Tick Salivary Kunitz-Type Inhibitors: Targeting Host Hemostasis and Immunity to Mediate Successful Blood Feeding

. 2023 Jan 13 ; 24 (2) : . [epub] 20230113

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36675071

Grantová podpora
Z01 AI001337-01 NIH HHS - United States

Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel β-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.

Zobrazit více v PubMed

Corral-Rodriguez M.A., Macedo-Ribeiro S., Barbosa Pereira P.J., Fuentes-Prior P. Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem. Mol. Biol. 2009;39:579–595. PubMed

Chmelar J., Calvo E., Pedra J.H., Francischetti I.M., Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J. Proteom. 2012;75:3842–3854. doi: 10.1016/j.jprot.2012.04.026. PubMed DOI PMC

Vector-Borne Diseases: Biology of Vector Host Relationship. [(accessed on 21 June 2011)]. Available online: https://grantome.com/grant/NIH/ZIA-AI000810-15.

Karasuyama H., Miyake K., Yoshikawa S. Immunobiology of Acquired Resistance to Ticks. Front. Immunol. 2020;11:601504. doi: 10.3389/fimmu.2020.601504. PubMed DOI PMC

Jmel M.A., Aounallah H., Bensaoud C., Mekki I., Chmelar J., Faria F., M’Ghirbi Y., Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int. J. Mol. Sci. 2021;22:892. doi: 10.3390/ijms22020892. PubMed DOI PMC

Penalver E., Arillo A., Delclos X., Peris D., Grimaldi D.A., Anderson S.R., Nascimbene P.C., Perez-de la Fuente R. Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 2017;8:1924. doi: 10.1038/s41467-017-01550-z. PubMed DOI PMC

Sa-Nunes A., Oliveira C.J.F., Ribeiro J.M. Mast Cells and Basophils: From Malevolent Design to Coevolutionary Arms Race. Trends Parasitol. 2020;36:655–659. doi: 10.1016/j.pt.2020.05.003. PubMed DOI

Simo L., Kazimirova M., Richardson J., Bonnet S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017;7:281. PubMed PMC

Nuttall P.A. Wonders of tick saliva. Ticks Tick-Borne Dis. 2019;10:470–481. doi: 10.1016/j.ttbdis.2018.11.005. PubMed DOI

Francischetti I.M., Sa-Nunes A., Mans B.J., Santos I.M., Ribeiro J.M. The role of saliva in tick feeding. Front. Biosci. 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC

Chmelar J., Kotal J., Langhansova H., Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell. Infect. Microbiol. 2017;7:216. PubMed PMC

Chmelar J., Kotal J., Karim S., Kopacek P., Francischetti I.M.B., Pedra J.H.F., Kotsyfakis M. Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol. 2016;32:242–254. PubMed PMC

Nuttall P.A., Labuda M. Tick-host interactions: Saliva-activated transmission. Parasitology. 2004;129((Suppl. S1)):77–189. doi: 10.1017/S0031182004005633. PubMed DOI

Oliva M.L., Sampaio M.U. Action of plant proteinase inhibitors on enzymes of physiopathological importance. An. Acad. Bras. Cienc. 2009;81:615–621. doi: 10.1590/S0001-37652009000300023. PubMed DOI

Stibraniova I., Bartikova P., Holikova V., Kazimirova M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front. Physiol. 2019;10:830. PubMed PMC

Page M.J., Di Cera E. Serine peptidases: Classification, structure and function. Cell. Mol. Life Sci. 2008;65:1220–1236. doi: 10.1007/s00018-008-7565-9. PubMed DOI PMC

Ranasinghe S., McManus D.P. Structure and function of invertebrate Kunitz serine protease inhibitors. Dev. Comp. Immunol. 2013;39:219–227. doi: 10.1016/j.dci.2012.10.005. PubMed DOI

