Comparative proteomics of the vector Dermacentor reticulatus revealed differentially regulated proteins associated with pathogen transmission in response to laboratory infection with Rickettsia slovaca
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
2/0068/17
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
2/0052/19
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
26240220096
Research & Development Operational Programme funded by the European Regional Development Fund
PubMed
31234913
PubMed Central
PMC6591964
DOI
10.1186/s13071-019-3564-y
PII: 10.1186/s13071-019-3564-y
Knihovny.cz E-zdroje
- Klíčová slova
- Bacterial transmission, Blood-feeding, Comparative proteomics, Immune modulation, Protective antigens, TIBOLA, Tick vector,
- MeSH
- Dermacentor genetika mikrobiologie MeSH
- DNA bakterií MeSH
- infekce přenášené vektorem MeSH
- nemoci přenášené klíšťaty mikrobiologie přenos MeSH
- polymerázová řetězová reakce MeSH
- proteomika * MeSH
- Rickettsia genetika patogenita MeSH
- rickettsiové infekce přenos MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Slovenská republika MeSH
- Názvy látek
- DNA bakterií MeSH
BACKGROUND: Tick-borne rickettsial diseases are caused by pathogens acquired from hard ticks. In particular, Rickettsia slovaca, a zoonotic infectious bacterium causing tick-borne lymphadenopathy (TIBOLA), is transmitted by the vectors Dermacentor spp. that can be found all over Europe. Although recent studies point out the extreme complexity of bacteria-induced effects in these blood-feeding vectors, the knowledge of individual molecules involved in the preservation and transmission of the pathogen is still limited. System biology tools, including proteomics, may contribute greatly to the understanding of pathogen-tick-host interactions. METHODS: Herein, we performed a comparative proteomics study of the tick vector Dermacentor reticulatus that was experimentally infected with the endosymbiotic bacterium R. slovaca. Rickettsia-free ticks, collected in the southern region of Slovakia, were infected with the bacterium by a capillary tube-feeding system, and the dynamics of infection was assessed by quantitative PCR method after 5, 10, 15 and 27 days. RESULTS: At the stage of controlled proliferation (at 27 dpi), 33 (from 481 profiled) differentially abundant protein spots were detected on a two-dimensional gel. From the aforementioned protein spots, 21 were successfully identified by tandem mass spectrometry. CONCLUSIONS: Although a few discovered proteins were described as having structural or housekeeping functions, the vast majority of the affected proteins were suggested to be essential for tick attachment and feeding on the host, host immune system evasion and defensive response modulation to ensure successful pathogen transmission.
Zobrazit více v PubMed
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114. PubMed PMC
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129(Suppl.):S3–S14. doi: 10.1017/S0031182004005967. PubMed DOI
Rubel F, Brugger K, Pfeffer M, Chitima-Dobler L, Didyk YM, Leverenz S, et al. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick Borne Dis. 2016;7:224–233. doi: 10.1016/j.ttbdis.2015.10.015. PubMed DOI
