Tick Salivary Kunitz-Type Inhibitors: Targeting Host Hemostasis and Immunity to Mediate Successful Blood Feeding
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Z01 AI001337-01
NIH HHS - United States
PubMed
36675071
PubMed Central
PMC9865953
DOI
10.3390/ijms24021556
PII: ijms24021556
Knihovny.cz E-zdroje
- Klíčová slova
- Kunitz-type, hemostasis, immunomodulation, parasite-host interactions, protease inhibitors, ticks,
- MeSH
- cystatiny * metabolismus MeSH
- inhibitory serinových proteinas farmakologie terapeutické užití metabolismus MeSH
- klíšťata * MeSH
- serpiny * metabolismus MeSH
- sliny metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cystatiny * MeSH
- inhibitory serinových proteinas MeSH
- serpiny * MeSH
Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel β-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.
Zobrazit více v PubMed
Corral-Rodriguez M.A., Macedo-Ribeiro S., Barbosa Pereira P.J., Fuentes-Prior P. Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem. Mol. Biol. 2009;39:579–595. PubMed
Chmelar J., Calvo E., Pedra J.H., Francischetti I.M., Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J. Proteom. 2012;75:3842–3854. doi: 10.1016/j.jprot.2012.04.026. PubMed DOI PMC
Vector-Borne Diseases: Biology of Vector Host Relationship. [(accessed on 21 June 2011)]. Available online: https://grantome.com/grant/NIH/ZIA-AI000810-15.
Karasuyama H., Miyake K., Yoshikawa S. Immunobiology of Acquired Resistance to Ticks. Front. Immunol. 2020;11:601504. doi: 10.3389/fimmu.2020.601504. PubMed DOI PMC
Jmel M.A., Aounallah H., Bensaoud C., Mekki I., Chmelar J., Faria F., M’Ghirbi Y., Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int. J. Mol. Sci. 2021;22:892. doi: 10.3390/ijms22020892. PubMed DOI PMC
Penalver E., Arillo A., Delclos X., Peris D., Grimaldi D.A., Anderson S.R., Nascimbene P.C., Perez-de la Fuente R. Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 2017;8:1924. doi: 10.1038/s41467-017-01550-z. PubMed DOI PMC
Sa-Nunes A., Oliveira C.J.F., Ribeiro J.M. Mast Cells and Basophils: From Malevolent Design to Coevolutionary Arms Race. Trends Parasitol. 2020;36:655–659. doi: 10.1016/j.pt.2020.05.003. PubMed DOI
Simo L., Kazimirova M., Richardson J., Bonnet S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017;7:281. PubMed PMC
Nuttall P.A. Wonders of tick saliva. Ticks Tick-Borne Dis. 2019;10:470–481. doi: 10.1016/j.ttbdis.2018.11.005. PubMed DOI
Francischetti I.M., Sa-Nunes A., Mans B.J., Santos I.M., Ribeiro J.M. The role of saliva in tick feeding. Front. Biosci. 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC
Chmelar J., Kotal J., Langhansova H., Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell. Infect. Microbiol. 2017;7:216. PubMed PMC
Chmelar J., Kotal J., Karim S., Kopacek P., Francischetti I.M.B., Pedra J.H.F., Kotsyfakis M. Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol. 2016;32:242–254. PubMed PMC
Nuttall P.A., Labuda M. Tick-host interactions: Saliva-activated transmission. Parasitology. 2004;129((Suppl. S1)):77–189. doi: 10.1017/S0031182004005633. PubMed DOI