Francischetti I.M., Valenzuela J.G., Andersen J.F., Mather T.N., Ribeiro J.M. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: Identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood. 2002;99:3602–3612. doi: 10.1182/blood-2001-12-0237. PubMed DOI

Ribeiro J.M., Alarcon-Chaidez F., Francischetti I.M., Mans B.J., Mather T.N., Valenzuela J.G., Wikel S.K. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 2006;36:111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI

Kunitz M., Northrop J.H. Isolation from Beef Pancreas of Crystalline Trypsinogen, Trypsin, a Trypsin Inhibitor, and an Inhibitor-Trypsin Compound. J. Gen. Physiol. 1936;19:991–1007. doi: 10.1085/jgp.19.6.991. PubMed DOI PMC

Ascenzi P., Bocedi A., Bolognesi M., Spallarossa A., Coletta M., De Cristofaro R., Menegatti E. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): A milestone protein. Curr. Protein. Pept. Sci. 2003;4:231–251. doi: 10.2174/1389203033487180. PubMed DOI

Mishra M. Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors. J. Mol. Evol. 2020;88:537–548. PubMed

Flo M., Margenat M., Pellizza L., Grana M., Duran R., Baez A., Salceda E., Soto E., Alvarez B., Fernandez C. Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels. PLoS Pathog. 2017;13:e1006169. doi: 10.1371/journal.ppat.1006169. PubMed DOI PMC

Martins L.A., Kotal J., Bensaoud C., Chmelar J., Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. Biochim. Biophys. Acta Proteins Proteom. 2020;1868:140336. doi: 10.1016/j.bbapap.2019.140336. PubMed DOI

de Magalhaes M.T.Q., Mambelli F.S., Santos B.P.O., Morais S.B., Oliveira S.C. Serine protease inhibitors containing a Kunitz domain: Their role in modulation of host inflammatory responses and parasite survival. Microbes Infect. 2018;20:606–609. doi: 10.1016/j.micinf.2018.01.003. PubMed DOI

Gomes M.T., Oliva M.L., Lopes M.T., Salas C.E. Plant proteinases and inhibitors: An overview of biological function and pharmacological activity. Curr. Protein Pept. Sci. 2011;12:417–436. doi: 10.2174/138920311796391089. PubMed DOI

Shamsi T.N., Parveen R., Fatima S. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int. J. Biol. Macromol. 2016;91:1120–1133. doi: 10.1016/j.ijbiomac.2016.02.069. PubMed DOI

Ribeiro J.M.C., Mans B.J. TickSialoFam (TSFam): A Database That Helps to Classify Tick Salivary Proteins, a Review on Tick Salivary Protein Function and Evolution, With Considerations on the Tick Sialome Switching Phenomenon. Front. Cell. Infect. Microbiol. 2020;10:374. doi: 10.3389/fcimb.2020.00374. PubMed DOI PMC

Costa G.C.A., Ribeiro I.C.T., Melo-Junior O., Gontijo N.F., Sant’Anna M.R.V., Pereira M.H., Pessoa G.C.D., Koerich L.B., Oliveira F., Valenzuela J.G., et al. Amblyomma sculptum Salivary Protease Inhibitors as Potential Anti-Tick Vaccines. Front. Immunol. 2020;11:611104. doi: 10.3389/fimmu.2020.611104. PubMed DOI PMC

Reck J., Webster A., Dall’Agnol B., Pienaar R., de Castro M.H., Featherston J., Mans B.J. Transcriptomic Analysis of Salivary Glands of Ornithodoros brasiliensis Aragao, 1923, the Agent of a Neotropical Tick-Toxicosis Syndrome in Humans. Front. Physiol. 2021;12:725635. doi: 10.3389/fphys.2021.725635. PubMed DOI PMC

Perez-Sanchez R., Carnero-Moran A., Soriano B., Llorens C., Oleaga A. RNA-seq analysis and gene expression dynamics in the salivary glands of the argasid tick Ornithodoros erraticus along the trophogonic cycle. Parasites Vectors. 2021;14:170. PubMed PMC

