Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24397261
PubMed Central
PMC3890586
DOI
10.1186/1471-2148-14-4
PII: 1471-2148-14-4
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- klíště chemie klasifikace genetika metabolismus MeSH
- molekulární evoluce * MeSH
- proteiny členovců chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- slinné proteiny a peptidy chemie genetika metabolismus MeSH
- terciární struktura proteinů MeSH
- transkriptom * MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny členovců MeSH
- slinné proteiny a peptidy MeSH
BACKGROUND: Ticks are blood-sucking arthropods and a primary function of tick salivary proteins is to counteract the host's immune response. Tick salivary Kunitz-domain proteins perform multiple functions within the feeding lesion and have been classified as venoms; thereby, constituting them as one of the important elements in the arms race with the host. The two main mechanisms advocated to explain the functional heterogeneity of tick salivary Kunitz-domain proteins are gene sharing and gene duplication. Both do not, however, elucidate the evolution of the Kunitz family in ticks from a structural dynamic point of view. The Red Queen hypothesis offers a fruitful theoretical framework to give a dynamic explanation for host-parasite interactions. Using the recent salivary gland Ixodes ricinus transcriptome we analyze, for the first time, single Kunitz-domain encoding transcripts by means of computational, structural bioinformatics and phylogenetic approaches to improve our understanding of the structural evolution of this important multigenic protein family. RESULTS: Organizing the I. ricinus single Kunitz-domain peptides based on their cysteine motif allowed us to specify a putative target and to relate this target specificity to Illumina transcript reads during tick feeding. We observe that several of these Kunitz peptide groups vary in their translated amino acid sequence, secondary structure, antigenicity, and intrinsic disorder, and that the majority of these groups are subject to a purifying (negative) selection. We finalize by describing the evolution and emergence of these Kunitz peptides. The overall interpretation of our analyses discloses a rapidly emerging Kunitz group with a distinct disulfide bond pattern from the I. ricinus salivary gland transcriptome. CONCLUSIONS: We propose a model to explain the structural and functional evolution of tick salivary Kunitz peptides that we call target-oriented evolution. Our study reveals that combining analytical approaches (transcriptomes, computational, bioinformatics and phylogenetics) improves our understanding of the biological functions of important salivary gland mediators during tick feeding.
Zobrazit více v PubMed
Spielman A, Mehlhorn H, Voigt WP, Armstrong PM. Ticks. 2. Berlin: Springer; 2001.
Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol. 2012;28(10):437–446. doi: 10.1016/j.pt.2012.07.003. PubMed DOI
Chmelar J, Oliveira CJ, Rezacova P, Francischetti IMB, Kovarova Z, Pejler G, Kopacek P, Ribeiro JMC, Mares M, Kopecky J. et al.A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood. 2010;117(2):736–744. PubMed PMC
Francischetti IMB, Sá-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci. 2009;14:2051–2088. PubMed PMC
Wong ESW, Belov K. Venom evolution through gene duplications. Gene. 2012;496(1):1–7. doi: 10.1016/j.gene.2012.01.009. PubMed DOI
Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM. Exploring the sialome of the tick Ixodes scapularis. J Exp Biol. 2002;205(Pt 18):2843–2864. PubMed
Ribeiro JM, Francischetti IM. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol. 2003;48:73–88. doi: 10.1146/annurev.ento.48.060402.102812. PubMed DOI
Francischetti IM, My Pham V, Mans BJ, Andersen JF, Mather TN, Lane RS, Ribeiro JM. The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae) Insect Biochem Mol Biol. 2005;35(10):1142–1161. doi: 10.1016/j.ibmb.2005.05.007. PubMed DOI PMC
Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, Wikel SK. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006;36(2):111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI
Alarcon-Chaidez FJ, Sun J, Wikel SK. Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae) Insect Biochem Mol Biol. 2007;37(1):48–71. doi: 10.1016/j.ibmb.2006.10.002. PubMed DOI
Anatriello E, Ribeiro J, de Miranda-Santos I, Brandao L, Anderson J, Valenzuela J, Maruyama S, Silva J, Ferreira B. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics. 2010;11(1):450. doi: 10.1186/1471-2164-11-450. PubMed DOI PMC
Karim S, Singh P, Ribeiro JMC. A Deep Insight into the Sialotranscriptome of the Gulf Coast Tick. Amblyomma maculatum. PLoS ONE. 2011;6(12):e28525. doi: 10.1371/journal.pone.0028525. PubMed DOI PMC
Ribeiro J, Anderson J, Manoukis N, Meng Z, Francischetti I. A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC Genomics. 2011;12(1):136. doi: 10.1186/1471-2164-12-136. PubMed DOI PMC
Batista IFC, Chudzinski-Tavassi AM, Faria F, Simons SM, Barros-Batestti DM, Labruna MB, Leão LI, Ho PL, Junqueira-de-Azevedo ILM. Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae) Toxicon. 2008;51(5):823–834. doi: 10.1016/j.toxicon.2007.12.011. PubMed DOI
Aljamali MN, Ramakrishnan VG, Weng H, Tucker JS, Sauer JR, Essenberg RC. Microarray analysis of gene expression changes in feeding female and male lone star ticks, Amblyomma americanum (L) Arch Insect Biochem Physiol. 2009;71(4):236–253. doi: 10.1002/arch.20318. PubMed DOI PMC
Francischetti IMB, Anderson JM, Manoukis N, Pham VM, Ribeiro JMC. An insight into the sialotranscriptome and proteome of the coarse bontlegged tick, Hyalomma marginatum rufipes. J Proteomics. 2011;74(12):2892–2908. doi: 10.1016/j.jprot.2011.07.015. PubMed DOI PMC
Chmelar J, Anderson J, Mu J, Jochim R, Valenzuela J, Kopecky J. Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics. 2008;9(1):233. doi: 10.1186/1471-2164-9-233. PubMed DOI PMC
Schwarz A, von Reumont BM, Erhart J, Chagas AC, Ribeiro JMC, Kotsyfakis M. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 2013;27(12):4745–4756. doi: 10.1096/fj.13-232140. PubMed DOI PMC
Mans BJ, Andersen JF, Francischetti IMB, Valenzuela JG, Schwan TG, Pham VM, Garfield MK, Hammer CH, Ribeiro JMC. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem Mol Biol. 2008;38(1):42–58. doi: 10.1016/j.ibmb.2007.09.003. PubMed DOI PMC
Ribeiro JMC, Labruna MB, Mans BJ, Maruyama SR, Francischetti IMB, Barizon GC, de Miranda Santos IKF. The sialotranscriptome of Antricola delacruzi female ticks is compatible with non-hematophagous behavior and an alternative source of food. Insect Biochem Mol Biol. 2012;42(5):332–342. doi: 10.1016/j.ibmb.2012.01.003. PubMed DOI PMC
Francischetti IMB, Meng Z, Mans BJ, Gudderra N, Hall M, Veenstra TD, Pham VM, Kotsyfakis M, Ribeiro JMC. An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus. J Proteomics. 2008;71(5):493–512. doi: 10.1016/j.jprot.2008.07.006. PubMed DOI PMC
Francischetti IMB, Mans BJ, Meng Z, Gudderra N, Veenstra TD, Pham VM, Ribeiro JMC. An insight into the sialome of the soft tick, Ornithodorus parkeri. Insect Biochem Mol Biol. 2008;38(1):1–21. doi: 10.1016/j.ibmb.2007.09.009. PubMed DOI PMC
Dai S-X, Zhang A-D, Huang J-F. Evolution, expansion and expression of the Kunitz/BPTI gene family associated with long-term blood feeding in Ixodes scapularis. BMC Evol Biol. 2012;12(1):4. doi: 10.1186/1471-2148-12-4. PubMed DOI PMC
Kunitz M, Northrop JH. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound. J Gen Physiol. 1936;19(6):991–1007. doi: 10.1085/jgp.19.6.991. PubMed DOI PMC
Lima CA, Torquato RJS, Sasaki SD, Justo GZ, Tanaka AS. Biochemical characterization of a Kunitz type inhibitor similar to dendrotoxins produced by Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) hemocytes. Vet Parasitol. 2010;167(2ÄÄì4):279–287. PubMed