Oliva M.L., Sampaio M.U. Action of plant proteinase inhibitors on enzymes of physiopathological importance. An. Acad. Bras. Cienc. 2009;81:615–621. doi: 10.1590/S0001-37652009000300023. PubMed DOI
Stibraniova I., Bartikova P., Holikova V., Kazimirova M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front. Physiol. 2019;10:830. PubMed PMC
Page M.J., Di Cera E. Serine peptidases: Classification, structure and function. Cell. Mol. Life Sci. 2008;65:1220–1236. doi: 10.1007/s00018-008-7565-9. PubMed DOI PMC
Ranasinghe S., McManus D.P. Structure and function of invertebrate Kunitz serine protease inhibitors. Dev. Comp. Immunol. 2013;39:219–227. doi: 10.1016/j.dci.2012.10.005. PubMed DOI
Francischetti I.M., Valenzuela J.G., Andersen J.F., Mather T.N., Ribeiro J.M. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: Identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood. 2002;99:3602–3612. doi: 10.1182/blood-2001-12-0237. PubMed DOI
Ribeiro J.M., Alarcon-Chaidez F., Francischetti I.M., Mans B.J., Mather T.N., Valenzuela J.G., Wikel S.K. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 2006;36:111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI
Kunitz M., Northrop J.H. Isolation from Beef Pancreas of Crystalline Trypsinogen, Trypsin, a Trypsin Inhibitor, and an Inhibitor-Trypsin Compound. J. Gen. Physiol. 1936;19:991–1007. doi: 10.1085/jgp.19.6.991. PubMed DOI PMC
Ascenzi P., Bocedi A., Bolognesi M., Spallarossa A., Coletta M., De Cristofaro R., Menegatti E. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): A milestone protein. Curr. Protein. Pept. Sci. 2003;4:231–251. doi: 10.2174/1389203033487180. PubMed DOI
Mishra M. Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors. J. Mol. Evol. 2020;88:537–548. PubMed
Flo M., Margenat M., Pellizza L., Grana M., Duran R., Baez A., Salceda E., Soto E., Alvarez B., Fernandez C. Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels. PLoS Pathog. 2017;13:e1006169. doi: 10.1371/journal.ppat.1006169. PubMed DOI PMC
Martins L.A., Kotal J., Bensaoud C., Chmelar J., Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. Biochim. Biophys. Acta Proteins Proteom. 2020;1868:140336. doi: 10.1016/j.bbapap.2019.140336. PubMed DOI
de Magalhaes M.T.Q., Mambelli F.S., Santos B.P.O., Morais S.B., Oliveira S.C. Serine protease inhibitors containing a Kunitz domain: Their role in modulation of host inflammatory responses and parasite survival. Microbes Infect. 2018;20:606–609. doi: 10.1016/j.micinf.2018.01.003. PubMed DOI
Gomes M.T., Oliva M.L., Lopes M.T., Salas C.E. Plant proteinases and inhibitors: An overview of biological function and pharmacological activity. Curr. Protein Pept. Sci. 2011;12:417–436. doi: 10.2174/138920311796391089. PubMed DOI
Shamsi T.N., Parveen R., Fatima S. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int. J. Biol. Macromol. 2016;91:1120–1133. doi: 10.1016/j.ijbiomac.2016.02.069. PubMed DOI
Ribeiro J.M.C., Mans B.J. TickSialoFam (TSFam): A Database That Helps to Classify Tick Salivary Proteins, a Review on Tick Salivary Protein Function and Evolution, With Considerations on the Tick Sialome Switching Phenomenon. Front. Cell. Infect. Microbiol. 2020;10:374. doi: 10.3389/fcimb.2020.00374. PubMed DOI PMC
Costa G.C.A., Ribeiro I.C.T., Melo-Junior O., Gontijo N.F., Sant’Anna M.R.V., Pereira M.H., Pessoa G.C.D., Koerich L.B., Oliveira F., Valenzuela J.G., et al. Amblyomma sculptum Salivary Protease Inhibitors as Potential Anti-Tick Vaccines. Front. Immunol. 2020;11:611104. doi: 10.3389/fimmu.2020.611104. PubMed DOI PMC
Reck J., Webster A., Dall’Agnol B., Pienaar R., de Castro M.H., Featherston J., Mans B.J. Transcriptomic Analysis of Salivary Glands of Ornithodoros brasiliensis Aragao, 1923, the Agent of a Neotropical Tick-Toxicosis Syndrome in Humans. Front. Physiol. 2021;12:725635. doi: 10.3389/fphys.2021.725635. PubMed DOI PMC
Perez-Sanchez R., Carnero-Moran A., Soriano B., Llorens C., Oleaga A. RNA-seq analysis and gene expression dynamics in the salivary glands of the argasid tick Ornithodoros erraticus along the trophogonic cycle. Parasites Vectors. 2021;14:170. PubMed PMC
Oleaga A., Soriano B., Llorens C., Perez-Sanchez R. Sialotranscriptomics of the argasid tick Ornithodoros moubata along the trophogonic cycle. PLoS Negl. Trop. Dis. 2021;15:e0009105. doi: 10.1371/journal.pntd.0009105. PubMed DOI PMC
Garcia G.R., Gardinassi L.G., Ribeiro J.M., Anatriello E., Ferreira B.R., Moreira H.N., Mafra C., Martins M.M., Szabo M.P., de Miranda-Santos I.K., et al. The sialotranscriptome of Amblyomma triste, Amblyomma parvum and Amblyomma cajennense ticks, uncovered by 454-based RNA-seq. Parasit Vectors. 2014;7:430. doi: 10.1186/1756-3305-7-430. PubMed DOI PMC
Karim S., Kumar D., Adamson S., Ennen J.R., Qualls C.P., Ribeiro J.M.C. The sialotranscriptome of the gopher-tortoise tick, Amblyomma tuberculatum. Ticks Tick-Borne Dis. 2021;12:101560. doi: 10.1016/j.ttbdis.2020.101560. PubMed DOI PMC
Karim S., Ribeiro J.M. An Insight into the Sialome of the Lone Star Tick, Amblyomma americanum, with a Glimpse on Its Time Dependent Gene Expression. PLoS ONE. 2015;10:e0131292. doi: 10.1371/journal.pone.0131292. PubMed DOI PMC
Maruyama S.R., Garcia G.R., Teixeira F.R., Brandao L.G., Anderson J.M., Ribeiro J.M.C., Valenzuela J.G., Horackova J., Verissimo C.J., Katiki L.M., et al. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasite Vector. 2017:10. doi: 10.1186/s13071-017-2136-2. PubMed DOI PMC
Araujo R.N., Silva N.C.S., Mendes-Sousa A., Paim R., Costa G.C.A., Dias L.R., Oliveira K., Sant’Anna M.R.V., Gontijo N.F., Pereira M.H., et al. RNA-seq analysis of the salivary glands and midgut of the Argasid tick Ornithodoros rostratus. Sci. Rep. 2019;9:6764. doi: 10.1038/s41598-019-42899-z. PubMed DOI PMC
Chmelar J., Oliveira C.J., Rezacova P., Francischetti I.M., Kovarova Z., Pejler G., Kopacek P., Ribeiro J.M., Mares M., Kopecky J., et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood. 2011;117:736–744. doi: 10.1182/blood-2010-06-293241. PubMed DOI PMC
Branco V.G., Iqbal A., Alvarez-Flores M.P., Sciani J.M., de Andrade S.A., Iwai L.K., Serrano S.M., Chudzinski-Tavassi A.M. Amblyomin-X having a Kunitz-type homologous domain, is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo. Biochim Biophys Acta Proteins Proteom. 2016;1864:1428–1435. doi: 10.1016/j.bbapap.2016.07.011. PubMed DOI