Oleaga A., Soriano B., Llorens C., Perez-Sanchez R. Sialotranscriptomics of the argasid tick Ornithodoros moubata along the trophogonic cycle. PLoS Negl. Trop. Dis. 2021;15:e0009105. doi: 10.1371/journal.pntd.0009105. PubMed DOI PMC

Garcia G.R., Gardinassi L.G., Ribeiro J.M., Anatriello E., Ferreira B.R., Moreira H.N., Mafra C., Martins M.M., Szabo M.P., de Miranda-Santos I.K., et al. The sialotranscriptome of Amblyomma triste, Amblyomma parvum and Amblyomma cajennense ticks, uncovered by 454-based RNA-seq. Parasit Vectors. 2014;7:430. doi: 10.1186/1756-3305-7-430. PubMed DOI PMC

Karim S., Kumar D., Adamson S., Ennen J.R., Qualls C.P., Ribeiro J.M.C. The sialotranscriptome of the gopher-tortoise tick, Amblyomma tuberculatum. Ticks Tick-Borne Dis. 2021;12:101560. doi: 10.1016/j.ttbdis.2020.101560. PubMed DOI PMC

Karim S., Ribeiro J.M. An Insight into the Sialome of the Lone Star Tick, Amblyomma americanum, with a Glimpse on Its Time Dependent Gene Expression. PLoS ONE. 2015;10:e0131292. doi: 10.1371/journal.pone.0131292. PubMed DOI PMC

Maruyama S.R., Garcia G.R., Teixeira F.R., Brandao L.G., Anderson J.M., Ribeiro J.M.C., Valenzuela J.G., Horackova J., Verissimo C.J., Katiki L.M., et al. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasite Vector. 2017:10. doi: 10.1186/s13071-017-2136-2. PubMed DOI PMC

Araujo R.N., Silva N.C.S., Mendes-Sousa A., Paim R., Costa G.C.A., Dias L.R., Oliveira K., Sant’Anna M.R.V., Gontijo N.F., Pereira M.H., et al. RNA-seq analysis of the salivary glands and midgut of the Argasid tick Ornithodoros rostratus. Sci. Rep. 2019;9:6764. doi: 10.1038/s41598-019-42899-z. PubMed DOI PMC

Chmelar J., Oliveira C.J., Rezacova P., Francischetti I.M., Kovarova Z., Pejler G., Kopacek P., Ribeiro J.M., Mares M., Kopecky J., et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood. 2011;117:736–744. doi: 10.1182/blood-2010-06-293241. PubMed DOI PMC

Branco V.G., Iqbal A., Alvarez-Flores M.P., Sciani J.M., de Andrade S.A., Iwai L.K., Serrano S.M., Chudzinski-Tavassi A.M. Amblyomin-X having a Kunitz-type homologous domain, is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo. Biochim Biophys Acta Proteins Proteom. 2016;1864:1428–1435. doi: 10.1016/j.bbapap.2016.07.011. PubMed DOI

Kolte D., Shariat-Madar Z. Plasma Kallikrein Inhibitors in Cardiovascular Disease: An Innovative Therapeutic Approach. Cardiol. Rev. 2016;24:99–109. doi: 10.1097/CRD.0000000000000069. PubMed DOI

Waxman L., Smith D.E., Arcuri K.E., Vlasuk G.P. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science. 1990;248:593–596. doi: 10.1126/science.2333510. PubMed DOI

Schaffer L.W., Davidson J.T., Vlasuk G.P., Siegl P.K. Antithrombotic efficacy of recombinant tick anticoagulant peptide. A potent inhibitor of coagulation factor Xa in a primate model of arterial thrombosis. Circulation. 1991;84:1741–1748. doi: 10.1161/01.CIR.84.4.1741. PubMed DOI

