Synthesis and Comparative Biological Properties of Ag-PEG Nanoparticles with Tunable Morphologies from Janus to Multi-Core Shell Structure
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
No.172102410028
Developing Program of Natural Science of Henan province
PubMed
30241283
PubMed Central
PMC6213231
DOI
10.3390/ma11101787
PII: ma11101787
Knihovny.cz E-resources
- Keywords
- Janus nanoparticle, PEG, antibacterial activity, cytotoxicity, muli-core shell nanoparticle, silver nanoparticle,
- Publication type
- Journal Article MeSH
Silver nanoparticles synthesized with polymers as coating agents is an effective method to overcome their poor stability and aggregation in solution. Silver-polyethylene glycol (Ag-PEG) nanoparticles were synthesized with the thiol-functionalized polyethylene glycol (SH-PEA) as the coating, reducing and stabilizing agent. The UV irradiation time, polymer and silver nitrate concentration for the synthesis were investigated. The concentration of silver nitrate had significant effect on the morphology of Ag-PEG nanoparticles. When increasing the concentration of silver nitrate, SEM and TEM images showed that Ag-PEG nanoparticles changed from Janus to multi-core shell structure. Meanwhile, pure silver particles in the two hybrid nanoparticles presented spherical shape and had the similar size of 15 nm. The antibacterial activities and cytotoxicity of the two structural Ag-PEG nanoparticles were investigated to understand colloid morphology effect on the properties of AgNPs. The results of antibacterial activities showed that the two structural Ag-PEG nanoparticles exhibited strong antibacterial activities against Staphylococcus aureus, Escherichia coli and Bacillus subtilis. The Janus nanoparticles had larger minimal inhibitory concentration (MIC) and minimum bacterial concentration (MBC) values than the multi-core shell counterparts. The results of cytotoxicity showed the Janus Ag-PEG nanoparticles had lower toxicity than the multi-core shell nanoparticles.
School of Life Sciences Henan University Kaifeng 475004 China
Technical University of Liberec Studentská 1402 2 461 17 Liberec 46117 Czech Republic
See more in PubMed
Marambio-Jones C., Hoek E. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010;12:1531–1551. doi: 10.1007/s11051-010-9900-y. DOI
Arvizo R.R., Bhattacharyya S., Kudgus R.A., Giri K., Bhattacharya R., Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem. Soc. Rev. 2012;41:2943–2970. doi: 10.1039/c2cs15355f. PubMed DOI PMC
Xia X., Zeng J., McDearmon B., Zheng Y., Li Q., Xia Y. Silver nanocrystals with concave surfaces and their optical and surface-enhanced raman scattering properties. Angew. Chem. Int. Ed. 2011;50:12542–12546. doi: 10.1002/anie.201105200. PubMed DOI
Yang L., Chen Y., Li H., Luo L., Zhao Y., Zhang H., Tian Y. Application of silver nanoparticles decorated with β-cyclodextrin in determination of 6-mercaptopurine by surface-enhanced Raman spectroscopy. Anal. Methods. 2015;7:6520–6527. doi: 10.1039/C5AY01212K. DOI
Yang K.H., Chang C.M. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering–active silver nanoparticles. Anal. Chim. Acta. 2012;729:1–6. doi: 10.1016/j.aca.2012.03.059. PubMed DOI
Rycenga M., Cobley C.M., Zeng J., Li W., Moran C.H., Zhang Q., Qin D., Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011;111:3669–3712. doi: 10.1021/cr100275d. PubMed DOI PMC
Devi L.B., Mandal A.B. Self-assembly of Ag nanoparticles using hydroxypropyl cyclodextrin: Synthesis, characterisation and application for the catalytic reduction of p-nitrophenol. RSC Adv. 2013;3:5238–5253. doi: 10.1039/c3ra23014g. DOI
Cai Y.K., Gao K.L., Li G.C., Deng Z.J., Han G.Z. Facile controlled synthesis of silver particles with high catalytic activity. Colloid Surf. A. 2015;481:407–412. doi: 10.1016/j.colsurfa.2015.06.005. DOI
