Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction

. 2017 ; 7 () : 216. [epub] 20170529

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28611951

The publication of the first tick sialome (salivary gland transcriptome) heralded a new era of research of tick protease inhibitors, which represent important constituents of the proteins secreted via tick saliva into the host. Three major groups of protease inhibitors are secreted into saliva: Kunitz inhibitors, serpins, and cystatins. Kunitz inhibitors are anti-hemostatic agents and tens of proteins with one or more Kunitz domains are known to block host coagulation and/or platelet aggregation. Serpins and cystatins are also anti-hemostatic effectors, but intriguingly, from the translational perspective, also act as pluripotent modulators of the host immune system. Here we focus especially on this latter aspect of protease inhibition by ticks and describe the current knowledge and data on secreted salivary serpins and cystatins and their role in tick-host-pathogen interaction triad. We also discuss the potential therapeutic use of tick protease inhibitors.

Zobrazit více v PubMed

Amara U., Rittirsch D., Flierl M., Bruckner U., Klos A., Gebhard F., et al. . (2008). Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 632, 71–79. 10.1007/978-0-387-78952-1_6 PubMed DOI PMC

Anguita J., Ramamoorthi N., Hovius J. W., Das S., Thomas V., Persinski R., et al. . (2002). Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity 16, 849–859. 10.1016/S1074-7613(02)00325-4 PubMed DOI

Ayllon N., Villar M., Galindo R. C., Kocan K. M., Sima R., Lopez J. A., et al. . (2015). Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 11:e1005120. 10.1371/journal.pgen.1005120 PubMed DOI PMC

Bania J., Stachowiak D., Polanowski A. (1999). Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera. Eur. J. Biochem. 262, 680–687. 10.1046/j.1432-1327.1999.00406.x PubMed DOI

Belorgey D., Hagglof P., Karlsson-Li S., Lomas D. A. (2007). Protein misfolding and the serpinopathies. Prion 1, 15–20. 10.4161/pri.1.1.3974 PubMed DOI PMC

Bot I., Shi G. P., Kovanen P. T. (2015). Mast cells as effectors in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 265–271. 10.1161/ATVBAHA.114.303570 PubMed DOI PMC

Brossard M., Wikel S. K. (2004). Tick immunobiology. Parasitology 129 (Suppl.), S161–S176. 10.1017/S0031182004004834 PubMed DOI

Calvo E., Mizurini D. M., Sa-Nunes A., Ribeiro J. M., Andersen J. F., Mans B. J., et al. . (2011). Alboserpin, a factor Xa inhibitor from the mosquito vector of yellow fever, binds heparin and membrane phospholipids and exhibits antithrombotic activity. J. Biol. Chem. 286, 27998–28010. 10.1074/jbc.M111.247924 PubMed DOI PMC

Carrell R. W., Read R. J. (2016). How serpins transport hormones and regulate their release. Semin. Cell Dev. Biol. 62, 133–141. 10.1016/j.semcdb.2016.12.007 PubMed DOI

Caughey G. H. (2016). Mast cell proteases as pharmacological targets. Eur. J. Pharmacol. 778, 44–55. 10.1016/j.ejphar.2015.04.045 PubMed DOI PMC

Chalaire K. C., Kim T. K., Garcia-Rodriguez H., Mulenga A. (2011). Amblyomma americanum (L.) (Acari: Ixodidae) tick salivary gland serine protease inhibitor (serpin) 6 is secreted into tick saliva during tick feeding. J. Exp. Biol. 214, 665–673. 10.1242/jeb.052076 PubMed DOI PMC

Chen G., Wang X., Severo M. S., Sakhon O. S., Sohail M., Brown L. J., et al. . (2014). The tick salivary protein sialostatin L2 inhibits caspase-1-mediated inflammation during Anaplasma phagocytophilum infection. Infect. Immun. 82, 2553–2564. 10.1128/IAI.01679-14 PubMed DOI PMC

Chen Q., Fei J., Wu L., Jiang Z., Wu Y., Zheng Y., et al. . (2011). Detection of cathepsin B, cathepsin L, cystatin C, urokinase plasminogen activator and urokinase plasminogen activator receptor in the sera of lung cancer patients. Oncol. Lett. 2, 693–699. 10.3892/ol.2011.302 PubMed DOI PMC

Cherniack E. P. (2011). Bugs as drugs, part two: worms, leeches, scorpions, snails, ticks, centipedes, and spiders. Altern. Med. Rev. 16, 50–58. PubMed

Chmelar J., Calvo E., Pedra J. H., Francischetti I. M., Kotsyfakis M. (2012). Tick salivary secretion as a source of antihemostatics. J. Proteomics 75, 3842–3854. 10.1016/j.jprot.2012.04.026 PubMed DOI PMC

Chmelar J., Kotal J., Kopecky J., Pedra J. H., Kotsyfakis M. (2016). All for one and one for all on the tick-host battlefield. Trends Parasitol. 32, 368–377. 10.1016/j.pt.2016.01.004 PubMed DOI PMC

Chmelar J., Oliveira C. J., Rezacova P., Francischetti I. M., Kovarova Z., Pejler G., et al. . (2011). A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 117, 736–744. 10.1182/blood-2010-06-293241 PubMed DOI PMC

Colinet D., Dubuffet A., Cazes D., Moreau S., Drezen J. M., Poirie M. (2009). A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev. Comp. Immunol. 33, 681–689. 10.1016/j.dci.2008.11.013 PubMed DOI

Corral-Rodriguez M. A., Macedo-Ribeiro S., Barbosa Pereira P. J., Fuentes-Prior P. (2009). Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem. Mol. Biol. 39, 579–595. 10.1016/j.ibmb.2009.07.003 PubMed DOI

Cox J. L. (2009). Cystatins and cancer. Front. Biosci. (Landmark Ed) 14, 463–474. 10.2741/3255 PubMed DOI

Dai S. X., Zhang A. D., Huang J. F. (2012). Evolution, expansion and expression of the Kunitz/BPTI gene family associated with long-term blood feeding in Ixodes Scapularis. BMC Evol. Biol. 12:4. 10.1186/1471-2148-12-4 PubMed DOI PMC