Paesen GC, Siebold C, Harlos K, Peacey MF, Nuttall PA, Stuart DI. A tick protein with a modified kunitz fold inhibits human tryptase. J Mol Biol. 2007;368(4):1172–1186. doi: 10.1016/j.jmb.2007.03.011. PubMed DOI
Gao X, Shi L, Zhou Y, Cao J, Zhang H, Zhou J. Characterization of the anticoagulant protein Rhipilin-1 from the Rhipicephalus haemaphysaloides tick. J Insect Physiol. 2011;57(2):339–343. doi: 10.1016/j.jinsphys.2010.12.001. PubMed DOI
Alim MA, Islam MK, Anisuzzaman, Miyoshi T, Hatta T, Yamaji K, Matsubayashi M, Fujisaki K, Tsuji N. A hemocyte-derived Kunitz-BPTI-type chymotrypsin inhibitor, HlChI, from the ixodid tick Haemaphysalis longicornis, plays regulatory functions in tick blood-feeding processes. Insect Biochem Mol Biol. 2012;42(12):925–934. doi: 10.1016/j.ibmb.2012.09.005. PubMed DOI
Miyoshi T, Tsuji N, Islam MK, Alim MA, Hatta T, Yamaji K, Anisuzzaman, Fujisaki K. A Kunitz-type proteinase inhibitor from the midgut of the ixodid tick, Haemaphysalis longicornis, and its endogenous target serine proteinase. Mol Biochem Parasitol. 2010;170(2):112–115. doi: 10.1016/j.molbiopara.2009.12.005. PubMed DOI
Islam MK, Tsuji N, Miyoshi T, Alim MA, Huang X, Hatta T, Fujisaki K. The kunitz-like modulatory protein haemangin is vital for hard tick blood-feeding success. PLoS Pathog. 2009;5(7):e1000497. doi: 10.1371/journal.ppat.1000497. PubMed DOI PMC
Batista IFC, Ramos OHP, Ventura JS, Junqueira-de-Azevedo ILM, Ho PL, Chudzinski-Tavassi AM. A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch Biochem Biophys. 2010;493(2):151–156. doi: 10.1016/j.abb.2009.10.009. PubMed DOI
Valdés JJ, Schwarz A, Cabeza de Vaca I, Calvo E, Pedra JHF, Guallar V, Kotsyfakis M. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS One. 2013;8(5) e62562. PubMed PMC
Waxman L, Smith D, Arcuri KE, Vlasuk GP. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science. 1990;248(4955):593–596. doi: 10.1126/science.2333510. PubMed DOI
Mans BJ, Andersen JF, Schwan TG, Ribeiro JMC. Characterization of anti-hemostatic factors in the argasid, Argas monolakensis: implications for the evolution of blood-feeding in the soft tick family. Insect Biochem Mol Biol. 2008;38(1):22–41. doi: 10.1016/j.ibmb.2007.09.002. PubMed DOI PMC
Karczewski J, Endris R, Connolly TM. Disagregin is a fibrinogen receptor antagonist lacking the Arg-Gly-Asp sequence from the tick, Ornithodoros moubata. J Biol Chem. 1994;269(9):6702–6708. PubMed
Mans BJ, Louw AI, Neitz AWH. Savignygrin, a platelet aggregation inhibitor from the soft tick Ornithodoros savignyi, presents the RGD integrin recognition motif on the Kunitz-BPTI fold. J Biol Chem. 2002;277(24):21371–21378. doi: 10.1074/jbc.M112060200. PubMed DOI
Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R, Stürzebecher J, Fuentes-Prior P, Pereira PJB. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS ONE. 2008;3(2):e1624. doi: 10.1371/journal.pone.0001624. PubMed DOI PMC
Francischetti IM, Valenzuela JG, Andersen JF, Mather TN, Ribeiro JM. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood. 2002;99(10):3602–3612. doi: 10.1182/blood-2001-12-0237. PubMed DOI
Francischetti IM, Mather TN, Ribeiro JM. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis. Thromb Haemost. 2004;91(5):886–898. PubMed
Paesen GC, Siebold C, Dallas ML, Peers C, Harlos K, Nuttall PA, Nunn MA, Stuart DI, Esnouf RM. An ion-channel modulator from the saliva of the brown ear tick has a highly modified Kunitz/BPTI structure. J Mol Biol. 2009;389(4):734–747. doi: 10.1016/j.jmb.2009.04.045. PubMed DOI
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS. et al.The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10(1):483–511. doi: 10.1146/annurev.genom.9.081307.164356. PubMed DOI
Mans BJ, Louw AI, Neitz AWH. Evolution of hematophagy in ticks: common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the Genus Ornithodoros. Mol Biol Evol. 2002;19(10):1695–1705. doi: 10.1093/oxfordjournals.molbev.a003992. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. PubMed
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Louw E, van der Merwe NA, Neitz AWH, Maritz-Olivier C. Evolution of the tissue factor pathway inhibitor-like Kunitz-domain-containing protein family in Rhipicephalus microplus. Int J Parasitol. 2013;43(1):81–94. doi: 10.1016/j.ijpara.2012.11.006. PubMed DOI
Kwong PD, McDonald NQ, Sigler PB, Hendrickson WA. Structure of beta-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure. 1995;3(10):1109–1119. doi: 10.1016/S0969-2126(01)00246-5. PubMed DOI
Filshie BK, Campbell IC. Design of an insect cuticle associated with osmoregulation: the porous plates of chloride cells in a mayfly nymph. Tissue Cell. 1984;16(5):789–803. doi: 10.1016/0040-8166(84)90010-7. PubMed DOI
Benoit JB, Yoder JA, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL. Habitat requirements of the seabird tick, Ixodes uriae (Acari: Ixodidae), from the Antarctic Peninsula in relation to water balance characteristics of eggs, nonfed and engorged stages. J Comp Physiol B. 2007;177(2):205–215. doi: 10.1007/s00360-006-0122-7. PubMed DOI
Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA. PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 2008;36(suppl 2):W35–W41. PubMed PMC
Diez-Rivero CM, Reche PA. In: Bioinformatics for immunomics. 3. Flower DDR, Davies M, Ranganathan S, editor. New York City: Springer; 2009. Discovery of conserved epitopes through sequence variability analysis.
Shannon CE. The mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. 623–656. DOI
Tainer JA, Getzoff ED, Paterson Y, Olson AJ, Lerner RA. The atomic mobility component of protein antigenicity. Annu Rev Immunol. 1985;3:501–535. doi: 10.1146/annurev.iy.03.040185.002441. PubMed DOI
Demchenko AP. Recognition between flexible protein molecules: induced and assisted folding. J Mol Recognit. 2001;14(1):42–61. doi: 10.1002/1099-1352(200101/02)14:1<42::AID-JMR518>3.0.CO;2-8. PubMed DOI
Dunker AK, Brown CJ, Lawson JD, Lakoucheva LM, Obradovic Z. Intrinsic disorder and protein function. Biochemistry (Mosc) 2002;41(21):6573–6582. doi: 10.1021/bi012159+. PubMed DOI
Doytchinova I, Flower D. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinforma. 2007;8(1):4. doi: 10.1186/1471-2105-8-4. PubMed DOI PMC
Kozlowski LP, Bujnicki JM. MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinforma. 2012;13(1):111. doi: 10.1186/1471-2105-13-111. PubMed DOI PMC
Van Valen ML. A new evolutionary law. Evol Theory. 1973;1:1–30.
Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26(19):2455–2457. doi: 10.1093/bioinformatics/btq429. PubMed DOI PMC
Kosakovsky Pond SL, Frost SDW. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22(5):1208–1222. doi: 10.1093/molbev/msi105. PubMed DOI
Scheffler K, Martin DP, Seoighe C. Robust inference of positive selection from recombining coding sequences. Bioinformatics. 2006;22(20):2493–2499. doi: 10.1093/bioinformatics/btl427. PubMed DOI
Koonin EV. Logic of chance, the: the nature and origin of biological evolution. Upper Saddle River: FT Press; 2011.
Wong ESW, Papenfuss AT, Whittington CM, Warren WC, Belov K. A limited role for gene duplications in the evolution of platypus venom. Mol Biol Evol. 2012;29(1):167–177. doi: 10.1093/molbev/msr180. PubMed DOI PMC
Jeyaprakash A, Hoy M. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol. 2009;47(1):1–18. doi: 10.1007/s10493-008-9203-5. PubMed DOI
Mans BJ, Neitz AWH. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol. 2004;34(1):1–17. doi: 10.1016/j.ibmb.2003.09.002. PubMed DOI
Zander RH. Evolutionary inferences from non-monophyly on molecular trees. Taxon. 2008;57(4):1182–1188.
Andersen JF. Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon. 2010;56(7):1120–1129. doi: 10.1016/j.toxicon.2009.11.002. PubMed DOI PMC
Corral-Rodriguez MA, Macedo-Ribeiro S, Barbosa-Pereira PJ, Fuentes-Prior P. Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem Mol Biol. 2009;39(9):579–595. doi: 10.1016/j.ibmb.2009.07.003. PubMed DOI
Kovár L. Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol (Praha) 2004;49(3):327–336. doi: 10.1007/BF02931051. PubMed DOI
Andreotti R, Gomes A, Malavazi-Piza KC, Sasaki SD, Sampaio CAM, Tanaka AS. BmTI antigens induce a bovine protective immune response against Boophilus microplus tick. Int Immunopharmacol. 2002;2(4):557–563. doi: 10.1016/S1567-5769(01)00203-X. PubMed DOI
Tanaka AS, Andreotti R, Gomes A, Torquato RJ, Sampaio MU, Sampaio CA. A double headed serine proteinase inhibitor-human plasma kallikrein and elastase inhibitor from Boophilus microplus larvae. Immunopharmacology. 1999;45:171–177. doi: 10.1016/S0162-3109(99)00074-0. PubMed DOI
Ascenzi P, Bocedi A, Bolognesi M, Spallarossa A, Coletta M, De Cristofaro R, Menegatti E. The bovine basic pancreatic trypsin inhibitor (Kunitz 506 inhibitor): a milestone protein. Curr Protein Pept Sci. 2003;4:231–251. doi: 10.2174/1389203033487180. PubMed DOI
Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL. The Pfam protein families database. Nucleic Acids Res. 2000;28(1):263–266. doi: 10.1093/nar/28.1.263. PubMed DOI PMC
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth. 2011;8(10):785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Kelley LA, Sternberg MJE. Protein structure prediction on the web: a case study using the Phyre server. Nat Protocols. 2009;4(3):363–371. doi: 10.1038/nprot.2009.2. PubMed DOI
Schrödinger L. Maestro, version 9.1. New York, NY; 2010.
Dembo RS. In: Computation Mathematical Programming. 31. Hoffman KL, Jackson RHF, Telgen J, editor. Berlin Heidelberg: Springer; 1987. A primal truncated newton algorithm with application to large-scale nonlinear network optimization; pp. 43–71.
Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc. 1990;112(16):6127–6129. doi: 10.1021/ja00172a038. DOI
Li X, Jacobson MP, Zhu K, Zhao S, Friesner RA. Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins Struct Funct Bioinf. 2007;66(4):824–837. PubMed
Chen SW, Pellequer JL. Identification of functionally important residues in proteins using comparative models. Curr Med Chem. 2004;11:595–605. doi: 10.2174/0929867043455891. PubMed DOI
Pellequer JL, Chen SW. Multi-template approach to modeling engineered disulfide bonds. Proteins Struct Funct Bioinf. 2006;65(1):192–202. doi: 10.1002/prot.21059. PubMed DOI
Litwin S, Jores R. In theoretical and experimental insights into immunology. Berlin: Springer-Verlag; 1992.
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292(2):195–202. doi: 10.1006/jmbi.1999.3091. PubMed DOI
Buchan DWA, Ward SM, Lobley AE, Nugent TCO, Bryson K, Jones DT. Protein annotation and modelling servers at University College London. Nucleic Acids Res. 2010;38(suppl 2):W563–W568. PubMed PMC
Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res. 2010;38(suppl 2):W23–W28. PubMed PMC
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418–426. PubMed
Jukes TH, Cantor CR. In: Mammalian Protein Metabolism. Munro HN, editor. New York: Academic Press; 1969. Evolution of protein molecules; pp. 21–132.
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW. Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol. 2006;23(10):1891–1901. doi: 10.1093/molbev/msl051. PubMed DOI
Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38:W7–W13. doi: 10.1093/nar/gkq291. PubMed DOI PMC
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9:286–298. doi: 10.1093/bib/bbn013. PubMed DOI
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772–772. PubMed PMC
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88. doi: 10.1371/journal.pbio.0040088. PubMed DOI PMC
Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253(4):769–778. doi: 10.1016/j.jtbi.2008.04.005. PubMed DOI
Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol. 2012;29(9):2157–2167. doi: 10.1093/molbev/mss084. PubMed DOI PMC
The Use of Tick Salivary Proteins as Novel Therapeutics
All For One and One For All on the Tick-Host Battlefield
Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions