BACKGROUND: Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. RESULTS: We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. CONCLUSIONS: Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the 'shopping bag' hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.
The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.
- MeSH
- DNA, Complementary MeSH
- Humans MeSH
- Nanopore Sequencing * MeSH
- Mpox, Monkeypox * MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.
- MeSH
- Flavonoids biosynthesis chemistry metabolism MeSH
- Gene Ontology MeSH
- Humulus chemistry metabolism MeSH
- Plant Leaves genetics metabolism MeSH
- Propiophenones chemistry metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- RNA-Seq MeSH
- Terpenes chemistry metabolism MeSH
- Transcription Factors metabolism MeSH
- Transcriptome genetics MeSH
- Trichomes genetics metabolism ultrastructure MeSH
- Publication type
- Journal Article MeSH
African swine fever virus (ASFV) causes hemorrhagic fever in domestic pigs, presenting the biggest global threat to animal farming in recorded history. Despite the importance of ASFV, little is known about the mechanisms and regulation of ASFV transcription. Using RNA sequencing methods, we have determined total RNA abundance, transcription start sites, and transcription termination sites at single-nucleotide resolution. This allowed us to characterize DNA consensus motifs of early and late ASFV core promoters, as well as a polythymidylate sequence determinant for transcription termination. Our results demonstrate that ASFV utilizes alternative transcription start sites between early and late stages of infection and that ASFV RNA polymerase (RNAP) undergoes promoter-proximal transcript slippage at 5' ends of transcription units, adding quasitemplated AU- and AUAU-5' extensions to mRNAs. Here, we present the first much-needed genome-wide transcriptome study that provides unique insight into ASFV transcription and serves as a resource to aid future functional analyses of ASFV genes which are essential to combat this devastating disease.IMPORTANCE African swine fever virus (ASFV) causes incurable and often lethal hemorrhagic fever in domestic pigs. In 2020, ASF presents an acute and global animal health emergency that has the potential to devastate entire national economies as effective vaccines or antiviral drugs are not currently available (according to the Food and Agriculture Organization of the United Nations). With major outbreaks ongoing in Eastern Europe and Asia, urgent action is needed to advance our knowledge about the fundamental biology of ASFV, including the mechanisms and temporal control of gene expression. A thorough understanding of RNAP and transcription factor function, and of the sequence context of their promoter motifs, as well as accurate knowledge of which genes are expressed when and the amino acid sequence of the encoded proteins, is direly needed for the development of antiviral drugs and vaccines.
- MeSH
- African Swine Fever prevention & control MeSH
- Transcriptional Activation genetics MeSH
- Transcription, Genetic genetics MeSH
- Genome, Viral MeSH
- Hemorrhagic Fevers, Viral virology MeSH
- Swine virology MeSH
- Amino Acid Sequence MeSH
- Sus scrofa virology MeSH
- Transcription Termination, Genetic MeSH
- Transcriptome genetics MeSH
- Viral Proteins genetics MeSH
- African Swine Fever Virus genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.
- MeSH
- Biological Evolution * MeSH
- Phylogeny MeSH
- Genes, Insect MeSH
- Isoptera genetics physiology MeSH
- Symbiosis * MeSH
- Termitomyces physiology MeSH
- Transcriptome * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Recent technological advances have made next-generation sequencing (NGS) a popular and financially accessible technique allowing a broad range of analyses to be done simultaneously. A huge amount of newly generated NGS data, however, require advanced software support to help both in analyzing the data and biologically interpreting the results. In this article, we describe SATrans (Software for Annotation of Transcriptome), a software package providing fast and robust functional annotation of novel sequences obtained from transcriptome sequencing. Moreover, it performs advanced gene ontology analysis of differentially expressed genes, thereby helping to interpret biologically-and in a user-friendly form-the quantitative changes in gene expression. The software is freely available and provides the possibility to work with thousands of sequences using a standard personal computer or notebook running on the Linux operating system.
Hazelnut (Corylus), which has high commercial and nutritional benefits, is an important tree for producing nuts and nut oil consumed as ingredient especially in chocolate. While Corylus avellana L. (Euro-pean hazelnut, Betulaceae) and Corylus colurna L. (Turkish hazelnut, Betulaceae) are the two common hazelnut species in Europe, C. avellana L. (Tombul hazelnut) is grown as the most widespread hazelnut species in Turkey, and C. colurna L., which is the most important genetic resource for hazelnut breeding, exists naturally in Anatolia. We generated the transcriptome data of these two Corylus species and used these data for gene discovery and gene expression profiling. Total RNA from young leaves, flowers (male and female), buds, and husk shoots of C. avellana and C. colurna were used for two different libraries and were sequenced using Illumina HiSeq4000 with 100 bp paired-end reads. The transcriptome data 10.48 and 10.30 Gb of C. avellana and C. colurna, respectively, were assembled into 70,265 and 88,343 unigenes, respectively. These unigenes were functionally annotated using the TRAPID platform. We identified 25,312 and 27,051 simple sequen-ce repeats (SSRs) for C. avellana and C. colurna, respectively. TL1, GMPM1, N, 2MMP, At1g29670, CHIB1 unigenes were selected for validation with qPCR. The first de novo transcriptome data of C. co-lurna were used to compare data of C. avellana of commercial importance. These data constitute a valuable extension of the publicly available transcriptomic resource aimed at breeding, medicinal, and industrial research studies.
- MeSH
- Corylus * genetics metabolism MeSH
- Nuts MeSH
- Gene Expression Profiling MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Turkey MeSH
BACKGROUND: Transcriptome analysis of circulating tumor cells (CTCs) holds great promise to unravel the biology of cancer cell dissemination and identify expressed genes and signaling pathways relevant to therapeutic interventions. METHODS: CTCs were enriched based on their EpCAM expression (CellSearch(®)) or by size and deformability (Parsortix(TM)), identified by EpCAM and/or pan-keratin-specific antibodies, and isolated for single cell multiplex RNA profiling. RESULTS: Distinct breast and prostate CTC expression signatures could be discriminated from RNA profiles of leukocytes. Some CTCs positive for epithelial transcripts (EpCAM and KRT19) also coexpressed leukocyte/mesenchymal associated markers (PTPRC and VIM). Additional subsets of CTCs within individual patients were characterized by divergent expression of genes involved in epithelial-mesenchymal transition (e.g., CDH2, MMPs, VIM, or ZEB1 and 2), DNA repair (RAD51), resistance to cancer therapy (e.g., AR, AR-V7, ERBB2, EGFR), cancer stemness (e.g., CD24 and CD44), activated signaling pathways involved in tumor progression (e.g., PIK3CA and MTOR) or cross talks between tumors and immune cells (e.g., CCL4, CXCL2, CXCL9, IL15, IL1B, or IL8). CONCLUSIONS: Multimarker RNA profiling of single CTCs reveals distinct CTC subsets and provides important insights into gene regulatory networks relevant for cancer progression and therapy.
Ectropis oblique Prout (Lepidoptera: Geometridae) is one of the main pests that damages the tea crop in Southeast Asia. To understand the molecular mechanisms of its feeding biology, transcriptomes of the alimentary tract (AT) and of the body minus the AT of E. oblique were successfully sequenced and analyzed in this study. A total of 36,950 unigenes from de novo sequences were assembled. After analysis using six annotation databases (e.g., Gene Ontology, Kyoto Encyclopedia of Genes and Genome, and NCBI nr), a series of putative genes were found for this insect species that were related to digestion, detoxification, the immune system, and Bacillus thuringiensis (Bt) receptors. From this series of genes, 21 were randomly selected to verify the relative expression levels of transcripts using quantitative real-time polymerase chain reaction. These results will provide an invaluable genomic resource for future studies on the molecular mechanisms of E. oblique, which will be useful in developing biological control strategies for this pest.
- MeSH
- Larva genetics growth & development MeSH
- Moths genetics growth & development MeSH
- Sequence Analysis, DNA MeSH
- Gene Expression Profiling MeSH
- Transcriptome * MeSH
- Digestive System MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Transcription factors (TFs) fine-tune the host defense transcriptome in response to pathogen invasions. No information is available on Zingiber zerumbet (Zz) TFs involved in defense response against Pythium myriotylum. Here, we provide a global identification, characterization, and temporal expression profiling of Zz TFs following an incompatible interaction with P. myriotylum using a transcriptome sequencing approach. We identified a total of 903 TFs belonging to 96 families based on their conserved domains. Evolutionary analysis clustered the Zz TFs according to their phylogenetic affinity, providing glimpses of their functional diversities. High throughput expression array analysis highlighted a complex interplay between activating and repressing transcription factors in fine-tuning Zz defense response against P. myriotylum. The high differential modulation of TFs involved in cell wall fortification, lignin biosynthesis, and SA/JA hormone crosstalk allows us to envisage that this mechanism plays a central role in restricting P. myriotylum proliferation in Zz. This study lays a solid foundation and provides valuable resources for the investigation of the evolutionary history and biological functions of Zz TF genes involved in defense response.
- MeSH
- Stress, Physiological MeSH
- Plant Immunity * MeSH
- Evolution, Molecular MeSH
- Pythium pathogenicity MeSH
- Response Elements MeSH
- Plant Proteins genetics metabolism MeSH
- Transcription Factors genetics metabolism MeSH
- Transcriptome * MeSH
- Zingiberaceae genetics immunology microbiology MeSH
- Publication type
- Journal Article MeSH