Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 AI093653
NIAID NIH HHS - United States
PubMed
23658744
PubMed Central
PMC3643938
DOI
10.1371/journal.pone.0062562
PII: PONE-D-13-02457
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- cystein chemie genetika MeSH
- fylogeneze MeSH
- inhibitory serinových proteinas chemie klasifikace genetika metabolismus MeSH
- klíště chemie genetika metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- proteiny členovců chemie klasifikace genetika metabolismus MeSH
- rekombinantní proteiny chemie klasifikace genetika metabolismus MeSH
- Rhipicephalus chemie genetika metabolismus MeSH
- sekvenční homologie aminokyselin MeSH
- slinné proteiny a peptidy chemie klasifikace genetika metabolismus MeSH
- terciární struktura proteinů MeSH
- tryptasy antagonisté a inhibitory chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystein MeSH
- inhibitory serinových proteinas MeSH
- proteiny členovců MeSH
- rekombinantní proteiny MeSH
- slinné proteiny a peptidy MeSH
- tryptasy MeSH
BACKGROUND: A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. RESULTS: We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). CONCLUSIONS: By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.
Zobrazit více v PubMed
Kunitz M, Northrop JH (1936) Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound. The J Gen Physiol 19: 991–1007. PubMed PMC
Krowarsch D, Cierpicki T, Jelen F, Otlewski J (2003) Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 60: 2427–2444. PubMed PMC
Laskowski M, Kato I (1980) Protein Inhibitors of Proteinases. Annu Rev Biochem 49: 593–626. PubMed
Waxman L, Smith D, Arcuri KE, Vlasuk GP (1990) Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248: 593–596. PubMed
Paesen GC, Siebold C, Harlos K, Peacey MF, Nuttall PA, et al. (2007) A Tick Protein with a Modified Kunitz Fold Inhibits Human Tryptase. J Mol Biol 368: 1172–1186. PubMed
Francischetti IMB, Sá-Nunes A, Mans BJ, Santos IM, Ribeiro JM (2009) The role of saliva in tick feeding. Front Biosci 14: 2051–2088. PubMed PMC
Chmelar J, Oliveira CJ, Rezacova P, Francischetti IMB, Kovarova Z, et al. (2011) A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 117: 736–744. PubMed PMC
Chmelar J, Calvo E, Pedra JHF, Francischetti IMB, Kotsyfakis M (2012) Tick salivary secretion as a source of antihemostatics. J Proteomics 75: 3842–3854. PubMed PMC
Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JMC (2007) Selective Cysteine Protease Inhibition Contributes to Blood-feeding Success of the Tick Ixodes scapularis . J Biol Chem 282: 29256–29263. PubMed
Kotsyfakis M, Horka H, Salat J, Andersen JF (2010) The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol Microbiol 77: 456–470. PubMed PMC
Parola P, Paddock CD, Raoult D (2005) Tick-Borne Rickettsioses around the World: Emerging Diseases Challenging Old Concepts. Clin Microbiol Rev 18: 719–756. PubMed PMC
Heyman P, Cochez C, Hofhuis A, van der Giessen J, Sprong H, et al. (2009) A clear and present danger: tick-borne diseases in Europe. Expert Rev Anti Infect Ther 8: 33–50. PubMed
Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, et al. (2002) Exploring the sialome of the tick Ixodes scapularis . J Exp Biol 205: 2843–2864. PubMed
Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, et al. (2006) An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 36: 111–129. PubMed
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Press.
Cer RZ, Mudunuri U, Stephens R, Lebeda FJ (2009) IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res 37: W441–W445. PubMed PMC
Cheng Y–C, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108. PubMed
Schaschke N, Matschiner G, Zettl F, Marquardt U, Bergner A, et al. (2001) Bivalent inhibition of human β-tryptase. Chem Biol 8: 313–327. PubMed
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8: 785–786. PubMed
Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286–298. PubMed
Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105. PubMed
Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18: 691–699. PubMed
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. PubMed
Chen Z-Y, Hu Y-T, Yang W-S, He Y-W, Feng J, et al. (2012) Hg1, Novel Peptide Inhibitor Specific for Kv1.3 Channels from First Scorpion Kunitz-type Potassium Channel Toxin Family. J Biol Chem 287: 13813–13821. PubMed PMC
Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33: W72–W76. PubMed PMC
Vallat BK, Pillardy J, Májek P, Meller J, Blom T, et al. (2009) Building and assessing atomic models of proteins from structural templates: Learning and benchmarks. Proteins: Struct, Funct, Bioinf 76: 930–945. PubMed PMC
Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protocols 4: 363–371. PubMed
Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9: 40. PubMed PMC
Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: Prediction of proteins 3D structures. Bioinformatics 18: 1250–1256. PubMed
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, et al... (2001) Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Protein Science: John Wiley & Sons, Inc. PubMed
Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37: W510–W514. PubMed PMC
Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, et al. (2010) Probing the α-Helical Structural Stability of Stapled p53 Peptides: Molecular Dynamics Simulations and Analysis. Chem Biol Drug Des 75: 348–359. PubMed
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242. PubMed PMC
Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20: 45–50. PubMed
Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32: W96–W99. PubMed PMC
Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: An FFT-based protein docking program with pairwise potentials. Proteins: Struct, Funct, Bioinf 65: 392–406. PubMed
Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, et al. (2010) Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins: Struct, Funct, Bioinf 78: 3124–3130. PubMed PMC
Cheng TM-K, Blundell TL, Fernandez-Recio J (2007) pyDock: Electrostatics and desolvation for effective scoring of rigid-body protein–protein docking. Proteins: Struct, Funct, Bioinf 68: 503–515. PubMed
Gabb HA, Jackson RM, Sternberg MJE (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272: 106–120. PubMed
Duhovny D, Nussinov R, Wolfson H. Efficient Unbound Docking of Rigid Molecules. In: Gusfield et al.., editor. Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI); 2002; Rome, Italy. Springer Verlag. pp. 185–200.
