Comparative proteomics of the vector Dermacentor reticulatus revealed differentially regulated proteins associated with pathogen transmission in response to laboratory infection with Rickettsia slovaca

. 2019 Jun 24 ; 12 (1) : 318. [epub] 20190624

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31234913

Grantová podpora
2/0068/17 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
2/0052/19 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
26240220096 Research & Development Operational Programme funded by the European Regional Development Fund

Odkazy

PubMed 31234913
PubMed Central PMC6591964
DOI 10.1186/s13071-019-3564-y
PII: 10.1186/s13071-019-3564-y
Knihovny.cz E-zdroje

BACKGROUND: Tick-borne rickettsial diseases are caused by pathogens acquired from hard ticks. In particular, Rickettsia slovaca, a zoonotic infectious bacterium causing tick-borne lymphadenopathy (TIBOLA), is transmitted by the vectors Dermacentor spp. that can be found all over Europe. Although recent studies point out the extreme complexity of bacteria-induced effects in these blood-feeding vectors, the knowledge of individual molecules involved in the preservation and transmission of the pathogen is still limited. System biology tools, including proteomics, may contribute greatly to the understanding of pathogen-tick-host interactions. METHODS: Herein, we performed a comparative proteomics study of the tick vector Dermacentor reticulatus that was experimentally infected with the endosymbiotic bacterium R. slovaca. Rickettsia-free ticks, collected in the southern region of Slovakia, were infected with the bacterium by a capillary tube-feeding system, and the dynamics of infection was assessed by quantitative PCR method after 5, 10, 15 and 27 days. RESULTS: At the stage of controlled proliferation (at 27 dpi), 33 (from 481 profiled) differentially abundant protein spots were detected on a two-dimensional gel. From the aforementioned protein spots, 21 were successfully identified by tandem mass spectrometry. CONCLUSIONS: Although a few discovered proteins were described as having structural or housekeeping functions, the vast majority of the affected proteins were suggested to be essential for tick attachment and feeding on the host, host immune system evasion and defensive response modulation to ensure successful pathogen transmission.

Zobrazit více v PubMed

de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114. PubMed PMC

Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129(Suppl.):S3–S14. doi: 10.1017/S0031182004005967. PubMed DOI

Rubel F, Brugger K, Pfeffer M, Chitima-Dobler L, Didyk YM, Leverenz S, et al. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick Borne Dis. 2016;7:224–233. doi: 10.1016/j.ttbdis.2015.10.015. PubMed DOI

Biernat B, Karbowiak G, Werszko J, Stanczak J. Prevalence of tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks from natural and urban environment, Poland. Exp Appl Acarol. 2014;64:543–551. doi: 10.1007/s10493-014-9836-5. PubMed DOI PMC

Földvári G, Široký P, Szekeres S, Majoros G, Sprong H. Dermacentor reticulatus: a vector on the rise. Parasit Vectors. 2016;9:314. doi: 10.1186/s13071-016-1599-x. PubMed DOI PMC

Villar M, Popara M, Ayllón N, De Fernández Mera IG, Mateos-Hernández L, Galindo RC, et al. A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae. PLoS ONE. 2014;9:e89564. doi: 10.1371/journal.pone.0089564. PubMed DOI PMC

Brezina R, Řeháček J, Áč P, Majerská M. Two strains of rickettsiae of Rocky Mountain SFG recovered from D. marginatus ticks in Czechoslovakia. Results of preliminary serological identification. Acta Virol. 1969;13:142–145. PubMed

Špitalská E, Štefanidesová K, Kocianová E, Boldiš V. Rickettsia slovaca and Rickettsia raoultii in Dermacentor marginatus and Dermacentor reticulatus ticks from Slovak Republic. Exp Appl Acarol. 2012;57:189–197. doi: 10.1007/s10493-012-9539-8. PubMed DOI

Špitalská E, Sparagano O, Stanko M, Schwarzová K, Špitálsky Z, Škultéty Ľ, et al. Diversity of Coxiella-like and Francisella-like endosymbionts, and Rickettsia spp, Coxiella burnetii as pathogens in the tick populations of Slovakia, Central Europe. Ticks Tick Borne Dis. 2018;9:1207–1211. doi: 10.1016/j.ttbdis.2018.05.002. PubMed DOI

Marquez FJ, Rojas A, Ibarra V, Cantero A, Rojas J, Oteo JA, Muniain MA. Prevalence data of Rickettsia slovaca and other SFG Rickettsiae species in Dermacentor marginatus in the Southeastern Iberian Peninsula. Ann N Y Acad Sci. 2006;1078:328–330. doi: 10.1196/annals.1374.062. PubMed DOI

Parola P, Paddock CD, Raoult D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev. 2005;18:719–756. doi: 10.1128/CMR.18.4.719-756.2005. PubMed DOI PMC

Pluta S, Tewald F, Hartelt K, Oehme R, Kimmig P, Mackenstedt U. Rickettsia slovaca in Dermacentor marginatus ticks, Germany. Emerg Infect Dis. 2009;15:2077–2078. doi: 10.3201/eid1512.090843. PubMed DOI PMC

Raoult D, Lakos A, Fenollar F, Beytout J, Brouqui P, Fournier PE. Spotless rickettsiosis caused by Rickettsia slovaca and associated with Dermacentor ticks. Clin Infect Dis. 2002;34:1331–1336. doi: 10.1086/340100. PubMed DOI

Selmi M, Bertolotti L, Tomassone L, Mannelli A. Rickettsia slovaca in Dermacentor marginatus and tick-borne lymphadenopathy, Tuscany, Italy. Emerg Infect Dis. 2008;14:817–820. doi: 10.3201/eid1405.070976. PubMed DOI PMC

Řeháček J. Rickettsia slovaca, the organism and its ecology. Acta Sci Nat Acad Sci Bohem Brno. 1984;18:1–50.

Raoult D, Berbis P, Roux V, Xu W, Maurin M. A new tick-transmitted disease due to Rickettsia slovaca. Lancet. 1997;350:112–113. doi: 10.1016/S0140-6736(05)61814-4. PubMed DOI

Lakos A. Tick-borne lymphadenopathy (TIBOLA) Wien Klin Wochenschr. 2002;114:648–654. PubMed

Ibarra V, Oteo JA, Portillo A, Santibáñez S, Blanco JR, Metola L, et al. Rickettsia slovaca infection: DEBONEL/TIBOLA. Ann N Y Acad Sci. 2006;1078:206–214. doi: 10.1196/annals.1374.040. PubMed DOI

Parola P, Rovery C, Rolain JM, Brouqui P, Davoust B, Raoult D. Rickettsia slovaca and R. raoultii in tick-borne rickettsioses. Emerg Infect Dis. 2009;15:1105–1108. doi: 10.3201/eid1507.081449. PubMed DOI PMC

Oteo JA, Portillo A. Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis. 2012;3:271–278. doi: 10.1016/j.ttbdis.2012.10.035. PubMed DOI

Andreotti R, De León AAP, Dowd SE, Guerrero FD, Bendele KG, Scoles GA. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 2011;11:6. doi: 10.1186/1471-2180-11-6. PubMed DOI PMC

Hajdušek O, Šíma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, Kopácek P. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013;4:26. PubMed PMC

Jaworski DC, Zou Z, Bowen CJ, Wasala NB, Madden R, Wang Y, et al. Pyrosequencing and characterization of immune response genes from the American dog tick, Dermacentor variabilis (L.) Insect Mol Biol. 2010;19:617–630. doi: 10.1111/j.1365-2583.2010.01037.x. PubMed DOI PMC

Mudenda L, Pierlé SA, Turse JE, Scoles GA, Purvine SO, Nicora CD, et al. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol. 2014;44:1029–1037. doi: 10.1016/j.ijpara.2014.07.003. PubMed DOI

Rachinsky A, Guerrero FD, Scoles GA. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet Parasitol. 2008;152:294–313. doi: 10.1016/j.vetpar.2007.12.027. PubMed DOI

Villar M, Torina A, Nuñez Y, Zivkovic Z, Marina A, Alongi A, et al. Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Sci. 2010;8:43. doi: 10.1186/1477-5956-8-43. PubMed DOI PMC

Ayllón N, Villar M, Galindo RC, Kocan KM, Šíma R, López JA, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genetics. 2015;11:e1005120. doi: 10.1371/journal.pgen.1005120. PubMed DOI PMC

Kocan KM, de la Fuente J, Blouin EF. Advances toward understanding the molecular biology of the Anaplasma-tick interface. Front Biosci. 2008;13:7032–7045. doi: 10.2741/3208. PubMed DOI

Contreras M, Alberdi P, Fernández De Mera IG, Krull C, Nijhof A, Villar M, de la Fuente J. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front Cell Infect Microbiol. 2017;7:360. doi: 10.3389/fcimb.2017.00360. PubMed DOI PMC

Rijpkema S, Golubić D, Molkenboer M, Verbeek-de Kruif N, Schellekens J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp Appl Acarol. 1996;20:23–30. doi: 10.1007/BF00130550. PubMed DOI

Korshus JB, Munderloh UG, Bey RG, Kurtti TJ. Experimental infection of dogs with Borrelia burgdorferi sensu stricto using Ixodes scapularis ticks artificially infected by capillary feeding. Med Microbiol Immunol. 2004;193:27–34. doi: 10.1007/s00430-003-0178-x. PubMed DOI

Baldridge GD, Kurtti TJ, Burkhardt N, Baldridge AS, Nelson CM, Oliva AS, Munderloh UG. Infection of Ixodes scapularis ticks with Rickettsia monacensis expressing green fluorescent protein: a model system. J Invert Pathol. 2007;94:163–174. doi: 10.1016/j.jip.2006.10.003. PubMed DOI PMC

Boretti FS, Perreten A, Meli MM, Cattori V, Willi B, Wengi N, et al. Molecular investigation of Rickettsia helvetica infection in dogs, foxes, humans, and Ixodes ticks. Appl Environ Microbiol. 2009;75:3230–3237. doi: 10.1128/AEM.00220-09. PubMed DOI PMC

Jiang J, You BJ, Liu E, Apte A, Yarina TR, Myers TE, et al. Development of three quantitative real-time PCR assays for the detection of Rickettsia raoultii, Rickettsia slovaca, and Rickettsia aeschlimannii and their validation with ticks from the country of Georgia and the Republic of Azerbaijan. Ticks Tick Borne Dis. 2012;3:327–331. doi: 10.1016/j.ttbdis.2012.10.004. PubMed DOI

Casati S, Sager H, Gern L, Piffaretti JC. Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Ann Agric Environ Med. 2006;13:65–70. PubMed

Melničáková J, Derdáková M, Barák I. A system to simultaneously detect tick-borne pathogens based on the variability of the 16S ribosomal genes. Parasit Vectors. 2013;6:269. doi: 10.1186/1756-3305-6-269. PubMed DOI PMC

Dyballa N, Metzger S. Fast and sensitive colloidal Coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp. 2009;30:1431. PubMed PMC

Zhang TT, Zhang JC, Cui XJ, Zheng JJ, Li R, Wang F, et al. Evaluation of immune protection induced by DNA vaccines from Haemaphysalis longicornis paramyosin in rabbits. Parasit Vectors. 2017;10:325. doi: 10.1186/s13071-017-2262-x. PubMed DOI PMC

Boldiš V, Špitalská E. Dermacentor marginatus and Ixodes ricinus ticks versus L929 and Vero cell lines in Rickettsia slovaca life cycle evaluated by quantitative real time PCR. Exp Appl Acarol. 2010;50:353–359. doi: 10.1007/s10493-009-9322-7. PubMed DOI

Nakajima Y, Ishibashi J, Yukuhiro F, Asaoka A, Taylor D, Yamakawa M. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim Biophys Acta. 2003;1624:125–130. doi: 10.1016/j.bbagen.2003.10.004. PubMed DOI

Lai R, Lomas LO, Jonczy J, Turner PC, Rees HH. Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J. 2004;379:681–685. doi: 10.1042/bj20031429. PubMed DOI PMC

Rudenko N, Golovchenko M, Grubhoffer L. Gene organization of a novel defensin of Ixodes ricinus: first annotation of an intron/exon structure in a hard tick defensin gene and first evidence of the occurrence of two isoforms of one member of the arthropod defensin family. Insect Mol Biol. 2007;16:501–507. doi: 10.1111/j.1365-2583.2007.00745.x. PubMed DOI

Rudenko N, Golovchenko M, Edwards MJ, Grubhoffer L. Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J Med Entomol. 2005;42:36–41. doi: 10.1603/0022-2585(2005)042[0036:DEOIRT]2.0.CO;2. PubMed DOI

Zhou J, Liao M, Ueda M, Gong H, Xuan X, Fujisaki K. Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides. 2007;28:1304–1310. doi: 10.1016/j.peptides.2007.04.019. PubMed DOI

Wang Y, Zhu S. The defensin gene family expansion in the tick Ixodes scapularis. Dev Comp Immunol. 2011;35:1128–1134. doi: 10.1016/j.dci.2011.03.030. PubMed DOI

Wang J, Bian G, Pan W, Feng T, Dai J. Molecular characterization of a defensin gene from a hard tick, Dermacentor silvarum. Parasit Vectors. 2015;8:25. doi: 10.1186/s13071-014-0625-0. PubMed DOI PMC

Chrudimska T, Slaninova J, Rudenko N, Ruzek D, Grubhoffer L. Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus. Parasit Vectors. 2011;4:63. doi: 10.1186/1756-3305-4-63. PubMed DOI PMC

Chrudimska T, Cerovsky V, Slaninova J, Rego RO, Grubhoffer L. Defensin from the ornate sheep tick Dermacentor marginatus and its effect on Lyme borreliosis spirochetes. Dev Comp Immunol. 2014;46:165–170. doi: 10.1016/j.dci.2014.04.005. PubMed DOI

Lu X, Che Q, Lv Y, Wang M, Lu Z, Feng F, et al. A novel defensin-like peptide from salivary glands of the hard tick, Haemaphysalis longicornis. Protein Sci. 2010;19:392–397. doi: 10.1002/pro.474. PubMed DOI PMC

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. doi: 10.1038/415389a. PubMed DOI

Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae) BMC Genomics. 2008;9:552. doi: 10.1186/1471-2164-9-552. PubMed DOI PMC

Liu XY, de la Fuente J, Cote M, Galindo RC, Moutailler S, Vayssier-Taussat M, et al. IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. PLoS Negl Trop Dis. 2014;8:e2993. doi: 10.1371/journal.pntd.0002993. PubMed DOI PMC

Chmelař J, Kotál J, Langhansová H, Kotsyfakis M. Protease inhibitors in tick saliva: The role of serpins and cystatins in tick-host-pathogen interaction. Front Cell Infect Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC

Grabowski JM, Perera R, Roumani AM, Hedrick VE, Inerowicz HD, Hill CA, Kuhn RJ. Changes in the proteome of langat-infected Ixodes scapularis ISE6 cells: metabolic pathways associated with flavivirus infection. PLoS Negl Trop Dis. 2016;10:e0004180. doi: 10.1371/journal.pntd.0004180. PubMed DOI PMC

Macaluso KR, Mulenga A, Simser JA, Azad AF. Differential expression of genes in uninfected and Rickettsia-infected Dermacentor variabilis ticks as assessed by differential-display PCR. Infect Immun. 2003;71:6165–6170. doi: 10.1128/IAI.71.11.6165-6170.2003. PubMed DOI PMC

Leal BF, Alzugaray MF, Seixas A, Da Silva Vaz I, Ferreira CAS. Characterization of a glycine-rich protein from Rhipicephalus microplus: tissue expression, gene silencing and immune recognition. Parasitology. 2017;145:927–938. doi: 10.1017/S0031182017001998. PubMed DOI

You MJ. Immunization of mice with recombinant P27/30 protein confers protection against hard tick Haemaphysalis longicornis (Acari: Ixodidae) infestation. J Vet Sci. 2005;6:47–51. doi: 10.4142/jvs.2005.6.1.47. PubMed DOI

Leavis PC, Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem. 1984;16:235–305. doi: 10.3109/10409238409108717. PubMed DOI

You M, Xuan X, Tsuji N, Kamio T, Igarashi I, Nagasawa H, et al. Molecular characterization of a troponin I-like protein from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol. 2001;32:67–73. doi: 10.1016/S0965-1748(01)00081-9. PubMed DOI

Fukumoto S, Sakaguchi T, You M, Xuan X, Fujisaki K. Tick troponin I-like molecule is a potent inhibitor for angiogenesis. Microvasc Res. 2006;71:218–221. doi: 10.1016/j.mvr.2006.02.003. PubMed DOI

Perner J, Kotál J, Hatalová T, Urbanová V, Bartošová-Sojková P, Brophy PM, Kopáček P. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem Mol Biol. 2018;95:44–54. doi: 10.1016/j.ibmb.2018.02.002. PubMed DOI

Busby AT, Ayllón N, Kocan KM, Blouin EF, de la Fuente G, Galindo RC, et al. Expression of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behavior in the tick, Ixodes scapularis. Med Vet Entomol. 2012;26:92–102. doi: 10.1111/j.1365-2915.2011.00973.x. PubMed DOI

Lewis LA, Radulović TM, Kim TK, Porter LM, Mulenga A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis. 2015;6:424–434. doi: 10.1016/j.ttbdis.2015.03.012. PubMed DOI PMC

Kim TK, Tirloni L, Pinto AFM, Moresco J, Yates JR, III, da Silva Vaz I, Jr Mulenga A. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl Trop Dis. 2016;10:e0004323. doi: 10.1371/journal.pntd.0004323. PubMed DOI PMC

Rachinsky A, Guerrero FD, Scoles GA. Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol. 2007;37:1291–1308. doi: 10.1016/j.ibmb.2007.08.001. PubMed DOI

Horáčková J, Rudenko N, Golovchenko M, Havlíková S, Grubhoffer L. IrML– a gene encoding a new member of the ML protein family from the hard tick, Ixodes ricinus. J Vector Ecol. 2010;35:410–418. doi: 10.1111/j.1948-7134.2010.00100.x. PubMed DOI

Thepparit C, Bourchookarn A, Petchampai N, Barker SA, Macaluso KR. Interaction of Rickettsia felis with histone H2B facilitates the infection of a tick cell line. Microbiology. 2010;156:2855–2863. doi: 10.1099/mic.0.041400-0. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...