• This record comes from PubMed

Synthesis and Comparative Biological Properties of Ag-PEG Nanoparticles with Tunable Morphologies from Janus to Multi-Core Shell Structure

. 2018 Sep 20 ; 11 (10) : . [epub] 20180920

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
No.172102410028 Developing Program of Natural Science of Henan province

Silver nanoparticles synthesized with polymers as coating agents is an effective method to overcome their poor stability and aggregation in solution. Silver-polyethylene glycol (Ag-PEG) nanoparticles were synthesized with the thiol-functionalized polyethylene glycol (SH-PEA) as the coating, reducing and stabilizing agent. The UV irradiation time, polymer and silver nitrate concentration for the synthesis were investigated. The concentration of silver nitrate had significant effect on the morphology of Ag-PEG nanoparticles. When increasing the concentration of silver nitrate, SEM and TEM images showed that Ag-PEG nanoparticles changed from Janus to multi-core shell structure. Meanwhile, pure silver particles in the two hybrid nanoparticles presented spherical shape and had the similar size of 15 nm. The antibacterial activities and cytotoxicity of the two structural Ag-PEG nanoparticles were investigated to understand colloid morphology effect on the properties of AgNPs. The results of antibacterial activities showed that the two structural Ag-PEG nanoparticles exhibited strong antibacterial activities against Staphylococcus aureus, Escherichia coli and Bacillus subtilis. The Janus nanoparticles had larger minimal inhibitory concentration (MIC) and minimum bacterial concentration (MBC) values than the multi-core shell counterparts. The results of cytotoxicity showed the Janus Ag-PEG nanoparticles had lower toxicity than the multi-core shell nanoparticles.

See more in PubMed

Marambio-Jones C., Hoek E. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010;12:1531–1551. doi: 10.1007/s11051-010-9900-y. DOI

Arvizo R.R., Bhattacharyya S., Kudgus R.A., Giri K., Bhattacharya R., Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem. Soc. Rev. 2012;41:2943–2970. doi: 10.1039/c2cs15355f. PubMed DOI PMC

Xia X., Zeng J., McDearmon B., Zheng Y., Li Q., Xia Y. Silver nanocrystals with concave surfaces and their optical and surface-enhanced raman scattering properties. Angew. Chem. Int. Ed. 2011;50:12542–12546. doi: 10.1002/anie.201105200. PubMed DOI

Yang L., Chen Y., Li H., Luo L., Zhao Y., Zhang H., Tian Y. Application of silver nanoparticles decorated with β-cyclodextrin in determination of 6-mercaptopurine by surface-enhanced Raman spectroscopy. Anal. Methods. 2015;7:6520–6527. doi: 10.1039/C5AY01212K. DOI

Yang K.H., Chang C.M. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering–active silver nanoparticles. Anal. Chim. Acta. 2012;729:1–6. doi: 10.1016/j.aca.2012.03.059. PubMed DOI

Rycenga M., Cobley C.M., Zeng J., Li W., Moran C.H., Zhang Q., Qin D., Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011;111:3669–3712. doi: 10.1021/cr100275d. PubMed DOI PMC

Devi L.B., Mandal A.B. Self-assembly of Ag nanoparticles using hydroxypropyl cyclodextrin: Synthesis, characterisation and application for the catalytic reduction of p-nitrophenol. RSC Adv. 2013;3:5238–5253. doi: 10.1039/c3ra23014g. DOI

Cai Y.K., Gao K.L., Li G.C., Deng Z.J., Han G.Z. Facile controlled synthesis of silver particles with high catalytic activity. Colloid Surf. A. 2015;481:407–412. doi: 10.1016/j.colsurfa.2015.06.005. DOI

Li P., Li S., Wang Y., Zhang Y., Han G.Z. Green synthesis of β-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity. Colloid Surf. A. 2017;520:26–31. doi: 10.1016/j.colsurfa.2017.01.034. DOI

Xue C., Mirkin C.A. pH- switchable silver nanoprism growth pathways. Angew. Chem. Int. Ed. 2007;46:2082–2084. doi: 10.1002/ange.200604637. PubMed DOI

Sun Y., Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI

Ghosh S.K., Kundu S., Mandal M., Nath S., Pal T. Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J. Nanopart. Res. 2003;5:577–587. doi: 10.1023/B:NANO.0000006100.25744.fa. DOI

Sintubin L., Verstraete W., Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol. Bioeng. 2012;109:2422–2436. doi: 10.1002/bit.24570. PubMed DOI

Kim D., Jeong S., Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology. 2006;17:4019–4024. doi: 10.1088/0957-4484/17/16/004. PubMed DOI

Huang L., Zhai M.L., Long D.W., Peng J., Xu L., Wu G.Z., Li J.Q., Wei G.S. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J. Nanopart. Res. 2008;10:1193–1202. doi: 10.1007/s11051-007-9353-0. DOI

Maccuspie R.I. Colloidal stability of silver nanoparticles in biologically relevant conditions. J. Nanopart. Res. 2011;13:2893–2908. doi: 10.1007/s11051-010-0178-x. DOI

Prathna T.C., Chandrasekaran N., Mukherjee A. Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: Effect of surface functionalization and matrix composition. Colloid Surf. A. 2011;390:216–224. doi: 10.1016/j.colsurfa.2011.09.047. DOI

Tejamaya M., Römer I., Merrifield R.C., Lead J.R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 2012;46:7011–7017. doi: 10.1021/es2038596. PubMed DOI

Mallick K., Witcomb M.J., Scurrell M.S. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci. 2004;39:4459–4463. doi: 10.1023/B:JMSC.0000034138.80116.50. DOI

Krklješ A., Nedeljković J.M., Kačarević-Popović Z.M. Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym. Bull. 2007;58:271–279. doi: 10.1007/s00289-006-0593-4. DOI

Batista C.C.S., Albuquerque L.J.C., Araujo I.D., Albuquerque B.L., Silva F.D.D., Giacomelli F.C. Facile synthesis of 1.3 nm monodispersed Ag nanoclusters in an aqueous solution and their antibacterial activities for E. coli. RSC Adv. 2018;8:10873–10882. doi: 10.1039/C7RA13597A. PubMed DOI PMC

Wu W., Zhou T., Berliner A., Banerjee P., Zhou S. Smart core− shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem. Mater. 2010;22:1966–1976. doi: 10.1021/cm903357q. DOI

Hu J., Zhou S., Sun Y., Fang X., Wu L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012;41:4356–4378. doi: 10.1039/c2cs35032g. PubMed DOI

Xu C.J., Wang B.D., Sun S.H. Dumbbell-like Au−Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009;131:4216–4217. doi: 10.1021/ja900790v. PubMed DOI PMC

Wang F., Pauletti G.M., Wang J.T., Zhang J.M., Ewing R.C., Wang Y.L., Shi D.L. Dual surface-functionalized janus nanocomposites of polystyrene/Fe3O4@ SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Adv. Mater. 2013;25:3485–3489. doi: 10.1002/adma.201301376. PubMed DOI

Tran L.T.C., Lesieur S., Faivre V. Janus nanoparticles: Materials preparation and recent advances in drug delivery. Expert Opin. Drug Deliv. 2014;11:1061–1074. doi: 10.1517/17425247.2014.915806. PubMed DOI

Chen L., Deming C.P., Peng Y., Hu P., Stofan J., Chen S. Gold core@ silver semishell Janus nanoparticles prepared by interfacial etching. Nanoscale. 2016;8:14565–14572. doi: 10.1039/C6NR03368G. PubMed DOI

Song Y., Liu K., Chen S. AgAu bimetallic Janus nanoparticles and their electrocatalytic activity for oxygen reduction in alkaline media. Langmuir. 2012;28:17143–17152. doi: 10.1021/la303513x. PubMed DOI

Wang Z., Chang Z., Lu M., Shao D., Yue J., Yang D., Li M., Dong W.F. Janus silver/silica nanoplatforms for light-activated liver cancer chemo/photothermal therapy. ACS Appl. Mater. interfaces. 2017;9:494–496. doi: 10.1021/acsami.7b06446. PubMed DOI

Sun Y., Chen M., Wang Z., Wu L. Facile synthesis of asymmetric Ag–organosilica hybrid nanoparticles with tunable morphologies and optical properties. Chem. Commun. 2014;50:5767–5770. doi: 10.1039/c4cc02137a. PubMed DOI

Zha Z., Teng W., Markle V., Dai Z., Wu X. Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers. 2012;97:1026–1036. doi: 10.1002/bip.22120. PubMed DOI

Wang Z., Zheng L., Li C., Wu S., Xiao Y. Preparation and antimicrobial activity of sulfopropyl chitosan in an ionic liquid aqueous solution. J. Appl. Polym. Sci. 2017;134:44989. doi: 10.1002/app.44989. DOI

Ayala-Núñez N.V., Villegas H.H.L., Turrent L.C.I., Padila C.R. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: Nanoscale does matter. Nanobiotechnol. 2009;5:2–9. doi: 10.1007/s12030-009-9029-1. DOI

Vukomanović M., Pepnik U., Zavašnik-Bergant T., Kostanjšek R., Škapin S.D., Suvorov D. Is nano-silver safe within bioactive hydroxyapatite composites? Acs Biomater. Sci. Eng. 2015;1:935–946. doi: 10.1021/acsbiomaterials.5b00170. PubMed DOI

Wen Y., Jiang X., Yin G., Yin J. Multi-responsive amphiphilic gold nanoparticles (AuNPs) protected by poly (ether amine)(PEA) Chem. Commun. 2009;43:6595–6597. doi: 10.1039/b913932j. PubMed DOI

Peng Y.K., Liu C.L., Chen H.C., Chou S.W., Tseng W.H., Tseng Y.J., Kang C.C., Hsiao J.K., Chou P.T. Antiferromagnetic iron nanocolloids: A new generation in vivo T 1 MRI contrast agent. J. Am. Chem. Soc. 2013;135:18621–18628. doi: 10.1021/ja409490q. PubMed DOI

Chang E., Thekkek N., Yu W.W., Colvin V.L., Drezek R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small. 2006;2:1412–1417. doi: 10.1002/smll.200600218. PubMed DOI

Tsuchida E., Sou K., Nakagawa A., Sakai H., Komastsu T., Kobayashi K. Artificial oxygen carriers, hemoglobin vesicles and albumin− hemes, based on bioconjugate chemistry. Bioconjugate Chem. 2009;20:1419–1440. doi: 10.1021/bc800431d. PubMed DOI

Scaravelli R.C.B., Dazzi R.L., Giacomelli F.C., Machado G., Giacomelli C., Schmidt V. Direct synthesis of coated gold nanoparticles mediated by polymers with amino groups. J. Colloid Interf. Sci. 2013;397:114–121. doi: 10.1016/j.jcis.2013.01.058. PubMed DOI

Batista C., Albuquerque L., Ribeiro C., de Castro C., Miranda E., Nantes I., Albuquerque B., Cardoso M., Giacomelli F. Nano-Sized Silver Colloids Produced and Stabilized by Amino-Functionalized Polymers: Polymer Structure-Nanoparticle Features and Polymer Structure-Growth Kinetics Relationships. J. Braz. Chem. Soc. 2017;28:1608–1618. doi: 10.21577/0103-5053.20160295. DOI

Langille M.R., Personick L.M., Mirkin C.A. Plasmon-mediated syntheses of metallic nanostructures. Angew. Chem. Int. Ed. 2013;52:13910–13940. doi: 10.1002/anie.201301875. PubMed DOI

Ye S., Song J., Tian Y.L., Chen L.C., Wang D., Niu H.B., Qu J.L. Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale. 2015;7:12706–12712. doi: 10.1039/C5NR03652F. PubMed DOI

Yang L.C., Lai Y.S., Tsai C.M., Kong Y.T., Lee C.I., Huang C.L. Transformation from silver nanoprisms to nanodecahedra in a temperature-controlled photomediated synthesis. J. Phys. Chem. C. 2012;116:24268–24273.

Romanovskaya G.I., Koroleva M.V., Zuev B.K. Photochemical Synthesis of Anisotropic Silver Nanoparticles in Aqueous Solutions in the Presence of Sodium Citrate. Dokl. Chem. 2018;480:96–98. doi: 10.1134/S0012500818050075. DOI

Johnston H.J., Hutchison G., Christensen F.M., Peters S., Hankin S., Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. 2010;40:328–346. doi: 10.3109/10408440903453074. PubMed DOI

Hunt P.R., Keltner Z., Guo X., Oldenburg S.J., Bushana P., Olejnik N., Sprando R.L. Bioactivity of nanosilver in Caenorhabditis elegans: Effects of size, coat, and shape. Toxicol. Rep. 2014;1:923–944. doi: 10.1016/j.toxrep.2014.10.020. PubMed DOI PMC

Ahmed K.B.R., Nagy A.M., Brown R.P., Zhang Q., Malghan S.G., Goering P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. In Vitro. 2017;38:179–192. doi: 10.1016/j.tiv.2016.10.012. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...