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson H (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33: W363–367. PubMed PMC
Masone D, Cabeza de Vaca I, Pons C, Recio JF, Guallar V (2012) H-bond network optimization in protein–protein complexes: Are all-atom force field scores enough? Proteins: Struct, Funct, Bioinf 80: 818–824. PubMed
Basdevant N, Borgis D, Ha-Duong T (2007) A Coarse-Grained Protein-Protein Potential Derived from an All-Atom Force Field. J Phys Chem B 111: 9390–9399. PubMed
Li X, Jacobson MP, Zhu K, Zhao S, Friesner RA (2007) Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins: Struct, Funct, Bioinf 66: 824–837. PubMed
Dai S-X, Zhang A-D, Huang J-F (2012) Evolution, expansion and expression of the Kunitz/BPTI gene family associated with long-term blood feeding in Ixodes scapularis . BMC Evol Biol 12: 4. PubMed PMC
Ranasinghe S, McManus DP (2013) Structure and function of invertebrate Kunitz serine protease inhibitors. Dev Comp Immunol 39: 219–227. PubMed
Ribeiro JM, Francischetti IM (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 73–88. PubMed
Chmelar J, Anderson J, Mu J, Jochim R, Valenzuela J, et al. (2008) Insight into the sialome of the castor bean tick, Ixodes ricinus . BMC Genomics 9: 233. PubMed PMC
Francischetti IMB, Meng Z, Mans BJ, Gudderra N, Hall M, et al. (2008) An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus . J Proteomics 71: 493–512. PubMed PMC
Francischetti IMB, Mans BJ, Meng Z, Gudderra N, Veenstra TD, et al. (2008) An insight into the sialome of the soft tick, Ornithodorus parkeri . Insect Biochem Mol Biol 38: 1–21. PubMed PMC
Tsujimoto H, Kotsyfakis M, Francischetti IMB, J.H E, Strand MR, et al. (2012) Simukunin from the Salivary Glands of the Black Fly Simulium vittatum Inhibits Enzymes That Regulate Clotting and Inflammatory Responses. PLoS ONE 7: e29964. PubMed PMC
Kotsyfakis M, Sa-Nunes A, Francischetti IM, Mather TN, Andersen JF, et al. (2006) Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis . J Biol Chem 281: 26298–26307. PubMed
Kotsyfakis M, Anderson JM, Andersen JF, Calvo E, Francischetti IMB, et al. (2008) Cutting Edge: Immunity against a "Silent" Salivary Antigen of the Lyme Vector Ixodes scapularis Impairs Its Ability to Feed. J Immunol 181: 5209–5212. PubMed PMC
Sá-Nunes A, Bafica A, Antonelli LR, Choi EY, Francischetti IMB, et al. (2009) The Immunomodulatory Action of Sialostatin L on Dendritic Cells Reveals Its Potential to Interfere with Autoimmunity. J Immunol 182: 7422–7429. PubMed PMC
Valenzuela JG, Francischetti IMB, Ribeiro JMC (1999) Purification, Cloning, and Synthesis of a Novel Salivary Anti-thrombin from the Mosquito Anopheles albimanus . Biochemistry (Mosc) 38: 11209–11215. PubMed
Francischetti IMB, Valenzuela JG, Ribeiro JMC (1999) Anophelin: Kinetics and Mechanism of Thrombin Inhibition. Biochemistry (Mosc) 38: 16678–16685. PubMed
Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R, et al. (2008) Isolation, Cloning and Structural Characterisation of Boophilin, a Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick. PLoS ONE 3: e1624. PubMed PMC
Balzar S, Fajt ML, Comhair SAA, Erzurum SC, Bleecker E, et al. (2010) Mast Cell Phenotype, Location and Activation in Severe Asthma. Data from The Severe Asthma Research Program. Am J Respir Crit Care Med 183: 299–309. PubMed PMC
Sommerhoff CP, Bode W, Matschiner G, Bergner A, Fritz H (2000) The human mast cell tryptase tetramer: a fascinating riddle solved by structure. Biochim Biophys Acta 1477: 75–89. PubMed