Davis R. L., Shrimpton A. E., Holohan P. D., Bradshaw C., Feiglin D., Collins G. H., et al. . (1999). Familial dementia caused by polymerization of mutant neuroserpin. Nature 401, 376–379. 10.1038/43894 PubMed DOI

Denhardt D. T., Greenberg A. H., Egan S. E., Hamilton R. T., Wright J. A. (1987). Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts. Oncogene 2, 55–59. PubMed

Di Cesare Mannelli L., Micheli L., Cinci L., Maresca M., Vergelli C., Pacini A., et al. . (2016). Effects of the neutrophil elastase inhibitor EL-17 in rat adjuvant-induced arthritis. Rheumatology (Oxford) 55, 1285–1294. 10.1093/rheumatology/kew055 PubMed DOI PMC

Ekeowa U. I., Gooptu B., Belorgey D., Hagglof P., Karlsson-Li S., Miranda E., et al. . (2009). alpha1-Antitrypsin deficiency, chronic obstructive pulmonary disease and the serpinopathies. Clin. Sci. 116, 837–850. 10.1042/CS20080484 PubMed DOI

El Rayes T., Catena R., Lee S., Stawowczyk M., Joshi N., Fischbach C., et al. . (2015). Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc. Natl. Acad. Sci. U.S.A. 112, 16000–16005. 10.1073/pnas.1507294112 PubMed DOI PMC

Fogaca A. C., Almeida I. C., Eberlin M. N., Tanaka A. S., Bulet P., Daffre S. (2006). Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides 27, 667–674. 10.1016/j.peptides.2005.07.013 PubMed DOI

Frazao B., Vasconcelos V., Antunes A. (2012). Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar. Drugs 10, 1812–1851. 10.3390/md10081812 PubMed DOI PMC

Grosskinsky S., Schott M., Brenner C., Cutler S. J., Simon M. M., Wallich R. (2010). Human complement regulators C4b-binding protein and C1 esterase inhibitor interact with a novel outer surface protein of Borrelia recurrentis. PLoS Negl. Trop. Dis. 4:e698. 10.1371/journal.pntd.0000698 PubMed DOI PMC

Grunclova L., Horn M., Vancova M., Sojka D., Franta Z., Mares M., et al. . (2006). Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol. Chem. 387, 1635–1644. 10.1515/BC.2006.204 PubMed DOI

Guay C., Laviolette M., Tremblay G. M. (2006). Targeting serine proteases in asthma. Curr. Top. Med. Chem. 6, 393–402. 10.2174/156802606776287054 PubMed DOI

Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., et al. . (2016). Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7:10507. 10.1038/ncomms10507 PubMed DOI PMC

Gulley M. M., Zhang X., Michel K. (2013). The roles of serpins in mosquito immunology and physiology. J. Insect Physiol. 59, 138–147. 10.1016/j.jinsphys.2012.08.015 PubMed DOI PMC

Hahn I., Klaus A., Janze A. K., Steinwede K., Ding N., Bohling J., et al. . (2011). Cathepsin G and neutrophil elastase play critical and nonredundant roles in lung-protective immunity against Streptococcus pneumoniae in mice. Infect. Immun. 79, 4893–4901. 10.1128/IAI.05593-11 PubMed DOI PMC

Haile W. B., Coleman J. L., Benach J. L. (2006). Reciprocal upregulation of urokinase plasminogen activator and its inhibitor, PAI-2, by Borrelia burgdorferi affects bacterial penetration and host-inflammatory response. Cell. Microbiol. 8, 1349–1360. 10.1111/j.1462-5822.2006.00717.x PubMed DOI

Halangk W., Lerch M. M., Brandt-Nedelev B., Roth W., Ruthenbuerger M., Reinheckel T., et al. . (2000). Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest. 106, 773–781. 10.1172/JCI9411 PubMed DOI PMC

Han N., Jin K., He K., Cao J., Teng L. (2011). Protease-activated receptors in cancer: a systematic review. Oncol. Lett. 2, 599–608. 10.3892/ol.2011.291 PubMed DOI PMC

Hap A., Kielan W., Grzebieniak Z., Siewinski M., Rudnicki J., Tarnawa R., et al. . (2011). Control of active B and L cathepsins in tissues of colorectal cancer using cystatins isolated from chicken egg proteins: in vitro studies. Folia Histochem. Cytobiol. 49, 670–676. 10.5603/FHC.2011.0075 PubMed DOI

Heit C., Jackson B. C., Mcandrews M., Wright M. W., Thompson D. C., Silverman G. A., et al. . (2013). Update of the human and mouse SERPIN gene superfamily. Hum. Genomics 7:22. 10.1186/1479-7364-7-22 PubMed DOI PMC

Horka H., Staudt V., Klein M., Taube C., Reuter S., Dehzad N., et al. . (2012). The tick salivary protein sialostatin L inhibits the Th9-derived production of the asthma-promoting cytokine IL-9 and is effective in the prevention of experimental asthma. J. Immunol. 188, 2669–2676. 10.4049/jimmunol.1100529 PubMed DOI PMC

Horn M., Nussbaumerova M., Sanda M., Kovarova Z., Srba J., Franta Z., et al. . (2009). Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 16, 1053–1063. 10.1016/j.chembiol.2009.09.009 PubMed DOI PMC

Huntington J. A., Li W. (2009). Structural insights into the multiple functions of protein C inhibitor. Cell. Mol. Life Sci. 66, 113–121. 10.1007/s00018-008-8371-0 PubMed DOI PMC

Ibelli A. M., Hermance M. M., Kim T. K., Gonzalez C. L., Mulenga A. (2013). Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. Exp. Appl. Acarol. 60, 41–53. 10.1007/s10493-012-9613-2 PubMed DOI PMC