Karczewski J., Connolly T.M. The interaction of disagregin with the platelet fibrinogen receptor, glycoprotein IIb-IIIa. Blood. 1996;88:85. doi: 10.1006/bbrc.1997.7881. PubMed DOI

Decrem Y., Rath G., Blasioli V., Cauchie P., Robert S., Beaufays J., Frere J.M., Feron O., Dogne J.M., Dessy C., et al. Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J. Exp. Med. 2009;206:2381–2395. doi: 10.1084/jem.20091007. PubMed DOI PMC

Akagi E.M., de Sa Junior P.L., Simons S.M., Bellini M.H., Barreto S.A., Chudzinski-Tavassi A.M. Corrigendum to “Pro-apoptotic effects of Amblyomin-X in murine renal cell carcinoma “in vitro” [Biomed. Pharmacother. 66 (2012) 64-69] Biomed. Pharmacother. 2019;118:109108. doi: 10.1016/j.biopha.2019.109108. PubMed DOI

Monteiro R.Q., Rezaie A.R., Bae J.S., Calvo E., Andersen J.F., Francischetti I.M. Ixolaris binding to factor X reveals a precursor state of factor Xa heparin-binding exosite. Protein Sci. 2008;17:146–153. doi: 10.1110/ps.073016308. PubMed DOI PMC

Nazareth R.A., Tomaz L.S., Ortiz-Costa S., Atella G.C., Ribeiro J.M., Francischetti I.M., Monteiro R.Q. Antithrombotic properties of Ixolaris, a potent inhibitor of the extrinsic pathway of the coagulation cascade. Thromb. Haemost. 2006;96:7–13. doi: 10.1160/TH06-02-0105. PubMed DOI PMC

Zhang H., Qiao R., Gong H., Cao J., Zhou Y., Zhou J. Identification and anticoagulant activity of a novel Kunitz-type protein HA11 from the salivary gland of the tick Hyalomma asiaticum. Exp. Appl. Acarol. 2017;71:71–85. doi: 10.1007/s10493-017-0106-1. PubMed DOI

Gao X., Shi L., Zhou Y., Cao J., Zhang H., Zhou J. Characterization of the anticoagulant protein Rhipilin-1 from the Rhipicephalus haemaphysaloides tick. J. Insect. Physiol. 2011;57:339–343. doi: 10.1016/j.jinsphys.2010.12.001. PubMed DOI

Cao J., Shi L., Zhou Y., Gao X., Zhang H., Gong H., Zhou J. Characterization of a new Kunitz-type serine protease inhibitor from the hard tick Rhipicephalus hemaphysaloides. Arch. Insect. Biochem. Physiol. 2013;84:104–113. doi: 10.1002/arch.21118. PubMed DOI

Lai R., Takeuchi H., Jonczy J., Rees H.H., Turner P.C. A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum. Gene. 2004;342:243–249. doi: 10.1016/j.gene.2004.07.012. PubMed DOI

Blisnick A.A., Simo L., Grillon C., Fasani F., Brule S., Le Bonniec B., Prina E., Marsot M., Relmy A., Blaise-Boisseau S., et al. The Immunomodulatory Effect of IrSPI, a Tick Salivary Gland Serine Protease Inhibitor Involved in Ixodes ricinus Tick Feeding. Vaccines. 2019;7:148. doi: 10.3390/vaccines7040148. PubMed DOI PMC

Almazan C., Fourniol L., Rakotobe S., Simo L., Borneres J., Cote M., Peltier S., Maye J., Versille N., Richardson J., et al. Failed Disruption of Tick Feeding, Viability, and Molting after Immunization of Mice and Sheep with Recombinant Ixodes ricinus Salivary Proteins IrSPI and IrLip1. Vaccines. 2020;8:475. doi: 10.3390/vaccines8030475. PubMed DOI PMC

