Experimental use of flow cytometry to detect bacteria viability after hyperbaric oxygen exposure: Work in progress report

. 2020 Jun 30 ; 50 (2) : 152-156.

Jazyk angličtina Země Austrálie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32557417

INTRODUCTION: Hyperbaric oxygen treatment (HBOT), based on inhaling pure oxygen under elevated ambient pressure, is used as adjuvant intervention to promote healing in infected wounds. Despite extensive clinical evidence of beneficial effects of HBOT in soft tissue infections the mechanism of action remains to be elucidated. The aim of this study was to evaluate the use of flow cytometry as a novel method to assess the viability of pathogenic bacteria after hyperbaric oxygen (HBO) exposure. METHODS: Bacterial strains associated with soft tissues infections: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus were exposed to oxygen at 2.8 atmospheres absolute (atm abs) (283.6 kPa) pressure for 45, 90, or 120 min, then stained with propidium iodide and thiazole orange and analysed by flow cytometry. RESULTS: Escherichia coli and Staphylococcus aureus showed no change in viability, nor morphology, the viability of Pseudomonas aeruginosa reduced in a dose-dependent manner and Klebsiella pneumoniae also showed dye uptake after HBO. CONCLUSIONS: These initial results, indicate diverse sensitivity of bacteria to HBO, and suggest that flow cytometry can be used to monitor viability and morphological changes triggered by HBO exposure in bacteria.

Zobrazit více v PubMed

Mathieu D, Marroni A, Kot J. Correction to Mathieu D, Marroni A, Kot J. Tenth European Consensus Conference on Hyperbaric Medicine: recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment . Diving Hyperb Med. 2017;47:24–32. doi: 10.28920/dhm47.2.131-132. PubMed DOI PMC

Mathieu D. Handbook on hyperbaric medicine. Springer; 2006. 10.1007/1-4020-4448-8 DOI

Camporesi EM, Bosco G. Mechanisms of action of hyperbaric oxygen therapy . Undersea Hyperb Med. 2014;41:247–52. PubMed

Signoretto C, Bianchi F, Burlacchini G, Canepari P. Microbiological evaluation of the effects of hyperbaric oxygen on periodontal disease . New Microbiol. 2007;30:431–7. PubMed

Chmelař D, Kašíková A, Martineková P, Hájek M, Rozložník M, Brabec M, et al. Effect of hyperbaric air on endotoxin from Bacteroides fragilis strains . Folia Microbiol (Praha). 2018;63:283–90. doi: 10.1007/s12223-017-0564-1. PubMed DOI

Holland JA, Hill GB, Wolfe WG, Osterhout S, Saltzman HA, Brown IW Jr. Experimental and clinical experience with hyperbaric oxygen in the treatment of clostridial myonecrosis . Surgery. 1975;77:75–85. PubMed

Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting . Microbiol Methods. 2000;42:97–114. PubMed

Shapiro HM. Microbial analysis at the single-cell level: Tasks and techniques . J Microbiol Methods. 2000;42:3–16. doi: 10.1016/S0167-7012(00)00167-6. PubMed DOI

Tavenier AH, de Boer FJ, Moshaver B, van der Leur SJCM, Stegeman CA, Groeneveld PHP. Flow cytometric analysis of viable bacteria in urine samples of febrile patients at the emergency department . Cytometry B Clin Cytom. 2018;94:689–95. doi: 10.1002/cyto.b.21548. PubMed DOI

Ki V, Rotstein C. Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. Can J Infect Dis Med Microbiol. 2008;19:173–84. doi: 10.1155/2008/846453. PubMed DOI PMC

Sincock SA, Robinson JP. Flow cytometric analysis of microorganisms. Methods Cell Biol. 2001;64:511–37. doi: 10.1016/s0091-679x(01)64027-5. PubMed DOI

Davis C. Enumeration of probiotic strains: Review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods. 2014;103:9–17. doi: 10.1016/j.mimet.2014.04.012. PubMed DOI

Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev. 2010;34:554–87. doi: 10.1111/j.1574-6976.2010.00214.x. PubMed DOI

Breeuwer P, Abee T. Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol. 2000;55:193–200. doi: 10.1016/s0168-1605(00)00163-x. PubMed DOI

Van Nevel S, Koetzsch S, Proctor CR, Besmer MD, Prest EI, Vrouwenvelder M, et al. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Res. 2017;113:191–206. doi: 10.1016/j.watres.2017.01.065. PubMed DOI

Schmidt M, Hourfar MK, Nicol S-B, Spengler H-P, Montag T, Seifried E. FACS technology used in a new rapid bacterial detection method. Transfus Med. 2006;16:355–61. doi: 10.1111/j.1365-3148.2006.00686.x. PubMed DOI

Khan MMT, Pyle BH, Camper AK. Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry. Appl Environ Microbiol. 2010;76:5088–96. doi: 10.1128/AEM.02932-09. PubMed DOI PMC

Baez A, Shiloach J. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase. Microb Cell Fact. 2013;12:23. doi: 10.1186/1475-2859-12-23. PubMed DOI PMC

Scott MD, Meshnick SR, Eaton JW. Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. J Biol Chem. 1987;262:3640–5. PubMed

Tsuneyoshi I, Boyle WA 3rd, Kanmura Y, Fujimoto T. Hyperbaric hyperoxia suppresses growth of Staphylococcus aureus, including methicillin-resistant strains. J Anesth. 2001;15:29–32. doi: 10.1007/s005400170048. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...