Ibelli A. M., Kim T. K., Hill C. C., Lewis L. A., Bakshi M., Miller S., et al. . (2014). A blood meal-induced Ixodes scapularis tick saliva serpin inhibits trypsin and thrombin, and interferes with platelet aggregation and blood clotting. Int. J. Parasitol. 44, 369–379. 10.1016/j.ijpara.2014.01.010 PubMed DOI PMC

Imamura S., Da Silva Vaz Junior I., Sugino M., Ohashi K., Onuma M. (2005). A serine protease inhibitor (serpin) from Haemaphysalis longicornis as an anti-tick vaccine. Vaccine 23, 1301–1311. 10.1016/j.vaccine.2004.08.041 PubMed DOI

Imamura S., Konnai S., Vaz Ida S., Yamada S., Nakajima C., Ito Y., et al. . (2008). Effects of anti-tick cocktail vaccine against Rhipicephalus appendiculatus. Jpn. J. Vet. Res. 56, 85–98. 10.14943/jjvr.56.2.85 PubMed DOI

Imamura S., Konnai S., Yamada S., Parizi L. F., Githaka N., Vaz Ida S., Jr., et al. . (2013). Identification and partial characterization of a gut Rhipicephalus appendiculatus cystatin. Ticks Tick Borne Dis. 4, 138–144. 10.1016/j.ttbdis.2012.11.001 PubMed DOI

Imamura S., Namangala B., Tajima T., Tembo M. E., Yasuda J., Ohashi K., et al. . (2006). Two serine protease inhibitors (serpins) that induce a bovine protective immune response against Rhipicephalus appendiculatus ticks. Vaccine 24, 2230–2237. 10.1016/j.vaccine.2005.10.055 PubMed DOI

Jin C., Flavell R. A. (2010). Molecular mechanism of NLRP3 inflammasome activation. J. Clin. Immunol. 30, 628–631. 10.1007/s10875-010-9440-3 PubMed DOI

Jittapalapong S., Kaewhom P., Pumhom P., Canales M., De La Fuente J., Stich R. W. (2010). Immunization of rabbits with recombinant serine protease inhibitor reduces the performance of adult female Rhipicephalus microplus. Transbound. Emerg. Dis. 57, 103–106. 10.1111/j.1865-1682.2010.01108.x PubMed DOI

Kaewhom P., Sirinarumitr T., Chantakru S., Jittapalapong S. (2007). Cloning and characterization of cDNA encoding a serine protease inhibitor from salivary glands of thai cattle tick (Boophilus microplus). Kasetsart J. (Nat. Sci.) 41, 74–80.

Kanost M. R. (1999). Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol. 23, 291–301. 10.1016/S0145-305X(99)00012-9 PubMed DOI

Karim S., Miller N. J., Valenzuela J., Sauer J. R., Mather T. N. (2005). RNAi-mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding. Biochem. Biophys. Res. Commun. 334, 1336–1342. 10.1016/j.bbrc.2005.07.036 PubMed DOI

Karim S., Ribeiro J. M. (2015). An Insight into the Sialome of the Lone Star Tick, Amblyomma americanum, with a Glimpse on its time dependent gene expression. PLoS ONE 10:e0131292. 10.1371/journal.pone.0131292 PubMed DOI PMC

Karim S., Singh P., Ribeiro J. M. (2011). A deep insight into the sialotranscriptome of the gulf coast tick, Amblyomma maculatum. PLoS ONE 6:e28525. 10.1371/journal.pone.0028525 PubMed DOI PMC

Kawada A., Hara K., Kominami E., Hiruma M., Noguchi H., Ishibashi A. (1997). Processing of cathepsins L, B and D in psoriatic epidermis. Arch. Dermatol. Res. 289, 87–93. 10.1007/s004030050160 PubMed DOI

Kazimirova M., Stibraniova I. (2013). Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front. Cell. Infect. Microbiol. 3:43. 10.3389/fcimb.2013.00043 PubMed DOI PMC

Kennedy B., Gargoum F. S., Kennedy L., Khan F., Curran D. R., O'connor T. M. (2012). Emerging anticoagulants. Curr. Med. Chem. 19, 3388–3416. 10.2174/092986712801215847 PubMed DOI

Kessenbrock K., Krumbholz M., Schonermarck U., Back W., Gross W. L., Werb Z., et al. . (2009). Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625. 10.1038/nm.1959 PubMed DOI PMC

Kim H. S., Krege J. H., Kluckman K. D., Hagaman J. R., Hodgin J. B., Best C. F., et al. . (1995). Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl. Acad. Sci. U.S.A. 92, 2735–2739. 10.1073/pnas.92.7.2735 PubMed DOI PMC

Kim T. K., Radulovic Z., Mulenga A. (2016). Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19. Ticks Tick Borne Dis. 7, 405–414. 10.1016/j.ttbdis.2015.12.017 PubMed DOI PMC

Kim T. K., Tirloni L., Radulovic Z., Lewis L., Bakshi M., Hill C., et al. . (2015). Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions. Int. J. Parasitol. 45, 613–627. 10.1016/j.ijpara.2015.03.009 PubMed DOI PMC

Klein M., Bruhl T. J., Staudt V., Reuter S., Grebe N., Gerlitzki B., et al. . (2015). Tick salivary sialostatin L represses the initiation of immune responses by targeting IRF4-dependent transcription in murine mast cells. J. Immunol. 195, 621–631. 10.4049/jimmunol.1401823 PubMed DOI PMC

Kopitar-Jerala N. (2012). The role of cysteine proteinases and their inhibitors in the host-pathogen cross talk. Curr. Protein Pept. Sci. 13, 767–775. 10.2174/138920312804871102 PubMed DOI PMC

Kordis D., Turk V. (2009). Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol. Biol. 9:266. 10.1186/1471-2148-9-266 PubMed DOI PMC

Kos J., Mitrovic A., Mirkovic B. (2014). The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med. Chem. 6, 1355–1371. 10.4155/fmc.14.73 PubMed DOI

Kotsyfakis M., Anderson J. M., Andersen J. F., Calvo E., Francischetti I. M., Mather T. N., et al. . (2008). Cutting edge: immunity against a “silent” salivary antigen of the Lyme vector Ixodes scapularis impairs its ability to feed. J. Immunol. 181, 5209–5212. 10.4049/jimmunol.181.8.5209 PubMed DOI PMC