Carneiro-Lobo T.C., Konig S., Machado D.E., Nasciutti L.E., Forni M.F., Francischetti I.M., Sogayar M.C., Monteiro R.Q. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J. Thromb. Haemost. 2009;7:1855–1864. doi: 10.1111/j.1538-7836.2009.03553.x. PubMed DOI PMC

Francischetti I.M., Mather T.N., Ribeiro J.M. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis. Thromb. Haemost. 2004;91:886–898. PubMed

Valdes J.J., Schwarz A., Cabeza de Vaca I., Calvo E., Pedra J.H., Guallar V., Kotsyfakis M. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS ONE. 2013;8:e62562. doi: 10.1371/journal.pone.0062562. PubMed DOI PMC

Paesen G.C., Siebold C., Dallas M.L., Peers C., Harlos K., Nuttall P.A., Nunn M.A., Stuart D.I., Esnouf R.M. An ion-channel modulator from the saliva of the brown ear tick has a highly modified Kunitz/BPTI structure. J. Mol. Biol. 2009;389:734–747. doi: 10.1016/j.jmb.2009.04.045. PubMed DOI

Soares T.S., Watanabe R.M., Tanaka-Azevedo A.M., Torquato R.J., Lu S., Figueiredo A.C., Pereira P.J., Tanaka A.S. Expression and functional characterization of boophilin, a thrombin inhibitor from Rhipicephalus (Boophilus) microplus midgut. Vet. Parasitol. 2012;187:521–528. doi: 10.1016/j.vetpar.2012.01.027. PubMed DOI

Assumpcao T.C., Ma D., Mizurini D.M., Kini R.M., Ribeiro J.M., Kotsyfakis M., Monteiro R.Q., Francischetti I.M. In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus. PLoS Negl. Trop. Dis. 2016;10:e0004298. doi: 10.1371/journal.pntd.0004298. PubMed DOI PMC

Sasaki S.D., Azzolini S.S., Hirata I.Y., Andreotti R., Tanaka A.S. Boophilus microplus tick larvae, a rich source of Kunitz type serine proteinase inhibitors. Biochimie. 2004;86:643–649. doi: 10.1016/j.biochi.2004.09.010. PubMed DOI

Soares T.S., Oliveira F., Torquato R.J., Sasaki S.D., Araujo M.S., Paschoalin T., Tanaka A.S. BmTI-A, a Kunitz type inhibitor from Rhipicephalus microplus able to interfere in vessel formation. Vet. Parasitol. 2016;219:44–52. doi: 10.1016/j.vetpar.2016.01.021. PubMed DOI

Florencio A.C., de Almeida R.S., Arantes-Costa F.M., Saraiva-Romanholo B.M., Duran A.F., Sasaki S.D., Martins M.A., Lopes F., Tiberio I., Leick E.A. Effects of the serine protease inhibitor rBmTI-A in an experimental mouse model of chronic allergic pulmonary inflammation. Sci. Rep. 2019;9:12624. doi: 10.1038/s41598-019-48577-4. PubMed DOI PMC

Lourenco J.D., Ito J.T., Cervilha D.A.B., Sales D.S., Riani A., Suehiro C.L., Genaro I.S., Duran A., Puzer L., Martins M.A., et al. The tick-derived rBmTI-A protease inhibitor attenuates the histological and functional changes induced by cigarette smoke exposure. Histol Histopathol. 2018;33:289–298. PubMed

Lourenco J.D., Neves L.P., Olivo C.R., Duran A., Almeida F.M., Arantes P.M., Prado C.M., Leick E.A., Tanaka A.S., Martins M.A., et al. A treatment with a protease inhibitor recombinant from the cattle tick (Rhipicephalus Boophilus microplus) ameliorates emphysema in mice. PLoS ONE. 2014;9:e98216. doi: 10.1371/journal.pone.0098216. PubMed DOI PMC