Biernat B, Karbowiak G, Werszko J, Stanczak J. Prevalence of tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks from natural and urban environment, Poland. Exp Appl Acarol. 2014;64:543–551. doi: 10.1007/s10493-014-9836-5. PubMed DOI PMC
Földvári G, Široký P, Szekeres S, Majoros G, Sprong H. Dermacentor reticulatus: a vector on the rise. Parasit Vectors. 2016;9:314. doi: 10.1186/s13071-016-1599-x. PubMed DOI PMC
Villar M, Popara M, Ayllón N, De Fernández Mera IG, Mateos-Hernández L, Galindo RC, et al. A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae. PLoS ONE. 2014;9:e89564. doi: 10.1371/journal.pone.0089564. PubMed DOI PMC
Brezina R, Řeháček J, Áč P, Majerská M. Two strains of rickettsiae of Rocky Mountain SFG recovered from D. marginatus ticks in Czechoslovakia. Results of preliminary serological identification. Acta Virol. 1969;13:142–145. PubMed
Špitalská E, Štefanidesová K, Kocianová E, Boldiš V. Rickettsia slovaca and Rickettsia raoultii in Dermacentor marginatus and Dermacentor reticulatus ticks from Slovak Republic. Exp Appl Acarol. 2012;57:189–197. doi: 10.1007/s10493-012-9539-8. PubMed DOI
Špitalská E, Sparagano O, Stanko M, Schwarzová K, Špitálsky Z, Škultéty Ľ, et al. Diversity of Coxiella-like and Francisella-like endosymbionts, and Rickettsia spp, Coxiella burnetii as pathogens in the tick populations of Slovakia, Central Europe. Ticks Tick Borne Dis. 2018;9:1207–1211. doi: 10.1016/j.ttbdis.2018.05.002. PubMed DOI
Marquez FJ, Rojas A, Ibarra V, Cantero A, Rojas J, Oteo JA, Muniain MA. Prevalence data of Rickettsia slovaca and other SFG Rickettsiae species in Dermacentor marginatus in the Southeastern Iberian Peninsula. Ann N Y Acad Sci. 2006;1078:328–330. doi: 10.1196/annals.1374.062. PubMed DOI
Parola P, Paddock CD, Raoult D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev. 2005;18:719–756. doi: 10.1128/CMR.18.4.719-756.2005. PubMed DOI PMC
Pluta S, Tewald F, Hartelt K, Oehme R, Kimmig P, Mackenstedt U. Rickettsia slovaca in Dermacentor marginatus ticks, Germany. Emerg Infect Dis. 2009;15:2077–2078. doi: 10.3201/eid1512.090843. PubMed DOI PMC
Raoult D, Lakos A, Fenollar F, Beytout J, Brouqui P, Fournier PE. Spotless rickettsiosis caused by Rickettsia slovaca and associated with Dermacentor ticks. Clin Infect Dis. 2002;34:1331–1336. doi: 10.1086/340100. PubMed DOI
Selmi M, Bertolotti L, Tomassone L, Mannelli A. Rickettsia slovaca in Dermacentor marginatus and tick-borne lymphadenopathy, Tuscany, Italy. Emerg Infect Dis. 2008;14:817–820. doi: 10.3201/eid1405.070976. PubMed DOI PMC
Řeháček J. Rickettsia slovaca, the organism and its ecology. Acta Sci Nat Acad Sci Bohem Brno. 1984;18:1–50.
Raoult D, Berbis P, Roux V, Xu W, Maurin M. A new tick-transmitted disease due to Rickettsia slovaca. Lancet. 1997;350:112–113. doi: 10.1016/S0140-6736(05)61814-4. PubMed DOI
Lakos A. Tick-borne lymphadenopathy (TIBOLA) Wien Klin Wochenschr. 2002;114:648–654. PubMed
Ibarra V, Oteo JA, Portillo A, Santibáñez S, Blanco JR, Metola L, et al. Rickettsia slovaca infection: DEBONEL/TIBOLA. Ann N Y Acad Sci. 2006;1078:206–214. doi: 10.1196/annals.1374.040. PubMed DOI
Parola P, Rovery C, Rolain JM, Brouqui P, Davoust B, Raoult D. Rickettsia slovaca and R. raoultii in tick-borne rickettsioses. Emerg Infect Dis. 2009;15:1105–1108. doi: 10.3201/eid1507.081449. PubMed DOI PMC
Oteo JA, Portillo A. Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis. 2012;3:271–278. doi: 10.1016/j.ttbdis.2012.10.035. PubMed DOI
Andreotti R, De León AAP, Dowd SE, Guerrero FD, Bendele KG, Scoles GA. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 2011;11:6. doi: 10.1186/1471-2180-11-6. PubMed DOI PMC
Hajdušek O, Šíma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, Kopácek P. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013;4:26. PubMed PMC
Jaworski DC, Zou Z, Bowen CJ, Wasala NB, Madden R, Wang Y, et al. Pyrosequencing and characterization of immune response genes from the American dog tick, Dermacentor variabilis (L.) Insect Mol Biol. 2010;19:617–630. doi: 10.1111/j.1365-2583.2010.01037.x. PubMed DOI PMC
Mudenda L, Pierlé SA, Turse JE, Scoles GA, Purvine SO, Nicora CD, et al. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol. 2014;44:1029–1037. doi: 10.1016/j.ijpara.2014.07.003. PubMed DOI
Rachinsky A, Guerrero FD, Scoles GA. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet Parasitol. 2008;152:294–313. doi: 10.1016/j.vetpar.2007.12.027. PubMed DOI
Villar M, Torina A, Nuñez Y, Zivkovic Z, Marina A, Alongi A, et al. Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Sci. 2010;8:43. doi: 10.1186/1477-5956-8-43. PubMed DOI PMC
Ayllón N, Villar M, Galindo RC, Kocan KM, Šíma R, López JA, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genetics. 2015;11:e1005120. doi: 10.1371/journal.pgen.1005120. PubMed DOI PMC
Kocan KM, de la Fuente J, Blouin EF. Advances toward understanding the molecular biology of the Anaplasma-tick interface. Front Biosci. 2008;13:7032–7045. doi: 10.2741/3208. PubMed DOI
Contreras M, Alberdi P, Fernández De Mera IG, Krull C, Nijhof A, Villar M, de la Fuente J. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front Cell Infect Microbiol. 2017;7:360. doi: 10.3389/fcimb.2017.00360. PubMed DOI PMC
Rijpkema S, Golubić D, Molkenboer M, Verbeek-de Kruif N, Schellekens J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp Appl Acarol. 1996;20:23–30. doi: 10.1007/BF00130550. PubMed DOI
Korshus JB, Munderloh UG, Bey RG, Kurtti TJ. Experimental infection of dogs with Borrelia burgdorferi sensu stricto using Ixodes scapularis ticks artificially infected by capillary feeding. Med Microbiol Immunol. 2004;193:27–34. doi: 10.1007/s00430-003-0178-x. PubMed DOI
Baldridge GD, Kurtti TJ, Burkhardt N, Baldridge AS, Nelson CM, Oliva AS, Munderloh UG. Infection of Ixodes scapularis ticks with Rickettsia monacensis expressing green fluorescent protein: a model system. J Invert Pathol. 2007;94:163–174. doi: 10.1016/j.jip.2006.10.003. PubMed DOI PMC
Boretti FS, Perreten A, Meli MM, Cattori V, Willi B, Wengi N, et al. Molecular investigation of Rickettsia helvetica infection in dogs, foxes, humans, and Ixodes ticks. Appl Environ Microbiol. 2009;75:3230–3237. doi: 10.1128/AEM.00220-09. PubMed DOI PMC
Jiang J, You BJ, Liu E, Apte A, Yarina TR, Myers TE, et al. Development of three quantitative real-time PCR assays for the detection of Rickettsia raoultii, Rickettsia slovaca, and Rickettsia aeschlimannii and their validation with ticks from the country of Georgia and the Republic of Azerbaijan. Ticks Tick Borne Dis. 2012;3:327–331. doi: 10.1016/j.ttbdis.2012.10.004. PubMed DOI
Casati S, Sager H, Gern L, Piffaretti JC. Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Ann Agric Environ Med. 2006;13:65–70. PubMed
Melničáková J, Derdáková M, Barák I. A system to simultaneously detect tick-borne pathogens based on the variability of the 16S ribosomal genes. Parasit Vectors. 2013;6:269. doi: 10.1186/1756-3305-6-269. PubMed DOI PMC
Dyballa N, Metzger S. Fast and sensitive colloidal Coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp. 2009;30:1431. PubMed PMC
Zhang TT, Zhang JC, Cui XJ, Zheng JJ, Li R, Wang F, et al. Evaluation of immune protection induced by DNA vaccines from Haemaphysalis longicornis paramyosin in rabbits. Parasit Vectors. 2017;10:325. doi: 10.1186/s13071-017-2262-x. PubMed DOI PMC
Boldiš V, Špitalská E. Dermacentor marginatus and Ixodes ricinus ticks versus L929 and Vero cell lines in Rickettsia slovaca life cycle evaluated by quantitative real time PCR. Exp Appl Acarol. 2010;50:353–359. doi: 10.1007/s10493-009-9322-7. PubMed DOI
Nakajima Y, Ishibashi J, Yukuhiro F, Asaoka A, Taylor D, Yamakawa M. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim Biophys Acta. 2003;1624:125–130. doi: 10.1016/j.bbagen.2003.10.004. PubMed DOI
Lai R, Lomas LO, Jonczy J, Turner PC, Rees HH. Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J. 2004;379:681–685. doi: 10.1042/bj20031429. PubMed DOI PMC
Rudenko N, Golovchenko M, Grubhoffer L. Gene organization of a novel defensin of Ixodes ricinus: first annotation of an intron/exon structure in a hard tick defensin gene and first evidence of the occurrence of two isoforms of one member of the arthropod defensin family. Insect Mol Biol. 2007;16:501–507. doi: 10.1111/j.1365-2583.2007.00745.x. PubMed DOI
Rudenko N, Golovchenko M, Edwards MJ, Grubhoffer L. Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J Med Entomol. 2005;42:36–41. doi: 10.1603/0022-2585(2005)042[0036:DEOIRT]2.0.CO;2. PubMed DOI
Zhou J, Liao M, Ueda M, Gong H, Xuan X, Fujisaki K. Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides. 2007;28:1304–1310. doi: 10.1016/j.peptides.2007.04.019. PubMed DOI
Wang Y, Zhu S. The defensin gene family expansion in the tick Ixodes scapularis. Dev Comp Immunol. 2011;35:1128–1134. doi: 10.1016/j.dci.2011.03.030. PubMed DOI
Wang J, Bian G, Pan W, Feng T, Dai J. Molecular characterization of a defensin gene from a hard tick, Dermacentor silvarum. Parasit Vectors. 2015;8:25. doi: 10.1186/s13071-014-0625-0. PubMed DOI PMC
Chrudimska T, Slaninova J, Rudenko N, Ruzek D, Grubhoffer L. Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus. Parasit Vectors. 2011;4:63. doi: 10.1186/1756-3305-4-63. PubMed DOI PMC
Chrudimska T, Cerovsky V, Slaninova J, Rego RO, Grubhoffer L. Defensin from the ornate sheep tick Dermacentor marginatus and its effect on Lyme borreliosis spirochetes. Dev Comp Immunol. 2014;46:165–170. doi: 10.1016/j.dci.2014.04.005. PubMed DOI
Lu X, Che Q, Lv Y, Wang M, Lu Z, Feng F, et al. A novel defensin-like peptide from salivary glands of the hard tick, Haemaphysalis longicornis. Protein Sci. 2010;19:392–397. doi: 10.1002/pro.474. PubMed DOI PMC
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. doi: 10.1038/415389a. PubMed DOI
Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae) BMC Genomics. 2008;9:552. doi: 10.1186/1471-2164-9-552. PubMed DOI PMC
Liu XY, de la Fuente J, Cote M, Galindo RC, Moutailler S, Vayssier-Taussat M, et al. IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. PLoS Negl Trop Dis. 2014;8:e2993. doi: 10.1371/journal.pntd.0002993. PubMed DOI PMC
Chmelař J, Kotál J, Langhansová H, Kotsyfakis M. Protease inhibitors in tick saliva: The role of serpins and cystatins in tick-host-pathogen interaction. Front Cell Infect Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC
Grabowski JM, Perera R, Roumani AM, Hedrick VE, Inerowicz HD, Hill CA, Kuhn RJ. Changes in the proteome of langat-infected Ixodes scapularis ISE6 cells: metabolic pathways associated with flavivirus infection. PLoS Negl Trop Dis. 2016;10:e0004180. doi: 10.1371/journal.pntd.0004180. PubMed DOI PMC
Macaluso KR, Mulenga A, Simser JA, Azad AF. Differential expression of genes in uninfected and Rickettsia-infected Dermacentor variabilis ticks as assessed by differential-display PCR. Infect Immun. 2003;71:6165–6170. doi: 10.1128/IAI.71.11.6165-6170.2003. PubMed DOI PMC
Leal BF, Alzugaray MF, Seixas A, Da Silva Vaz I, Ferreira CAS. Characterization of a glycine-rich protein from Rhipicephalus microplus: tissue expression, gene silencing and immune recognition. Parasitology. 2017;145:927–938. doi: 10.1017/S0031182017001998. PubMed DOI
You MJ. Immunization of mice with recombinant P27/30 protein confers protection against hard tick Haemaphysalis longicornis (Acari: Ixodidae) infestation. J Vet Sci. 2005;6:47–51. doi: 10.4142/jvs.2005.6.1.47. PubMed DOI
Leavis PC, Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem. 1984;16:235–305. doi: 10.3109/10409238409108717. PubMed DOI
You M, Xuan X, Tsuji N, Kamio T, Igarashi I, Nagasawa H, et al. Molecular characterization of a troponin I-like protein from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol. 2001;32:67–73. doi: 10.1016/S0965-1748(01)00081-9. PubMed DOI
Fukumoto S, Sakaguchi T, You M, Xuan X, Fujisaki K. Tick troponin I-like molecule is a potent inhibitor for angiogenesis. Microvasc Res. 2006;71:218–221. doi: 10.1016/j.mvr.2006.02.003. PubMed DOI
Perner J, Kotál J, Hatalová T, Urbanová V, Bartošová-Sojková P, Brophy PM, Kopáček P. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem Mol Biol. 2018;95:44–54. doi: 10.1016/j.ibmb.2018.02.002. PubMed DOI
Busby AT, Ayllón N, Kocan KM, Blouin EF, de la Fuente G, Galindo RC, et al. Expression of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behavior in the tick, Ixodes scapularis. Med Vet Entomol. 2012;26:92–102. doi: 10.1111/j.1365-2915.2011.00973.x. PubMed DOI
Lewis LA, Radulović TM, Kim TK, Porter LM, Mulenga A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis. 2015;6:424–434. doi: 10.1016/j.ttbdis.2015.03.012. PubMed DOI PMC
Kim TK, Tirloni L, Pinto AFM, Moresco J, Yates JR, III, da Silva Vaz I, Jr Mulenga A. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl Trop Dis. 2016;10:e0004323. doi: 10.1371/journal.pntd.0004323. PubMed DOI PMC
Rachinsky A, Guerrero FD, Scoles GA. Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol. 2007;37:1291–1308. doi: 10.1016/j.ibmb.2007.08.001. PubMed DOI
Horáčková J, Rudenko N, Golovchenko M, Havlíková S, Grubhoffer L. IrML– a gene encoding a new member of the ML protein family from the hard tick, Ixodes ricinus. J Vector Ecol. 2010;35:410–418. doi: 10.1111/j.1948-7134.2010.00100.x. PubMed DOI
Thepparit C, Bourchookarn A, Petchampai N, Barker SA, Macaluso KR. Interaction of Rickettsia felis with histone H2B facilitates the infection of a tick cell line. Microbiology. 2010;156:2855–2863. doi: 10.1099/mic.0.041400-0. PubMed DOI PMC