Kotsyfakis M., Horka H., Salat J., Andersen J. F. (2010). The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol. Microbiol. 77, 456–470. 10.1111/j.1365-2958.2010.07220.x PubMed DOI PMC

Kotsyfakis M., Karim S., Andersen J. F., Mather T. N., Ribeiro J. M. (2007). Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J. Biol. Chem. 282, 29256–29263. 10.1074/jbc.M703143200 PubMed DOI

Kotsyfakis M., Kopacek P., Franta Z., Pedra J. H., Ribeiro J. M. (2015a). Deep Sequencing Analysis of the Ixodes ricinus Haemocytome. PLoS Negl. Trop. Dis. 9:e0003754. 10.1371/journal.pntd.0003754 PubMed DOI PMC

Kotsyfakis M., Sa-Nunes A., Francischetti I. M., Mather T. N., Andersen J. F., Ribeiro J. M. (2006). Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 281, 26298–26307. 10.1074/jbc.M513010200 PubMed DOI

Kotsyfakis M., Schwarz A., Erhart J., Ribeiro J. M. (2015b). Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 5:9103. 10.1038/srep09103 PubMed DOI PMC

Kovarova Z., Chmelar J., Sanda M., Brynda J., Mares M., Rezacova P. (2010). Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 1453–1457. 10.1107/S1744309110032343 PubMed DOI PMC

Kuester D., Lippert H., Roessner A., Krueger S. (2008). The cathepsin family and their role in colorectal cancer. Pathol. Res. Pract. 204, 491–500. 10.1016/j.prp.2008.04.010 PubMed DOI

Law R. H., Zhang Q., Mcgowan S., Buckle A. M., Silverman G. A., Wong W., et al. . (2006). An overview of the serpin superfamily. Genome Biol. 7:216. 10.1186/gb-2006-7-5-216 PubMed DOI PMC

Leboulle G., Crippa M., Decrem Y., Mejri N., Brossard M., Bollen A., et al. . (2002a). Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J. Biol. Chem. 277, 10083–10089. 10.1074/jbc.M111391200 PubMed DOI

Leboulle G., Rochez C., Louahed J., Ruti B., Brossard M., Bollen A., et al. . (2002b). Isolation of Ixodes ricinus salivary gland mRNA encoding factors induced during blood feeding. Am. J. Trop. Med. Hyg. 66, 225–233. 10.4269/ajtmh.2002.66.225 PubMed DOI

Li J., Zhang C., Xu X., Wang J., Yu H., Lai R., et al. . (2007). Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J. 21, 2466–2473. 10.1096/fj.06-7966com PubMed DOI

Lieskovska J., Palenikova J., Langhansova H., Campos Chagas A., Calvo E., Kotsyfakis M., et al. . (2015a). Tick sialostatins L and L2 differentially influence dendritic cell responses to Borrelia spirochetes. Parasit. Vectors 8:275. 10.1186/s13071-015-0887-1 PubMed DOI PMC

Lieskovska J., Palenikova J., Sirmarova J., Elsterova J., Kotsyfakis M., Campos Chagas A., et al. . (2015b). Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol. 37, 70–78. 10.1111/pim.12162 PubMed DOI

Lima C. A., Sasaki S. D., Tanaka A. S. (2006). Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus. Biochem. Biophys. Res. Commun. 347, 44–50. 10.1016/j.bbrc.2006.06.018 PubMed DOI

Lima L. G., Monteiro R. Q. (2013). Activation of blood coagulation in cancer: implications for tumour progression. Biosci. Rep. 33:pii: e00064. 10.1042/BSR20130057 PubMed DOI PMC

Liu J., Sukhova G. K., Yang J. T., Sun J., Ma L., Ren A., et al. . (2006). Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184, 302–311. 10.1016/j.atherosclerosis.2005.05.012 PubMed DOI

Liu X. Y., De La Fuente J., Cote M., Galindo R. C., Moutailler S., Vayssier-Taussat M., et al. . (2014). IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. PLoS Negl. Trop. Dis. 8:e2993. 10.1371/journal.pntd.0002993 PubMed DOI PMC

Lomas D. A., Hurst J. R., Gooptu B. (2016). Update on alpha-1 antitrypsin deficiency: new therapies. J. Hepatol. 65, 413–424. 10.1016/j.jhep.2016.03.010 PubMed DOI

Lu H., Cassis L. A., Kooi C. W., Daugherty A. (2016). Structure and functions of angiotensinogen. Hypertens. Res. 39, 492–500. 10.1038/hr.2016.17 PubMed DOI PMC

Lu S., Soares T. S., Vaz Junior I. S., Lovato D. V., Tanaka A. S. (2014). Rmcystatin3, a cysteine protease inhibitor from Rhipicephalus microplus hemocytes involved in immune response. Biochimie 106, 17–23. 10.1016/j.biochi.2014.07.012 PubMed DOI

Mansuy-Aubert V., Zhou Q. L., Xie X., Gong Z., Huang J. Y., Khan A. R., et al. . (2013). Imbalance between neutrophil elastase and its inhibitor alpha1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 17, 534–548. 10.1016/j.cmet.2013.03.005 PubMed DOI PMC

Maritz-Olivier C., Stutzer C., Jongejan F., Neitz A. W., Gaspar A. R. (2007). Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol. 23, 397–407. 10.1016/j.pt.2007.07.005 PubMed DOI

Meekins D. A., Kanost M. R., Michel K. (2017). Serpins in arthropod biology. Semin. Cell Dev. Biol. 62, 105–119. 10.1016/j.semcdb.2016.09.001 PubMed DOI PMC

Miyata J., Tani K., Sato K., Otsuka S., Urata T., Lkhagvaa B., et al. . (2007). Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatol Int. 27, 375–382. 10.1007/s00296-006-0210-8 PubMed DOI

