuen E.Y., Liu W., Karatsoreos I.N., Feng J., McEwen B.S., Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl. Acad. Sci. USA. 2009 doi: 10.1073/pnas.0906791106. PubMed DOI PMC
Treccani G., Musazzi L., Perego C., Milanese M., Nava N., Bonifacino T., Lamanna J., Malgaroli A., Drago F., Racagni G., et al. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol. Psychiatry. 2014;19:433–443. doi: 10.1038/mp.2014.5. PubMed DOI
Shields G.S., Sazma M.A., Yonelinas A.P. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci. Biobehav. Rev. 2016;68:651–668. doi: 10.1016/j.neubiorev.2016.06.038. PubMed DOI PMC
Biggio G., Concas A., Follesa P., Sanna E., Serra M. Stress, ethanol, and neuroactive steroids. Pharmacol. Ther. 2007;116:140–171. doi: 10.1016/j.pharmthera.2007.04.005. PubMed DOI PMC
Barbaccia M.L., Roscetti G., Trabucchi M., Mostallino M.C., Concas A., Purdy R.H., Biggio G. Time-dependent changes in rat brain neuroactive steroid concentrations and gabaa receptor function after acute stress. Neuroendocrinology. 1996 doi: 10.1159/000126953. PubMed DOI
Grunze H.C.R., Rainnie D.G., Hasselmo M.E., Barkai E., Hearn E.F., McCarley R.W., Greene R.W. NMDA-dependent modulation of CA1 local circuit inhibition. J. Neurosci. 1996;16:2034–2043. doi: 10.1523/JNEUROSCI.16-06-02034.1996. PubMed DOI PMC
Homayoun H., Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J. Neurosci. 2007 doi: 10.1523/JNEUROSCI.2213-07.2007. PubMed DOI PMC
Kudo K., Tachikawa E., Kashimoto T. Inhibition by pregnenolone sulfate of nicotinic acetylcholine response in adrenal chromaffin cells. Eur. J. Pharmacol. 2002;456:19–27. doi: 10.1016/S0014-2999(02)02623-7. PubMed DOI
Shirakawa H., Katsuki H., Kume T., Kaneko S., Akaike A. Pregnenolone sulphate attenuates AMPA cytotoxicity on rat cortical neurons. Eur. J. Neurosci. 2005;21:2329–2335. doi: 10.1111/j.1460-9568.2005.04079.x. PubMed DOI
Boero G., Porcu P., Morrow A.L. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol. Stress. 2020;12:100203. doi: 10.1016/j.ynstr.2019.100203. PubMed DOI PMC