Li P., Li S., Wang Y., Zhang Y., Han G.Z. Green synthesis of β-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity. Colloid Surf. A. 2017;520:26–31. doi: 10.1016/j.colsurfa.2017.01.034. DOI
Xue C., Mirkin C.A. pH- switchable silver nanoprism growth pathways. Angew. Chem. Int. Ed. 2007;46:2082–2084. doi: 10.1002/ange.200604637. PubMed DOI
Sun Y., Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI
Ghosh S.K., Kundu S., Mandal M., Nath S., Pal T. Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J. Nanopart. Res. 2003;5:577–587. doi: 10.1023/B:NANO.0000006100.25744.fa. DOI
Sintubin L., Verstraete W., Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol. Bioeng. 2012;109:2422–2436. doi: 10.1002/bit.24570. PubMed DOI
Kim D., Jeong S., Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology. 2006;17:4019–4024. doi: 10.1088/0957-4484/17/16/004. PubMed DOI
Huang L., Zhai M.L., Long D.W., Peng J., Xu L., Wu G.Z., Li J.Q., Wei G.S. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J. Nanopart. Res. 2008;10:1193–1202. doi: 10.1007/s11051-007-9353-0. DOI
Maccuspie R.I. Colloidal stability of silver nanoparticles in biologically relevant conditions. J. Nanopart. Res. 2011;13:2893–2908. doi: 10.1007/s11051-010-0178-x. DOI
Prathna T.C., Chandrasekaran N., Mukherjee A. Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: Effect of surface functionalization and matrix composition. Colloid Surf. A. 2011;390:216–224. doi: 10.1016/j.colsurfa.2011.09.047. DOI
Tejamaya M., Römer I., Merrifield R.C., Lead J.R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 2012;46:7011–7017. doi: 10.1021/es2038596. PubMed DOI
Mallick K., Witcomb M.J., Scurrell M.S. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci. 2004;39:4459–4463. doi: 10.1023/B:JMSC.0000034138.80116.50. DOI
Krklješ A., Nedeljković J.M., Kačarević-Popović Z.M. Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym. Bull. 2007;58:271–279. doi: 10.1007/s00289-006-0593-4. DOI
Batista C.C.S., Albuquerque L.J.C., Araujo I.D., Albuquerque B.L., Silva F.D.D., Giacomelli F.C. Facile synthesis of 1.3 nm monodispersed Ag nanoclusters in an aqueous solution and their antibacterial activities for E. coli. RSC Adv. 2018;8:10873–10882. doi: 10.1039/C7RA13597A. PubMed DOI PMC
Wu W., Zhou T., Berliner A., Banerjee P., Zhou S. Smart core− shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem. Mater. 2010;22:1966–1976. doi: 10.1021/cm903357q. DOI
Hu J., Zhou S., Sun Y., Fang X., Wu L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012;41:4356–4378. doi: 10.1039/c2cs35032g. PubMed DOI
Xu C.J., Wang B.D., Sun S.H. Dumbbell-like Au−Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009;131:4216–4217. doi: 10.1021/ja900790v. PubMed DOI PMC
Wang F., Pauletti G.M., Wang J.T., Zhang J.M., Ewing R.C., Wang Y.L., Shi D.L. Dual surface-functionalized janus nanocomposites of polystyrene/Fe3O4@ SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Adv. Mater. 2013;25:3485–3489. doi: 10.1002/adma.201301376. PubMed DOI
Tran L.T.C., Lesieur S., Faivre V. Janus nanoparticles: Materials preparation and recent advances in drug delivery. Expert Opin. Drug Deliv. 2014;11:1061–1074. doi: 10.1517/17425247.2014.915806. PubMed DOI
Chen L., Deming C.P., Peng Y., Hu P., Stofan J., Chen S. Gold core@ silver semishell Janus nanoparticles prepared by interfacial etching. Nanoscale. 2016;8:14565–14572. doi: 10.1039/C6NR03368G. PubMed DOI
Song Y., Liu K., Chen S. AgAu bimetallic Janus nanoparticles and their electrocatalytic activity for oxygen reduction in alkaline media. Langmuir. 2012;28:17143–17152. doi: 10.1021/la303513x. PubMed DOI
Wang Z., Chang Z., Lu M., Shao D., Yue J., Yang D., Li M., Dong W.F. Janus silver/silica nanoplatforms for light-activated liver cancer chemo/photothermal therapy. ACS Appl. Mater. interfaces. 2017;9:494–496. doi: 10.1021/acsami.7b06446. PubMed DOI