Moreira H. N., Barcelos R. M., Vidigal P. M., Klein R. C., Montandon C. E., Maciel T. E., et al. . (2017). A deep insight into the whole transcriptome of midguts, ovaries and salivary glands of the Amblyomma sculptum tick. Parasitol. Int. 66, 64–73. 10.1016/j.parint.2016.10.011 PubMed DOI

Mulenga A., Blandon M., Khumthong R. (2007a). The molecular basis of the Amblyomma americanum tick attachment phase. Exp. Appl. Acarol. 41, 267–287. 10.1007/s10493-007-9064-3 PubMed DOI

Mulenga A., Khumthong R., Blandon M. A. (2007b). Molecular and expression analysis of a family of the Amblyomma americanum tick Lospins. J. Exp. Biol. 210, 3188–3198. 10.1242/jeb.006494 PubMed DOI

Mulenga A., Khumthong R., Chalaire K. C. (2009). Ixodes scapularis tick serine proteinase inhibitor (serpin) gene family; annotation and transcriptional analysis. BMC Genomics 10:217. 10.1186/1471-2164-10-217 PubMed DOI PMC

Mulenga A., Khumthong R., Chalaire K. C., Strey O., Teel P. (2008). Molecular and biological characterization of the Amblyomma americanum organic anion transporter polypeptide. J. Exp. Biol. 211, 3401–3408. 10.1242/jeb.022376 PubMed DOI

Mulenga A., Kim T., Ibelli A. M. (2013). Amblyomma americanum tick saliva serine protease inhibitor 6 is a cross-class inhibitor of serine proteases and papain-like cysteine proteases that delays plasma clotting and inhibits platelet aggregation. Insect. Mol. Biol. 22, 306–319. 10.1111/imb.12024 PubMed DOI PMC

Mulenga A., Tsuda A., Onuma M., Sugimoto C. (2003). Four serine proteinase inhibitors (serpin) from the brown ear tick, Rhiphicephalus appendiculatus; cDNA cloning and preliminary characterization. Insect Biochem. Mol. Biol. 33, 267–276. 10.1016/S0965-1748(02)00240-0 PubMed DOI

Muller S., Dennemarker J., Reinheckel T. (2012). Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochim. Biophys. Acta 1824, 34–43. 10.1016/j.bbapap.2011.07.003 PubMed DOI PMC

Nickel W. (2003). The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur. J. Biochem. 270, 2109–2119. 10.1046/j.1432-1033.2003.03577.x PubMed DOI

Niles J. L., Mccluskey R. T., Ahmad M. F., Arnaout M. A. (1989). Wegener's granulomatosis autoantigen is a novel neutrophil serine proteinase. Blood 74, 1888–1893. PubMed

Ooi C. P., Haines L. R., Southern D. M., Lehane M. J., Acosta-Serrano A. (2015). Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut. PLoS Negl. Trop. Dis. 9:e3448. 10.1371/journal.pntd.0003448 PubMed DOI PMC

Owen C. A. (2008). Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 3, 253–268. 10.2147/COPD.S2089 PubMed DOI PMC

Pal U., Li X., Wang T., Montgomery R. R., Ramamoorthi N., Desilva A. M., et al. . (2004). TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119, 457–468. 10.1016/j.cell.2004.10.027 PubMed DOI

Palenikova J., Lieskovska J., Langhansova H., Kotsyfakis M., Chmelar J., Kopecky J. (2015). Ixodes ricinus salivary serpin IRS-2 affects Th17 differentiation via inhibition of the interleukin-6/STAT-3 signaling pathway. Infect. Immun. 83, 1949–1956. 10.1128/IAI.03065-14 PubMed DOI PMC

Parizi L. F., Sabadin G. A., Alzugaray M. F., Seixas A., Logullo C., Konnai S., et al. . (2015). Rhipicephalus microplus and Ixodes ovatus cystatins in tick blood digestion and evasion of host immune response. Parasit. Vectors 8:122. 10.1186/s13071-015-0743-3 PubMed DOI PMC

Pejler G., Ronnberg E., Waern I., Wernersson S. (2010). Mast cell proteases: multifaceted regulators of inflammatory disease. Blood 115, 4981–4990. 10.1182/blood-2010-01-257287 PubMed DOI

Perner J., Provaznik J., Schrenkova J., Urbanova V., Ribeiro J. M., Kopacek P. (2016). RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 6:36695. 10.1038/srep36695 PubMed DOI PMC

Pham C. T. (2006). Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol. 6, 541–550. 10.1038/nri1841 PubMed DOI

Pham C. T. (2008). Neutrophil serine proteases fine-tune the inflammatory response. Int. J. Biochem. Cell Biol. 40, 1317–1333. 10.1016/j.biocel.2007.11.008 PubMed DOI PMC

Pierre P., Mellman I. (1998). Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell 93, 1135–1145. 10.1016/S0092-8674(00)81458-0 PubMed DOI

Pislar A., Kos J. (2014). Cysteine cathepsins in neurological disorders. Mol. Neurobiol. 49, 1017–1030. 10.1007/s12035-013-8576-6 PubMed DOI

Porter L. M., Radulovic Z. M., Mulenga A. (2017). A repertoire of protease inhibitor families in Amblyomma americanum and other tick species: inter-species comparative analyses. Parasit. Vectors 10:152. 10.1186/s13071-017-2080-1 PubMed DOI PMC

Porter L., Radulovic Z., Kim T., Braz G. R., Da Silva Vaz I., Jr., Mulenga A. (2015). Bioinformatic analyses of male and female Amblyomma americanum tick expressed serine protease inhibitors (serpins). Ticks Tick Borne Dis. 6, 16–30. 10.1016/j.ttbdis.2014.08.002 PubMed DOI PMC

Prevot P. P., Adam B., Boudjeltia K. Z., Brossard M., Lins L., Cauchie P., et al. . (2006). Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 281, 26361–26369. 10.1074/jbc.M604197200 PubMed DOI

Prevot P. P., Beschin A., Lins L., Beaufays J., Grosjean A., Bruys L., et al. . (2009). Exosites mediate the anti-inflammatory effects of a multifunctional serpin from the saliva of the tick Ixodes ricinus. FEBS J. 276, 3235–3246. 10.1111/j.1742-4658.2009.07038.x PubMed DOI