Sasaki S.D., Tanaka A.S. rBmTI-6, a Kunitz-BPTI domain protease inhibitor from the tick Boophilus microplus, its cloning, expression and biochemical characterization. Vet. Parasitol. 2008;155:133–141. doi: 10.1016/j.vetpar.2008.03.031. PubMed DOI

Duran A.F.A., Neves L.P., da Silva F.R.S., Machado G.C., Ferreira G.C., Lourenco J.D., Tanaka A.S., Martins M.A., Lopes F., Sasaki S.D. rBmTI-6 attenuates pathophysiological and inflammatory parameters of induced emphysema in mice. Int. J. Biol. Macromol. 2018;111:1214–1221. doi: 10.1016/j.ijbiomac.2018.01.066. PubMed DOI

Islam M.K., Tsuji N., Miyoshi T., Alim M.A., Huang X., Hatta T., Fujisaki K. The Kunitz-like modulatory protein haemangin is vital for hard tick blood-feeding success. PLoS Pathog. 2009;5:e1000497. doi: 10.1371/journal.ppat.1000497. PubMed DOI PMC

Miyoshi T., Tsuji N., Islam M.K., Alim M.A., Hatta T., Yamaji K., Anisuzzaman Fujisaki K. A Kunitz-type proteinase inhibitor from the midgut of the ixodid tick, Haemaphysalis longicornis, and its endogenous target serine proteinase. Mol. Biochem. Parasitol. 2010;170:112–115. doi: 10.1016/j.molbiopara.2009.12.005. PubMed DOI

Alim M.A., Islam M.K., Anisuzzaman Miyoshi T., Hatta T., Yamaji K., Matsubayashi M., Fujisaki K., Tsuji N. A hemocyte-derived Kunitz-BPTI-type chymotrypsin inhibitor, HlChI, from the ixodid tick Haemaphysalis longicornis, plays regulatory functions in tick blood-feeding processes. Insect Biochem. Mol. Biol. 2012;42:925–934. doi: 10.1016/j.ibmb.2012.09.005. PubMed DOI

Ceraul S.M., Dreher-Lesnick S.M., Mulenga A., Rahman M.S., Azad A.F. Functional characterization and novel rickettsiostatic effects of a Kunitz-type serine protease inhibitor from the tick Dermacentor variabilis. Infect. Immun. 2008;76:5429–5435. doi: 10.1128/IAI.00866-08. PubMed DOI PMC

van de Locht A., Stubbs M.T., Bode W., Friedrich T., Bollschweiler C., Höffken W., Huber R. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 1996;15:6011–6017. doi: 10.1002/j.1460-2075.1996.tb00989.x. PubMed DOI PMC

Karczewski J., Endris R., Connolly T.M. Disagregin Is a Fibrinogen Receptor Antagonist Lacking the Arg-Gly-Asp Sequence from the Tick, Ornithodoros-Moubata. J. Biol. Chem. 1994;269:6702–6708. doi: 10.1016/S0021-9258(17)37432-X. PubMed DOI

Mans B.J., Louw A.I., Neitz A.W. Savignygrin, a platelet aggregation inhibitor from the soft tick Ornithodoros savignyi, presents the RGD integrin recognition motif on the Kunitz-BPTI fold. J. Biol. Chem. 2002;277:21371–21378. doi: 10.1074/jbc.M112060200. PubMed DOI

Ceraul S.M., Chung A., Sears K.T., Popov V.L., Beier-Sexton M., Rahman M.S., Azad A.F. A Kunitz protease inhibitor from Dermacentor variabilis, a vector for spotted fever group rickettsiae, limits Rickettsia montanensis invasion. Infect. Immun. 2011;79:321–329. doi: 10.1128/IAI.00362-10. PubMed DOI PMC

Manen J.F., Simon P., Van Slooten J.C., Osteras M., Frutiger S., Hughes G.J. A nodulin specifically expressed in senescent nodules of winged bean is a protease inhibitor. Plant Cell. 1991;3:259–270. PubMed PMC