Sommerhoff CP, Söllner C, Mentele R, Piechottka GP, Auerswald EA, et al. (2009) A Kazal-Type Inhibitor of Human Mast Cell Tryptase: Isolation from the Medical Leech Hirudo medicinalis, Characterization, and Sequence Analysis. Biol Chem Hoppe Seyler 375: 685–694. PubMed
Di Marco S, Priestle J (1997) Structure of the complex of leech-derived tryptase inhibitor (LDTI) with trypsin and modeling of the LDTI-tryptase system. Structure 5: 1465–1474. PubMed
Mans BJ, Andersen JF, Schwan TG, Ribeiro JMC (2008) Characterization of anti-hemostatic factors in the argasid, Argas monolakensis: Implications for the evolution of blood-feeding in the soft tick family. Insect Biochem Mol Biol 38: 22–41. PubMed PMC
Karczewski J, Endris R, Connolly TM (1994) Disagregin is a fibrinogen receptor antagonist lacking the Arg-Gly-Asp sequence from the tick, Ornithodoros moubata . J Biol Chem 269: 6702–6708. PubMed
Mans BJ, Louw AI, Neitz AWH (2002) Savignygrin, a Platelet Aggregation Inhibitor from the Soft Tick Ornithodoros savignyi, Presents the RGD Integrin Recognition Motif on the Kunitz-BPTI Fold. J Biol Chem 277: 21371–21378. PubMed
Joubert AM, Louw AI, Joubert F, Neitz AW (1998) Cloning, nucleotide sequence and expression of the gene encoding factor Xa inhibitor from the salivary glands of the tick, Ornithodoros savignyi . Exp Appl Acarol 22: 603–619. PubMed
Zhao R, Dai H, Qiu S, Li T, He Y, et al... (2011) SdPI, The First Functionally Characterized Kunitz-Type Trypsin Inhibitor from Scorpion Venom. PLoS ONE 6. PubMed PMC
Yuan CH, He QY, Peng K, Diao JB, Jiang LP, et al. (2008) Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE 3: e3414. PubMed PMC
Ma D, Wang Y, Yang H, Wu J, An S, et al. (2009) Anti-thrombosis Repertoire of Blood-feeding Horsefly Salivary Glands. Mol Cell Proteomics 8: 2071–2079. PubMed PMC
Xu X, Yang H, Ma D, Wu J, Wang Y, et al. (2008) Toward an Understanding of the Molecular Mechanism for Successful Blood Feeding by Coupling Proteomics Analysis with Pharmacological Testing of Horsefly Salivary Glands. Mol Cell Proteomics 7: 582–590. PubMed
Lima CsA, Torquato RJS, Sasaki SD, Justo GZ, Tanaka AS (2010) Biochemical characterization of a Kunitz type inhibitor similar to dendrotoxins produced by Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) hemocytes. Vet Parasitol 167: 279–287. PubMed
Alim MA, Islam MK, Anisuzzaman, Miyoshi T, Hatta T, et al. (2012) A hemocyte-derived Kunitz-BPTI-type chymotrypsin inhibitor, HlChI, from the ixodid tick Haemaphysalis longicornis, plays regulatory functions in tick blood-feeding processes. Insect Biochem Mol Biol 42: 925–934. PubMed
Ferrè F, Clote P (2006) DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res 34: W182–W185. PubMed PMC
Payne V, Kam PCA (2004) Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia 59: 695–703. PubMed
Syrovets T, Lunov O, Simmet T (2012) Plasmin as a proinflammatory cell activator. J Leukoc Biol 92: 509–519. PubMed
Heutinck KM, ten Berge IJM, Hack CE, Hamann J, Rowshani AT (2010) Serine proteases of the human immune system in health and disease. Mol Immunol 47: 1943–1955. PubMed
Rost B, Sander C (1994) Structure prediction of proteins—where are we now? Curr Opin Biotechnol 5: 372–380. PubMed
Šali A, Blundell TL (1993) Comparative Protein Modelling by Satisfaction of Spatial Restraints. J Mol Biol 234: 779–815. PubMed
Kozlowski LP, Bujnicki JM (2012) MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinformatics 13: 111. PubMed PMC
Dunker AK, Brown CJ, Lawson JD, Lakoucheva LM, Obradovic Z (2002) Intrinsic Disorder and Protein Function. Biochemistry (Mosc) 41: 6573–6582. PubMed
Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk
Tick Salivary Compounds for Targeted Immunomodulatory Therapy