Kolte D., Shariat-Madar Z. Plasma Kallikrein Inhibitors in Cardiovascular Disease: An Innovative Therapeutic Approach. Cardiol. Rev. 2016;24:99–109. doi: 10.1097/CRD.0000000000000069. PubMed DOI
Waxman L., Smith D.E., Arcuri K.E., Vlasuk G.P. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science. 1990;248:593–596. doi: 10.1126/science.2333510. PubMed DOI
Schaffer L.W., Davidson J.T., Vlasuk G.P., Siegl P.K. Antithrombotic efficacy of recombinant tick anticoagulant peptide. A potent inhibitor of coagulation factor Xa in a primate model of arterial thrombosis. Circulation. 1991;84:1741–1748. doi: 10.1161/01.CIR.84.4.1741. PubMed DOI
Karczewski J., Connolly T.M. The interaction of disagregin with the platelet fibrinogen receptor, glycoprotein IIb-IIIa. Blood. 1996;88:85. doi: 10.1006/bbrc.1997.7881. PubMed DOI
Decrem Y., Rath G., Blasioli V., Cauchie P., Robert S., Beaufays J., Frere J.M., Feron O., Dogne J.M., Dessy C., et al. Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J. Exp. Med. 2009;206:2381–2395. doi: 10.1084/jem.20091007. PubMed DOI PMC
Akagi E.M., de Sa Junior P.L., Simons S.M., Bellini M.H., Barreto S.A., Chudzinski-Tavassi A.M. Corrigendum to “Pro-apoptotic effects of Amblyomin-X in murine renal cell carcinoma “in vitro” [Biomed. Pharmacother. 66 (2012) 64-69] Biomed. Pharmacother. 2019;118:109108. doi: 10.1016/j.biopha.2019.109108. PubMed DOI
Monteiro R.Q., Rezaie A.R., Bae J.S., Calvo E., Andersen J.F., Francischetti I.M. Ixolaris binding to factor X reveals a precursor state of factor Xa heparin-binding exosite. Protein Sci. 2008;17:146–153. doi: 10.1110/ps.073016308. PubMed DOI PMC
Nazareth R.A., Tomaz L.S., Ortiz-Costa S., Atella G.C., Ribeiro J.M., Francischetti I.M., Monteiro R.Q. Antithrombotic properties of Ixolaris, a potent inhibitor of the extrinsic pathway of the coagulation cascade. Thromb. Haemost. 2006;96:7–13. doi: 10.1160/TH06-02-0105. PubMed DOI PMC
Zhang H., Qiao R., Gong H., Cao J., Zhou Y., Zhou J. Identification and anticoagulant activity of a novel Kunitz-type protein HA11 from the salivary gland of the tick Hyalomma asiaticum. Exp. Appl. Acarol. 2017;71:71–85. doi: 10.1007/s10493-017-0106-1. PubMed DOI
Gao X., Shi L., Zhou Y., Cao J., Zhang H., Zhou J. Characterization of the anticoagulant protein Rhipilin-1 from the Rhipicephalus haemaphysaloides tick. J. Insect. Physiol. 2011;57:339–343. doi: 10.1016/j.jinsphys.2010.12.001. PubMed DOI
Cao J., Shi L., Zhou Y., Gao X., Zhang H., Gong H., Zhou J. Characterization of a new Kunitz-type serine protease inhibitor from the hard tick Rhipicephalus hemaphysaloides. Arch. Insect. Biochem. Physiol. 2013;84:104–113. doi: 10.1002/arch.21118. PubMed DOI
Lai R., Takeuchi H., Jonczy J., Rees H.H., Turner P.C. A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum. Gene. 2004;342:243–249. doi: 10.1016/j.gene.2004.07.012. PubMed DOI
Blisnick A.A., Simo L., Grillon C., Fasani F., Brule S., Le Bonniec B., Prina E., Marsot M., Relmy A., Blaise-Boisseau S., et al. The Immunomodulatory Effect of IrSPI, a Tick Salivary Gland Serine Protease Inhibitor Involved in Ixodes ricinus Tick Feeding. Vaccines. 2019;7:148. doi: 10.3390/vaccines7040148. PubMed DOI PMC
Almazan C., Fourniol L., Rakotobe S., Simo L., Borneres J., Cote M., Peltier S., Maye J., Versille N., Richardson J., et al. Failed Disruption of Tick Feeding, Viability, and Molting after Immunization of Mice and Sheep with Recombinant Ixodes ricinus Salivary Proteins IrSPI and IrLip1. Vaccines. 2020;8:475. doi: 10.3390/vaccines8030475. PubMed DOI PMC
Carneiro-Lobo T.C., Konig S., Machado D.E., Nasciutti L.E., Forni M.F., Francischetti I.M., Sogayar M.C., Monteiro R.Q. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J. Thromb. Haemost. 2009;7:1855–1864. doi: 10.1111/j.1538-7836.2009.03553.x. PubMed DOI PMC
Francischetti I.M., Mather T.N., Ribeiro J.M. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis. Thromb. Haemost. 2004;91:886–898. PubMed
Valdes J.J., Schwarz A., Cabeza de Vaca I., Calvo E., Pedra J.H., Guallar V., Kotsyfakis M. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS ONE. 2013;8:e62562. doi: 10.1371/journal.pone.0062562. PubMed DOI PMC
Paesen G.C., Siebold C., Dallas M.L., Peers C., Harlos K., Nuttall P.A., Nunn M.A., Stuart D.I., Esnouf R.M. An ion-channel modulator from the saliva of the brown ear tick has a highly modified Kunitz/BPTI structure. J. Mol. Biol. 2009;389:734–747. doi: 10.1016/j.jmb.2009.04.045. PubMed DOI
Soares T.S., Watanabe R.M., Tanaka-Azevedo A.M., Torquato R.J., Lu S., Figueiredo A.C., Pereira P.J., Tanaka A.S. Expression and functional characterization of boophilin, a thrombin inhibitor from Rhipicephalus (Boophilus) microplus midgut. Vet. Parasitol. 2012;187:521–528. doi: 10.1016/j.vetpar.2012.01.027. PubMed DOI
Assumpcao T.C., Ma D., Mizurini D.M., Kini R.M., Ribeiro J.M., Kotsyfakis M., Monteiro R.Q., Francischetti I.M. In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus. PLoS Negl. Trop. Dis. 2016;10:e0004298. doi: 10.1371/journal.pntd.0004298. PubMed DOI PMC
Sasaki S.D., Azzolini S.S., Hirata I.Y., Andreotti R., Tanaka A.S. Boophilus microplus tick larvae, a rich source of Kunitz type serine proteinase inhibitors. Biochimie. 2004;86:643–649. doi: 10.1016/j.biochi.2004.09.010. PubMed DOI
Soares T.S., Oliveira F., Torquato R.J., Sasaki S.D., Araujo M.S., Paschoalin T., Tanaka A.S. BmTI-A, a Kunitz type inhibitor from Rhipicephalus microplus able to interfere in vessel formation. Vet. Parasitol. 2016;219:44–52. doi: 10.1016/j.vetpar.2016.01.021. PubMed DOI
Florencio A.C., de Almeida R.S., Arantes-Costa F.M., Saraiva-Romanholo B.M., Duran A.F., Sasaki S.D., Martins M.A., Lopes F., Tiberio I., Leick E.A. Effects of the serine protease inhibitor rBmTI-A in an experimental mouse model of chronic allergic pulmonary inflammation. Sci. Rep. 2019;9:12624. doi: 10.1038/s41598-019-48577-4. PubMed DOI PMC
Lourenco J.D., Ito J.T., Cervilha D.A.B., Sales D.S., Riani A., Suehiro C.L., Genaro I.S., Duran A., Puzer L., Martins M.A., et al. The tick-derived rBmTI-A protease inhibitor attenuates the histological and functional changes induced by cigarette smoke exposure. Histol Histopathol. 2018;33:289–298. PubMed
Lourenco J.D., Neves L.P., Olivo C.R., Duran A., Almeida F.M., Arantes P.M., Prado C.M., Leick E.A., Tanaka A.S., Martins M.A., et al. A treatment with a protease inhibitor recombinant from the cattle tick (Rhipicephalus Boophilus microplus) ameliorates emphysema in mice. PLoS ONE. 2014;9:e98216. doi: 10.1371/journal.pone.0098216. PubMed DOI PMC
Sasaki S.D., Tanaka A.S. rBmTI-6, a Kunitz-BPTI domain protease inhibitor from the tick Boophilus microplus, its cloning, expression and biochemical characterization. Vet. Parasitol. 2008;155:133–141. doi: 10.1016/j.vetpar.2008.03.031. PubMed DOI
Duran A.F.A., Neves L.P., da Silva F.R.S., Machado G.C., Ferreira G.C., Lourenco J.D., Tanaka A.S., Martins M.A., Lopes F., Sasaki S.D. rBmTI-6 attenuates pathophysiological and inflammatory parameters of induced emphysema in mice. Int. J. Biol. Macromol. 2018;111:1214–1221. doi: 10.1016/j.ijbiomac.2018.01.066. PubMed DOI
Islam M.K., Tsuji N., Miyoshi T., Alim M.A., Huang X., Hatta T., Fujisaki K. The Kunitz-like modulatory protein haemangin is vital for hard tick blood-feeding success. PLoS Pathog. 2009;5:e1000497. doi: 10.1371/journal.ppat.1000497. PubMed DOI PMC
Miyoshi T., Tsuji N., Islam M.K., Alim M.A., Hatta T., Yamaji K., Anisuzzaman Fujisaki K. A Kunitz-type proteinase inhibitor from the midgut of the ixodid tick, Haemaphysalis longicornis, and its endogenous target serine proteinase. Mol. Biochem. Parasitol. 2010;170:112–115. doi: 10.1016/j.molbiopara.2009.12.005. PubMed DOI
Alim M.A., Islam M.K., Anisuzzaman Miyoshi T., Hatta T., Yamaji K., Matsubayashi M., Fujisaki K., Tsuji N. A hemocyte-derived Kunitz-BPTI-type chymotrypsin inhibitor, HlChI, from the ixodid tick Haemaphysalis longicornis, plays regulatory functions in tick blood-feeding processes. Insect Biochem. Mol. Biol. 2012;42:925–934. doi: 10.1016/j.ibmb.2012.09.005. PubMed DOI
Ceraul S.M., Dreher-Lesnick S.M., Mulenga A., Rahman M.S., Azad A.F. Functional characterization and novel rickettsiostatic effects of a Kunitz-type serine protease inhibitor from the tick Dermacentor variabilis. Infect. Immun. 2008;76:5429–5435. doi: 10.1128/IAI.00866-08. PubMed DOI PMC
van de Locht A., Stubbs M.T., Bode W., Friedrich T., Bollschweiler C., Höffken W., Huber R. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 1996;15:6011–6017. doi: 10.1002/j.1460-2075.1996.tb00989.x. PubMed DOI PMC
Karczewski J., Endris R., Connolly T.M. Disagregin Is a Fibrinogen Receptor Antagonist Lacking the Arg-Gly-Asp Sequence from the Tick, Ornithodoros-Moubata. J. Biol. Chem. 1994;269:6702–6708. doi: 10.1016/S0021-9258(17)37432-X. PubMed DOI
Mans B.J., Louw A.I., Neitz A.W. Savignygrin, a platelet aggregation inhibitor from the soft tick Ornithodoros savignyi, presents the RGD integrin recognition motif on the Kunitz-BPTI fold. J. Biol. Chem. 2002;277:21371–21378. doi: 10.1074/jbc.M112060200. PubMed DOI
Ceraul S.M., Chung A., Sears K.T., Popov V.L., Beier-Sexton M., Rahman M.S., Azad A.F. A Kunitz protease inhibitor from Dermacentor variabilis, a vector for spotted fever group rickettsiae, limits Rickettsia montanensis invasion. Infect. Immun. 2011;79:321–329. doi: 10.1128/IAI.00362-10. PubMed DOI PMC
Manen J.F., Simon P., Van Slooten J.C., Osteras M., Frutiger S., Hughes G.J. A nodulin specifically expressed in senescent nodules of winged bean is a protease inhibitor. Plant Cell. 1991;3:259–270. PubMed PMC
Levi M., van der Poll T., Buller H.R. Bidirectional relation between inflammation and coagulation. Circulation. 2004;109:2698–2704. doi: 10.1161/01.CIR.0000131660.51520.9A. PubMed DOI
Francischetti I.M., Seydel K.B., Monteiro R.Q. Blood coagulation, inflammation, and malaria. Microcirculation. 2008;15:81–107. doi: 10.1080/10739680701451516. PubMed DOI PMC
Schechter M.E., Andrade B.B., He T., Richter G.H., Tosh K.W., Policicchio B.B., Singh A., Raehtz K.D., Sheikh V., Ma D., et al. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Sci. Transl. Med. 2017;9:eaam5441. doi: 10.1126/scitranslmed.aam5441. PubMed DOI PMC
Paesen G.C., Siebold C., Harlos K., Peacey M.F., Nuttall P.A., Stuart D.I. A tick protein with a modified Kunitz fold inhibits human tryptase. J. Mol. Biol. 2007;368:1172–1186. doi: 10.1016/j.jmb.2007.03.011. PubMed DOI
Hellman L., Akula S., Fu Z., Wernersson S. Mast Cell and Basophil Granule Proteases—In Vivo Targets and Function. Front. Immunol. 2022;13:918305. doi: 10.3389/fimmu.2022.918305. PubMed DOI PMC
Valdes J.J., Moal I.H. Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome. Ticks Tick-Borne Dis. 2014;5:947–950. doi: 10.1016/j.ttbdis.2014.07.016. PubMed DOI
Kettritz R. Neutral serine proteases of neutrophils. Immunol. Rev. 2016;273:232–248. doi: 10.1111/imr.12441. PubMed DOI
Henriksen P.A. The potential of neutrophil elastase inhibitors as anti-inflammatory therapies. Curr. Opin. Hematol. 2014;21:23–28. doi: 10.1097/MOH.0000000000000001. PubMed DOI
Ferreira G.C., Bomediano Camillo L.M., Sasaki S.D. Structural and functional properties of rBmTI-A. A Kunitz-BPTI serine protease inhibitor with therapeutical potential. Biochimie. 2022. in press . PubMed DOI
Batista I.F., Ramos O.H., Ventura J.S., Junqueira-de-Azevedo I.L., Ho P.L., Chudzinski-Tavassi A.M. A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch. Biochem. Biophys. 2010;493:151–156. doi: 10.1016/j.abb.2009.10.009. PubMed DOI
Pasqualoto K.F., Balan A., Barreto S.A., Simons S.M., Chudzinski-Tavassi A.M. Structural findings and molecular modeling approach of a TFPI-like inhibitor. Protein Pept. Lett. 2014;21:452–457. doi: 10.2174/0929866520666131210115334. PubMed DOI
Drewes C.C., Dias R.Y., Hebeda C.B., Simons S.M., Barreto S.A., Ferreira J.M., Jr., Chudzinski-Tavassi A.M., Farsky S.H. Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis. Toxicon. 2012;60:333–340. doi: 10.1016/j.toxicon.2012.04.349. PubMed DOI
Chudzinski-Tavassi A.M., De-Sa-Junior P.L., Simons S.M., Maria D.A., de Souza Ventura J., Batista I.F., Faria F., Duraes E., Reis E.M., Demasi M. A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon. 2010;56:1145–1154. doi: 10.1016/j.toxicon.2010.04.019. PubMed DOI
Ventura J.S., Faria F., Batista I.F., Simons S.M., Oliveira D.G., Morais K.L., Chudzinski-Tavassi A.M. A Kunitz-type FXa inhibitor affects tumor progression, hypercoagulable state and triggers apoptosis. Biomed. Pharmacother. 2013;67:192–196. doi: 10.1016/j.biopha.2012.11.009. PubMed DOI
Maria D.A., de Souza J.G., Morais K.L., Berra C.M., Zampolli Hde C., Demasi M., Simons S.M., de Freitas Saito R., Chammas R., Chudzinski-Tavassi A.M. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production. Invest. New Drugs. 2013;31:493–505. doi: 10.1007/s10637-012-9871-1. PubMed DOI PMC
Ali A., Zeb I., Alouffi A., Zahid H., Almutairi M.M., Ayed Alshammari F., Alrouji M., Termignoni C., Vaz I.D.S., Jr., Tanaka T. Host Immune Responses to Salivary Components—A Critical Facet of Tick-Host Interactions. Front. Cell. Infect. Microbiol. 2022;12:809052. doi: 10.3389/fcimb.2022.809052. PubMed DOI PMC
Skare J.T., Garcia B.L. Complement Evasion by Lyme Disease Spirochetes. Trends Microbiol. 2020;28:889–899. doi: 10.1016/j.tim.2020.05.004. PubMed DOI PMC
Torina A., Villari S., Blanda V., Vullo S., La Manna M.P., Shekarkar Azgomi M., Di Liberto D., de la Fuente J., Sireci G. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. Int. J. Mol. Sci. 2020;21:5437. doi: 10.3390/ijms21155437. PubMed DOI PMC
Willadsen P. Anti-tick vaccines. Parasitology. 2004;129((Suppl. S3)):67–387. doi: 10.1017/S0031182003004657. PubMed DOI
Andreotti R., Gomes A., Malavazi-Piza K.C., Sasaki S.D., Sampaio C.A., Tanaka A.S. BmTI antigens induce a bovine protective immune response against Boophilus microplus tick. Int. Immunopharmacol. 2002;2:557–563. doi: 10.1016/S1567-5769(01)00203-X. PubMed DOI
Andreotti R. A synthetic bmti n-terminal fragment as antigen in bovine immunoprotection against the tick Boophilus microplus in a pen trial. Exp. Parasitol. 2007;116:66–70. doi: 10.1016/j.exppara.2006.11.009. PubMed DOI
Andreotti R., Cunha R.C., Soares M.A., Guerrero F.D., Leite F.P., de Leon A.A. Protective immunity against tick infestation in cattle vaccinated with recombinant trypsin inhibitor of Rhipicephalus microplus. Vaccine. 2012;30:6678–6685. doi: 10.1016/j.vaccine.2012.08.066. PubMed DOI
de la Fuente J., Kocan K.M. The Impact of RNA Interference in Tick Research. Pathogens. 2022;11:827. doi: 10.3390/pathogens11080827. PubMed DOI PMC
Liao M., Zhou J., Gong H., Boldbaatar D., Shirafuji R., Battur B., Nishikawa Y., Fujisaki K. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis. J. Insect. Physiol. 2009;55:164–173. doi: 10.1016/j.jinsphys.2008.11.004. PubMed DOI
Macedo-Ribeiro S., Almeida C., Calisto B.M., Friedrich T., Mentele R., Sturzebecher J., Fuentes-Prior P., Pereira P.J. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS ONE. 2008;3:e1624. doi: 10.1371/journal.pone.0001624. PubMed DOI PMC
Valenzuela J.G., Francischetti I.M., Pham V.M., Garfield M.K., Mather T.N., Ribeiro J.M. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 2002;205:2843–2864. doi: 10.1242/jeb.205.18.2843. PubMed DOI
Lobba A.R.M., Alvarez-Flores M.P., Fessel M.R., Buri M.V., Oliveira D.S., Gomes R.N., Cunegundes P.S., DeOcesano-Pereira C., Cinel V.D., Chudzinski-Tavassi A.M. A Kunitz-type inhibitor from tick salivary glands: A promising novel antitumor drug candidate. Front. Mol. Biosci. 2022;9:936107. doi: 10.3389/fmolb.2022.936107. PubMed DOI PMC