Prevot P. P., Couvreur B., Denis V., Brossard M., Vanhamme L., Godfroid E. (2007). Protective immunity against Ixodes ricinus induced by a salivary serpin. Vaccine 25, 3284–3292. 10.1016/j.vaccine.2007.01.008 PubMed DOI

Quinn D. J., Weldon S., Taggart C. C. (2010). Antiproteases as therapeutics to target inflammation in cystic fibrosis. Open Respir. Med. J. 4, 20–31. 10.2174/1874306401004010020 PubMed DOI PMC

Rangel C. K., Parizi L. F., Sabadin G. A., Costa E. P., Romeiro N. C., Isezaki M., et al. . (2017). Molecular and structural characterization of novel cystatins from the taiga tick Ixodes persulcatus. Ticks Tick Borne Dis. 8, 432–441. 10.1016/j.ttbdis.2017.01.007 PubMed DOI

Rawlings N. D., Barrett A. J. (1990). Evolution of proteins of the cystatin superfamily. J. Mol. Evol. 30, 60–71. 10.1007/BF02102453 PubMed DOI

Rawlings N. D., Salvesen G. (2013). Handbook of Proteolytic Enzymes, 3rd Edn. London; Boston: Academic Press.

Ribeiro J. M., Slovak M., Francischetti I. M. (2017). An insight into the sialome of Hyalomma excavatum. Ticks Tick Borne Dis. 8, 201–207. 10.1016/j.ttbdis.2016.08.011 PubMed DOI PMC

Rimphanitchayakit V., Tassanakajon A. (2010). Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Dev. Comp. Immunol. 34, 377–386. 10.1016/j.dci.2009.12.004 PubMed DOI

Rodriguez-Valle M., Vance M., Moolhuijzen P. M., Tao X., Lew-Tabor A. E. (2012). Differential recognition by tick-resistant cattle of the recombinantly expressed Rhipicephalus microplus serine protease inhibitor-3 (RMS-3). Ticks Tick Borne Dis. 3, 159–169. 10.1016/j.ttbdis.2012.03.002 PubMed DOI

Rodriguez-Valle M., Xu T., Kurscheid S., Lew-Tabor A. E. (2015). Rhipicephalus microplus serine protease inhibitor family: annotation, expression and functional characterisation assessment. Parasit. Vectors 8:7. 10.1186/s13071-014-0605-4 PubMed DOI PMC

Salát J., Paesen G. C., Rezácová P., Kotsyfakis M., Kovárová Z., Sanda M., et al. . (2010). Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem. J. 429, 103–112. 10.1042/BJ20100280 PubMed DOI PMC

Sandhaus R. A., Turino G. (2013). Neutrophil elastase-mediated lung disease. COPD 10 (Suppl. 1), 60–63. 10.3109/15412555.2013.764403 PubMed DOI

Sa-Nunes A., Bafica A., Antonelli L. R., Choi E. Y., Francischetti I. M., Andersen J. F., et al. . (2009). The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J. Immunol. 182, 7422–7429. 10.4049/jimmunol.0900075 PubMed DOI PMC

Sasaki S. D., De Lima C. A., Lovato D. V., Juliano M. A., Torquato R. J., Tanaka A. S. (2008). BmSI-7, a novel subtilisin inhibitor from Boophilus microplus, with activity toward Pr1 proteases from the fungus Metarhizium anisopliae. Exp. Parasitol. 118, 214–220. 10.1016/j.exppara.2007.08.003 PubMed DOI

Scherer H. U., Dorner T., Burmester G. R. (2010). Patient-tailored therapy in rheumatoid arthritis: an editorial review. Curr. Opin. Rheumatol. 22, 237–245. 10.1097/BOR.0b013e328337b832 PubMed DOI

Schmitt E., Germann T., Goedert S., Hoehn P., Huels C., Koelsch S., et al. . (1994). IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J. Immunol. 153, 3989–3996. PubMed

Schwarz A., Cabezas-Cruz A., Kopecky J., Valdes J. J. (2014). Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data. BMC Evol. Biol. 14:4. 10.1186/1471-2148-14-4 PubMed DOI PMC

Schwarz A., Valdes J. J., Kotsyfakis M. (2012). The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis. 3, 117–127. 10.1016/j.ttbdis.2012.03.004 PubMed DOI PMC

Schwarz A., Von Reumont B. M., Erhart J., Chagas A. C., Ribeiro J. M., Kotsyfakis M. (2013). De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 27, 4745–4756. 10.1096/fj.13-232140 PubMed DOI PMC

Shapiro S. D. (2002). Proteinases in chronic obstructive pulmonary disease. Biochem. Soc. Trans. 30, 98–102. 10.1042/bst0300098 PubMed DOI

Shi X., Gangadharan B., Brass L. F., Ruf W., Mueller B. M. (2004). Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol. Cancer Res. 2, 395–402. Available online at: http://mcr.aacrjournals.org/content/2/7/395.article-info PubMed

Silverman G. A., Whisstock J. C., Bottomley S. P., Huntington J. A., Kaiserman D., Luke C. J., et al. . (2010). Serpins flex their muscle: I. Putting the clamps on proteolysis in diverse biological systems. J. Biol. Chem. 285, 24299–24305. 10.1074/jbc.R110.112771 PubMed DOI PMC

Stark K. R., James A. A. (1995). A factor Xa-directed anticoagulant from the salivary glands of the yellow fever mosquito Aedes aegypti. Exp. Parasitol. 81, 321–331. 10.1006/expr.1995.1123 PubMed DOI

Stark K. R., James A. A. (1998). Isolation and characterization of the gene encoding a novel factor Xa-directed anticoagulant from the yellow fever mosquito, Aedes aegypti. J. Biol. Chem. 273, 20802–20809. 10.1074/jbc.273.33.20802 PubMed DOI

Steinwede K., Maus R., Bohling J., Voedisch S., Braun A., Ochs M., et al. . (2012). Cathepsin G and neutrophil elastase contribute to lung-protective immunity against mycobacterial infections in mice. J. Immunol. 188, 4476–4487. 10.4049/jimmunol.1103346 PubMed DOI

Stephenson E., Savvatis K., Mohiddin S. A., Marelli-Berg F. M. (2016). T-cell immunity in myocardial inflammation: pathogenic role and therapeutic manipulation. Br. J. Pharmacol. 10.1111/bph.13613 PubMed DOI PMC

Sudhan D. R., Siemann D. W. (2015). Cathepsin L targeting in cancer treatment. Pharmacol. Ther. 155, 105–116. 10.1016/j.pharmthera.2015.08.007 PubMed DOI PMC

Sugino M., Imamura S., Mulenga A., Nakajima M., Tsuda A., Ohashi K., et al. . (2003). A serine proteinase inhibitor (serpin) from ixodid tick Haemaphysalis longicornis; cloning and preliminary assessment of its suitability as a candidate for a tick vaccine. Vaccine 21, 2844–2851. 10.1016/S0264-410X(03)00167-1 PubMed DOI

Sun J., Sukhova G. K., Wolters P. J., Yang M., Kitamoto S., Libby P., et al. . (2007). Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat. Med. 13, 719–724. 10.1038/nm1601 PubMed DOI

Sun J., Zhang J., Lindholt J. S., Sukhova G. K., Liu J., He A., et al. . (2009). Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation 120, 973–982. 10.1161/CIRCULATIONAHA.109.849679 PubMed DOI PMC

Takeda A., Jimi T., Wakayama Y., Misugi N., Miyake S., Kumagai T. (1992). Demonstration of cathepsins B, H and L in xenografts of normal and Duchenne-muscular-dystrophy muscles transplanted into nude mice. Biochem. J. 288 (Pt 2), 643–648. 10.1042/bj2880643 PubMed DOI PMC

Talukdar S., Oh D. Y., Bandyopadhyay G., Li D., Xu J., Mcnelis J., et al. . (2012). Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412. 10.1038/nm.2885 PubMed DOI PMC

Tan G. J., Peng Z. K., Lu J. P., Tang F. Q. (2013). Cathepsins mediate tumor metastasis. World J. Biol. Chem. 4, 91–101. 10.4331/wjbc.v4.i4.91 PubMed DOI PMC

Tang H. (2009). Regulation and function of the melanization reaction in Drosophila. Fly (Austin) 3, 105–111. 10.4161/fly.3.1.7747 PubMed DOI

Tirloni L., Kim T. K., Coutinho M. L., Ali A., Seixas A., Termignoni C., et al. . (2016). The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect. Biochem. Mol. Biol. 71, 12–28. 10.1016/j.ibmb.2016.01.004 PubMed DOI PMC

Tirloni L., Reck J., Terra R. M., Martins J. R., Mulenga A., Sherman N. E., et al. . (2014a). Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS ONE 9:e94831. 10.1371/journal.pone.0094831 PubMed DOI PMC

Tirloni L., Seixas A., Mulenga A., Vaz Ida S., Jr., Termignoni C. (2014b). A family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (Boophilus) microplus. Exp. Parasitol. 137, 25–34. 10.1016/j.exppara.2013.12.001 PubMed DOI

Toyomane K., Konnai S., Niwa A., Githaka N., Isezaki M., Yamada S., et al. . (2016). Identification and the preliminary in vitro characterization of IRIS homologue from salivary glands of Ixodes persulcatus Schulze. Ticks Tick Borne Dis. 7, 119–125. 10.1016/j.ttbdis.2015.09.006 PubMed DOI

Tumminello F. M., Leto G., Pizzolanti G., Candiloro V., Crescimanno M., Crosta L., et al. . (1996). Cathepsin D, B and L circulating levels as prognostic markers of malignant progression. Anticancer Res. 16, 2315–2319. PubMed

Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., et al. . (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824, 68–88. 10.1016/j.bbapap.2011.10.002 PubMed DOI PMC

Twigg M. S., Brockbank S., Lowry P., Fitzgerald S. P., Taggart C., Weldon S. (2015). The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators Inflamm. 2015:293053. 10.1155/2015/293053 PubMed DOI PMC

Valdes J. J., Moal I. H. (2014). Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome. Ticks Tick Borne Dis. 5, 947–950. 10.1016/j.ttbdis.2014.07.016 PubMed DOI

Valenzuela J. G., Francischetti I. M., Pham V. M., Garfield M. K., Mather T. N., Ribeiro J. M. (2002). Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 205, 2843–2864. Available online at: http://jeb.biologists.org/content/205/18/2843.article-info PubMed

Wagner C. J., Schultz C., Mall M. A. (2016). Neutrophil elastase and matrix metalloproteinase 12 in cystic fibrosis lung disease. Mol Cell Pediatr 3:25. 10.1186/s40348-016-0053-7 PubMed DOI PMC

Wang Y., Yu X., Cao J., Zhou Y., Gong H., Zhang H., et al. . (2015a). Characterization of a secreted cystatin from the tick Rhipicephalus haemaphysaloides. Exp. Appl. Acarol. 67, 289–298. 10.1007/s10493-015-9946-8 PubMed DOI

Wang Y., Zhou Y., Gong H., Cao J., Zhang H., Li X., et al. . (2015b). Functional characterization of a cystatin from the tick Rhipicephalus haemaphysaloides. Parasit. Vectors 8:140. 10.1186/s13071-015-0725-5 PubMed DOI PMC

Whisstock J. C., Silverman G. A., Bird P. I., Bottomley S. P., Kaiserman D., Luke C. J., et al. . (2010). Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J. Biol. Chem. 285, 24307–24312. 10.1074/jbc.R110.141408 PubMed DOI PMC

Wikel S. (2013). Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front. Microbiol. 4:337. 10.3389/fmicb.2013.00337 PubMed DOI PMC

Willadsen P., Bird P., Cobon G. S., Hungerford J. (1995). Commercialisation of a recombinant vaccine against Boophilus microplus. Parasitology 110 (Suppl.), S43–S50. 10.1017/S0031182000001487 PubMed DOI

Xu T., Lew-Tabor A., Rodriguez-Valle M. (2016). Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks Tick Borne Dis. 7, 180–187. 10.1016/j.ttbdis.2015.09.007 PubMed DOI

Yamaji K., Tsuji N., Miyoshi T., Hatta T., Alim M. A., Anisuzzaman, et al. . (2010). Hlcyst-1 and Hlcyst-2 are potential inhibitors of HlCPL-A in the midgut of the ixodid tick Haemaphysalis longicornis. J. Vet. Med. Sci. 72, 599–604. 10.1292/jvms.09-0561 PubMed DOI

Yamaji K., Tsuji N., Miyoshi T., Islam M. K., Hatta T., Alim M. A., et al. . (2009a). Hemoglobinase activity of a cysteine protease from the ixodid tick Haemaphysalis longicornis. Parasitol. Int. 58, 232–237. 10.1016/j.parint.2009.05.003 PubMed DOI

Yamaji K., Tsuji N., Miyoshi T., Islam M. K., Hatta T., Alim M. A., et al. . (2009b). A salivary cystatin, HlSC-1, from the ixodid tick Haemaphysalis longicornis play roles in the blood-feeding processes. Parasitol. Res. 106, 61–68. 10.1007/s00436-009-1626-3 PubMed DOI

Yasuda Y., Kaleta J., Bromme D. (2005). The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv. Drug Deliv. Rev. 57, 973–993. 10.1016/j.addr.2004.12.013 PubMed DOI

Yu Y., Cao J., Zhou Y., Zhang H., Zhou J. (2013). Isolation and characterization of two novel serpins from the tick Rhipicephalus haemaphysaloides. Ticks Tick Borne Dis. 4, 297–303. 10.1016/j.ttbdis.2013.02.001 PubMed DOI

Zavasnik-Bergant T. (2008). Cystatin protease inhibitors and immune functions. Front. Biosci. 13, 4625–4637. 10.2741/3028 PubMed DOI

Zeng X. C., Liu Y., Shi W., Zhang L., Luo X., Nie Y., et al. . (2014). Genome-wide search and comparative genomic analysis of the trypsin inhibitor-like cysteine-rich domain-containing peptides. Peptides 53, 106–114. 10.1016/j.peptides.2013.08.012 PubMed DOI

Zhang J., Sun J., Lindholt J. S., Sukhova G. K., Sinnamon M., Stevens R. L., et al. . (2011). Mast cell tryptase deficiency attenuates mouse abdominal aortic aneurysm formation. Circ. Res. 108, 1316–1327. 10.1161/CIRCRESAHA.111.243758 PubMed DOI PMC

Zhou J., Liao M., Gong H., Xuan X., Fujisaki K. (2010). Characterization of Hlcyst-3 as a member of cystatins from the tick Haemaphysalis longicornis. Exp. Appl. Acarol. 51, 327–333. 10.1007/s10493-010-9336-1 PubMed DOI

Zhou J., Liao M., Hatta T., Tanaka M., Xuan X., Fujisaki K. (2006a). Identification of a follistatin-related protein from the tick Haemaphysalis longicornis and its effect on tick oviposition. Gene 372, 191–198. 10.1016/j.gene.2005.12.020 PubMed DOI

Zhou J., Liao M., Ueda M., Gong H., Xuan X., Fujisaki K. (2009). Characterization of an intracellular cystatin homolog from the tick Haemaphysalis longicornis. Vet. Parasitol. 160, 180–183. 10.1016/j.vetpar.2008.10.086 PubMed DOI

Zhou J., Ueda M., Umemiya R., Battsetseg B., Boldbaatar D., Xuan X., et al. . (2006b). A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem. Mol. Biol. 36, 527–535. 10.1016/j.ibmb.2006.03.003 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tick salivary cystatin Iristatin limits the virus replication in skin of tick-borne encephalitis virus-infected mice

. 2025 Jan 17 ; 124 (1) : 8. [epub] 20250117

Protease-bound structure of Ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host

. 2023 Oct 28 ; 80 (11) : 339. [epub] 20231028

An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily

. 2023 Mar ; 299 (3) : 102970. [epub] 20230201

Tick Salivary Kunitz-Type Inhibitors: Targeting Host Hemostasis and Immunity to Mediate Successful Blood Feeding

. 2023 Jan 13 ; 24 (2) : . [epub] 20230113

Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host

. 2022 ; 12 () : 919786. [epub] 20220804

Serpins in Tick Physiology and Tick-Host Interaction

. 2022 ; 12 () : 892770. [epub] 20220519

rDromaserpin: A Novel Anti-Hemostatic Serpin, from the Salivary Glands of the Hard Tick Hyalomma dromedarii

. 2021 Dec 20 ; 13 (12) : . [epub] 20211220

Structural and biochemical characterization of the novel serpin Iripin-5 from Ixodes ricinus

. 2021 Sep 01 ; 77 (Pt 9) : 1183-1196. [epub] 20210823

Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement

. 2021 Aug 31 ; 22 (17) : . [epub] 20210831

Mialostatin, a Novel Midgut Cystatin from Ixodes ricinus Ticks: Crystal Structure and Regulation of Host Blood Digestion

. 2021 May 20 ; 22 (10) : . [epub] 20210520

Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro

. 2021 ; 12 () : 626200. [epub] 20210301

Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians

. 2021 Feb 03 ; 10 (2) : . [epub] 20210203

Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk

. 2021 Jan 17 ; 22 (2) : . [epub] 20210117

The Use of Tick Salivary Proteins as Novel Therapeutics

. 2019 ; 10 () : 812. [epub] 20190626

Comparative proteomics of the vector Dermacentor reticulatus revealed differentially regulated proteins associated with pathogen transmission in response to laboratory infection with Rickettsia slovaca

. 2019 Jun 24 ; 12 (1) : 318. [epub] 20190624

The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin

. 2019 May ; 76 (10) : 2003-2013. [epub] 20190212

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace