Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25108785
DOI
10.1016/j.ttbdis.2014.07.016
PII: S1877-959X(14)00161-7
Knihovny.cz E-zdroje
- Klíčová slova
- Function prediction, Kunitz, Machine learning, Tick, Transcriptome,
- MeSH
- algoritmy MeSH
- inhibitory proteas MeSH
- iontové kanály genetika MeSH
- klíště genetika MeSH
- proteinové domény MeSH
- proteiny členovců genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- slinné proteiny a peptidy genetika MeSH
- transkriptom * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory proteas MeSH
- iontové kanály MeSH
- proteiny členovců MeSH
- slinné proteiny a peptidy MeSH
In the next generation sequencing era we are encountering hundreds of thousands of sequences from specific organisms. Such massive data must be accurately classified both functionally and structurally. Determining appropriate sequences with a specific function from next generation sequencing, however, is a daunting experimental task. A recent salivary gland transcriptome from the hard tick Ixodes ricinus, a European disease vector, has been made publicly available. Among the protein families sequenced by the salivary gland transcriptome of I. ricinus, the Kunitz-domain is one of the highly represented protein families. Thus far, recent tick transciptomes solely classify (computationally) Kunitz sequences as putative serine protease inhibitors. We present here a novel method using a machine-learning algorithm to "fish" for candidate ion-channel effectors and loss of serine protease inhibitor function within the Kunitz-domain protein family of the I. ricinus salivary gland transcriptome. The models, data and scripts used in this work are available online from http://life.bsc.es/pid/web/imoal/kunitz-classification.html.
Citace poskytuje Crossref.org