Levi M., van der Poll T., Buller H.R. Bidirectional relation between inflammation and coagulation. Circulation. 2004;109:2698–2704. doi: 10.1161/01.CIR.0000131660.51520.9A. PubMed DOI

Francischetti I.M., Seydel K.B., Monteiro R.Q. Blood coagulation, inflammation, and malaria. Microcirculation. 2008;15:81–107. doi: 10.1080/10739680701451516. PubMed DOI PMC

Schechter M.E., Andrade B.B., He T., Richter G.H., Tosh K.W., Policicchio B.B., Singh A., Raehtz K.D., Sheikh V., Ma D., et al. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Sci. Transl. Med. 2017;9:eaam5441. doi: 10.1126/scitranslmed.aam5441. PubMed DOI PMC

Paesen G.C., Siebold C., Harlos K., Peacey M.F., Nuttall P.A., Stuart D.I. A tick protein with a modified Kunitz fold inhibits human tryptase. J. Mol. Biol. 2007;368:1172–1186. doi: 10.1016/j.jmb.2007.03.011. PubMed DOI

Hellman L., Akula S., Fu Z., Wernersson S. Mast Cell and Basophil Granule Proteases—In Vivo Targets and Function. Front. Immunol. 2022;13:918305. doi: 10.3389/fimmu.2022.918305. PubMed DOI PMC

Valdes J.J., Moal I.H. Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome. Ticks Tick-Borne Dis. 2014;5:947–950. doi: 10.1016/j.ttbdis.2014.07.016. PubMed DOI

Kettritz R. Neutral serine proteases of neutrophils. Immunol. Rev. 2016;273:232–248. doi: 10.1111/imr.12441. PubMed DOI

Henriksen P.A. The potential of neutrophil elastase inhibitors as anti-inflammatory therapies. Curr. Opin. Hematol. 2014;21:23–28. doi: 10.1097/MOH.0000000000000001. PubMed DOI

Ferreira G.C., Bomediano Camillo L.M., Sasaki S.D. Structural and functional properties of rBmTI-A. A Kunitz-BPTI serine protease inhibitor with therapeutical potential. Biochimie. 2022. in press . PubMed DOI

Batista I.F., Ramos O.H., Ventura J.S., Junqueira-de-Azevedo I.L., Ho P.L., Chudzinski-Tavassi A.M. A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch. Biochem. Biophys. 2010;493:151–156. doi: 10.1016/j.abb.2009.10.009. PubMed DOI

Pasqualoto K.F., Balan A., Barreto S.A., Simons S.M., Chudzinski-Tavassi A.M. Structural findings and molecular modeling approach of a TFPI-like inhibitor. Protein Pept. Lett. 2014;21:452–457. doi: 10.2174/0929866520666131210115334. PubMed DOI

Drewes C.C., Dias R.Y., Hebeda C.B., Simons S.M., Barreto S.A., Ferreira J.M., Jr., Chudzinski-Tavassi A.M., Farsky S.H. Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis. Toxicon. 2012;60:333–340. doi: 10.1016/j.toxicon.2012.04.349. PubMed DOI

Chudzinski-Tavassi A.M., De-Sa-Junior P.L., Simons S.M., Maria D.A., de Souza Ventura J., Batista I.F., Faria F., Duraes E., Reis E.M., Demasi M. A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon. 2010;56:1145–1154. doi: 10.1016/j.toxicon.2010.04.019. PubMed DOI

Ventura J.S., Faria F., Batista I.F., Simons S.M., Oliveira D.G., Morais K.L., Chudzinski-Tavassi A.M. A Kunitz-type FXa inhibitor affects tumor progression, hypercoagulable state and triggers apoptosis. Biomed. Pharmacother. 2013;67:192–196. doi: 10.1016/j.biopha.2012.11.009. PubMed DOI