Sun Y., Chen M., Wang Z., Wu L. Facile synthesis of asymmetric Ag–organosilica hybrid nanoparticles with tunable morphologies and optical properties. Chem. Commun. 2014;50:5767–5770. doi: 10.1039/c4cc02137a. PubMed DOI
Zha Z., Teng W., Markle V., Dai Z., Wu X. Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers. 2012;97:1026–1036. doi: 10.1002/bip.22120. PubMed DOI
Wang Z., Zheng L., Li C., Wu S., Xiao Y. Preparation and antimicrobial activity of sulfopropyl chitosan in an ionic liquid aqueous solution. J. Appl. Polym. Sci. 2017;134:44989. doi: 10.1002/app.44989. DOI
Ayala-Núñez N.V., Villegas H.H.L., Turrent L.C.I., Padila C.R. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: Nanoscale does matter. Nanobiotechnol. 2009;5:2–9. doi: 10.1007/s12030-009-9029-1. DOI
Vukomanović M., Pepnik U., Zavašnik-Bergant T., Kostanjšek R., Škapin S.D., Suvorov D. Is nano-silver safe within bioactive hydroxyapatite composites? Acs Biomater. Sci. Eng. 2015;1:935–946. doi: 10.1021/acsbiomaterials.5b00170. PubMed DOI
Wen Y., Jiang X., Yin G., Yin J. Multi-responsive amphiphilic gold nanoparticles (AuNPs) protected by poly (ether amine)(PEA) Chem. Commun. 2009;43:6595–6597. doi: 10.1039/b913932j. PubMed DOI
Peng Y.K., Liu C.L., Chen H.C., Chou S.W., Tseng W.H., Tseng Y.J., Kang C.C., Hsiao J.K., Chou P.T. Antiferromagnetic iron nanocolloids: A new generation in vivo T 1 MRI contrast agent. J. Am. Chem. Soc. 2013;135:18621–18628. doi: 10.1021/ja409490q. PubMed DOI
Chang E., Thekkek N., Yu W.W., Colvin V.L., Drezek R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small. 2006;2:1412–1417. doi: 10.1002/smll.200600218. PubMed DOI
Tsuchida E., Sou K., Nakagawa A., Sakai H., Komastsu T., Kobayashi K. Artificial oxygen carriers, hemoglobin vesicles and albumin− hemes, based on bioconjugate chemistry. Bioconjugate Chem. 2009;20:1419–1440. doi: 10.1021/bc800431d. PubMed DOI
Scaravelli R.C.B., Dazzi R.L., Giacomelli F.C., Machado G., Giacomelli C., Schmidt V. Direct synthesis of coated gold nanoparticles mediated by polymers with amino groups. J. Colloid Interf. Sci. 2013;397:114–121. doi: 10.1016/j.jcis.2013.01.058. PubMed DOI
Batista C., Albuquerque L., Ribeiro C., de Castro C., Miranda E., Nantes I., Albuquerque B., Cardoso M., Giacomelli F. Nano-Sized Silver Colloids Produced and Stabilized by Amino-Functionalized Polymers: Polymer Structure-Nanoparticle Features and Polymer Structure-Growth Kinetics Relationships. J. Braz. Chem. Soc. 2017;28:1608–1618. doi: 10.21577/0103-5053.20160295. DOI
Langille M.R., Personick L.M., Mirkin C.A. Plasmon-mediated syntheses of metallic nanostructures. Angew. Chem. Int. Ed. 2013;52:13910–13940. doi: 10.1002/anie.201301875. PubMed DOI
Ye S., Song J., Tian Y.L., Chen L.C., Wang D., Niu H.B., Qu J.L. Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale. 2015;7:12706–12712. doi: 10.1039/C5NR03652F. PubMed DOI
Yang L.C., Lai Y.S., Tsai C.M., Kong Y.T., Lee C.I., Huang C.L. Transformation from silver nanoprisms to nanodecahedra in a temperature-controlled photomediated synthesis. J. Phys. Chem. C. 2012;116:24268–24273.
Romanovskaya G.I., Koroleva M.V., Zuev B.K. Photochemical Synthesis of Anisotropic Silver Nanoparticles in Aqueous Solutions in the Presence of Sodium Citrate. Dokl. Chem. 2018;480:96–98. doi: 10.1134/S0012500818050075. DOI
Johnston H.J., Hutchison G., Christensen F.M., Peters S., Hankin S., Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. 2010;40:328–346. doi: 10.3109/10408440903453074. PubMed DOI
Hunt P.R., Keltner Z., Guo X., Oldenburg S.J., Bushana P., Olejnik N., Sprando R.L. Bioactivity of nanosilver in Caenorhabditis elegans: Effects of size, coat, and shape. Toxicol. Rep. 2014;1:923–944. doi: 10.1016/j.toxrep.2014.10.020. PubMed DOI PMC
Ahmed K.B.R., Nagy A.M., Brown R.P., Zhang Q., Malghan S.G., Goering P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. In Vitro. 2017;38:179–192. doi: 10.1016/j.tiv.2016.10.012. PubMed DOI