Maria D.A., de Souza J.G., Morais K.L., Berra C.M., Zampolli Hde C., Demasi M., Simons S.M., de Freitas Saito R., Chammas R., Chudzinski-Tavassi A.M. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production. Invest. New Drugs. 2013;31:493–505. doi: 10.1007/s10637-012-9871-1. PubMed DOI PMC

Ali A., Zeb I., Alouffi A., Zahid H., Almutairi M.M., Ayed Alshammari F., Alrouji M., Termignoni C., Vaz I.D.S., Jr., Tanaka T. Host Immune Responses to Salivary Components—A Critical Facet of Tick-Host Interactions. Front. Cell. Infect. Microbiol. 2022;12:809052. doi: 10.3389/fcimb.2022.809052. PubMed DOI PMC

Skare J.T., Garcia B.L. Complement Evasion by Lyme Disease Spirochetes. Trends Microbiol. 2020;28:889–899. doi: 10.1016/j.tim.2020.05.004. PubMed DOI PMC

Torina A., Villari S., Blanda V., Vullo S., La Manna M.P., Shekarkar Azgomi M., Di Liberto D., de la Fuente J., Sireci G. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. Int. J. Mol. Sci. 2020;21:5437. doi: 10.3390/ijms21155437. PubMed DOI PMC

Willadsen P. Anti-tick vaccines. Parasitology. 2004;129((Suppl. S3)):67–387. doi: 10.1017/S0031182003004657. PubMed DOI

Andreotti R., Gomes A., Malavazi-Piza K.C., Sasaki S.D., Sampaio C.A., Tanaka A.S. BmTI antigens induce a bovine protective immune response against Boophilus microplus tick. Int. Immunopharmacol. 2002;2:557–563. doi: 10.1016/S1567-5769(01)00203-X. PubMed DOI

Andreotti R. A synthetic bmti n-terminal fragment as antigen in bovine immunoprotection against the tick Boophilus microplus in a pen trial. Exp. Parasitol. 2007;116:66–70. doi: 10.1016/j.exppara.2006.11.009. PubMed DOI

Andreotti R., Cunha R.C., Soares M.A., Guerrero F.D., Leite F.P., de Leon A.A. Protective immunity against tick infestation in cattle vaccinated with recombinant trypsin inhibitor of Rhipicephalus microplus. Vaccine. 2012;30:6678–6685. doi: 10.1016/j.vaccine.2012.08.066. PubMed DOI

de la Fuente J., Kocan K.M. The Impact of RNA Interference in Tick Research. Pathogens. 2022;11:827. doi: 10.3390/pathogens11080827. PubMed DOI PMC

Liao M., Zhou J., Gong H., Boldbaatar D., Shirafuji R., Battur B., Nishikawa Y., Fujisaki K. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis. J. Insect. Physiol. 2009;55:164–173. doi: 10.1016/j.jinsphys.2008.11.004. PubMed DOI

Macedo-Ribeiro S., Almeida C., Calisto B.M., Friedrich T., Mentele R., Sturzebecher J., Fuentes-Prior P., Pereira P.J. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS ONE. 2008;3:e1624. doi: 10.1371/journal.pone.0001624. PubMed DOI PMC

Valenzuela J.G., Francischetti I.M., Pham V.M., Garfield M.K., Mather T.N., Ribeiro J.M. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 2002;205:2843–2864. doi: 10.1242/jeb.205.18.2843. PubMed DOI

Lobba A.R.M., Alvarez-Flores M.P., Fessel M.R., Buri M.V., Oliveira D.S., Gomes R.N., Cunegundes P.S., DeOcesano-Pereira C., Cinel V.D., Chudzinski-Tavassi A.M. A Kunitz-type inhibitor from tick salivary glands: A promising novel antitumor drug candidate. Front. Mol. Biosci. 2022;9:936107. doi: 10.3389/fmolb.2022.936107. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...