Interaction of the tick immune system with transmitted pathogens
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23875177
PubMed Central
PMC3712896
DOI
10.3389/fcimb.2013.00026
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma, Babesia, Borrelia, antimicrobial peptides, innate immunity, phagocytosis, tick, tick-borne diseases,
- MeSH
- Anaplasma imunologie patogenita MeSH
- arachnida jako vektory imunologie mikrobiologie parazitologie MeSH
- Babesia imunologie patogenita MeSH
- Borrelia imunologie patogenita MeSH
- interakce hostitele a patogenu * MeSH
- klíšťata imunologie mikrobiologie parazitologie MeSH
- přirozená imunita * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Ticks are hematophagous arachnids transmitting a wide variety of pathogens including viruses, bacteria, and protozoans to their vertebrate hosts. The tick vector competence has to be intimately linked to the ability of transmitted pathogens to evade tick defense mechanisms encountered on their route through the tick body comprising midgut, hemolymph, salivary glands or ovaries. Tick innate immunity is, like in other invertebrates, based on an orchestrated action of humoral and cellular immune responses. The direct antimicrobial defense in ticks is accomplished by a variety of small molecules such as defensins, lysozymes or by tick-specific antimicrobial compounds such as microplusin/hebraein or 5.3-kDa family proteins. Phagocytosis of the invading microbes by tick hemocytes is likely mediated by the primordial complement-like system composed of thioester-containing proteins, fibrinogen-related lectins and convertase-like factors. Moreover, an important role in survival of the ingested microbes seems to be played by host proteins and redox balance maintenance in the tick midgut. Here, we summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens, represented by spirochetes (Borrelia), rickettsiae (Anaplasma), and protozoans (Babesia). Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens.
Zobrazit více v PubMed
Allsopp M. T., Allsopp B. A. (2006). Molecular sequence evidence for the reclassification of some PubMed DOI
Anderson J. M., Sonenshine D. E., Valenzuela J. G. (2008). Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, PubMed DOI PMC
Andreotti R., Perez De Leon A. A., Dowd S. E., Guerrero F. D., Bendele K. G., Scoles G. A. (2011). Assessment of bacterial diversity in the cattle tick PubMed DOI PMC
Antunes S., Galindo R. C., Almazan C., Rudenko N., Golovchenko M., Grubhoffer L., et al. (2012). Functional genomics studies of PubMed DOI
Ariki S., Takahara S., Shibata T., Fukuoka T., Ozaki A., Endo Y., et al. (2008). Factor C acts as a lipopolysaccharide-responsive C3 convertase in horseshoe crab complement activation. J. Immunol. 181, 7994–8001 PubMed
Ayllón N., Villar M., Busby A. T., Kocan K. M., Blouin E. F., Bonzón-Kulichenko E., et al. (2013). PubMed DOI PMC
Bacon R. M., Kugeler K. J., Mead P. S. (2008). Surveillance for Lyme disease–United States, 1992-2006. MMWR. Surveill. Summ. 57, 1–9 PubMed
Balashov I. U. S. (1972). A Translation of Bloodsucking Ticks (Ixodoidea)–Vectors of Diseases of Man and Animals. College Park, MD: Entomological Society of America
Blandin S., Shiao S. H., Moita L. F., Janse C. J., Waters A. P., Kafatos F. C., et al. (2004). Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector PubMed DOI
Blandin S. A., Marois E., Levashina E. A. (2008). Antimalarial responses in PubMed DOI
Boldbaatar D., Battsetseg B., Matsuo T., Hatta T., Umemiya-Shirafuji R., Xuan X., et al. (2008). Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of PubMed DOI
Borovickova B., Hypsa V. (2005). Ontogeny of tick hemocytes: a comparative analysis of PubMed DOI
Buresova V., Franta Z., Kopacek P. (2006). A comparison of PubMed DOI
Buresova V., Hajdusek O., Franta Z., Loosova G., Grunclova L., Levashina E. A., et al. (2011). Functional genomics of tick thioester-containing proteins reveal the ancient origin of the complement system. J. Innate. Immun. 3, 623–630 10.1159/000328851 PubMed DOI
Buresova V., Hajdusek O., Franta Z., Sojka D., Kopacek P. (2009). IrAM-An alpha2-macroglobulin from the hard tick PubMed DOI
Burgdorfer W., Hayes S. F., Corwin D. (1989). Pathophysiology of the Lyme disease spirochete, PubMed DOI
Busby A. T., Ayllon N., Kocan K. M., Blouin E. F., De La Fuente G., Galindo R. C., et al. (2012). Ex‘ion of heat shock proteins and subolesin affects stress responses, PubMed DOI
Carpi G., Cagnacci F., Wittekindt N. E., Zhao F., Qi J., Tomsho L. P., et al. (2011). Metagenomic profile of the bacterial communities associated with PubMed DOI PMC
Cen-Aguilar J. F., Rodriguez-Vivas R. I., Dominguez-Alpizar J. L., Wagner G. G. (1998). Studies on the effect of infection by PubMed DOI
Ceraul S. M., Sonenshine D. E., Hynes W. L. (2002). Resistance of the tick PubMed DOI
Chauvin A., Moreau E., Bonnet S., Plantard O., Malandrin L. (2009). PubMed DOI PMC
Chmelar J., Calvo E., Pedra J. H., Francischetti I. M., Kotsyfakis M. (2012). Tick salivary secretion as a source of antihemostatics. J. Proteomics 75, 3842–3854 10.1016/j.jprot.2012.04.026 PubMed DOI PMC
Chrudimska T., Chrudimsky T., Golovchenko M., Rudenko N., Grubhoffer L. (2010). New defensins from hard and soft ticks: similarities, differences, and phylogenetic analyses. Vet. Parasitol. 167, 298–303 10.1016/j.vetpar.2009.09.032 PubMed DOI
Cirimotich C. M., Dong Y., Clayton A. M., Sandiford S. L., Souza-Neto J. A., Mulenga M., et al. (2011). Natural microbe-mediated refractoriness to PubMed DOI PMC
Citelli M., Lara F. A., Da Silva Vaz I., Jr., Oliveira P. L. (2007). Oxidative stress impairs heme detoxification in the midgut of the cattle tick, PubMed DOI
Coleman J. L., Gebbia J. A., Piesman J., Degen J. L., Bugge T. H., Benach J. L. (1997). Plasminogen is required for efficient dissemination of PubMed DOI
Coleman J. L., Sellati T. J., Testa J. E., Kew R. R., Furie M. B., Benach J. L. (1995). PubMed PMC
Cornillot E., Hadj-Kaddour K., Dassouli A., Noel B., Ranwez V., Vacherie B., et al. (2012). Sequencing of the smallest Apicomplexan genome from the human pathogen PubMed DOI PMC
Cruz C. E., Fogaca A. C., Nakayasu E. S., Angeli C. B., Belmonte R., Almeida I. C., et al. (2010). Characterization of proteinases from the midgut of PubMed DOI PMC
Dai J., Narasimhan S., Zhang L., Liu L., Wang P., Fikrig E. (2010). Tick histamine release factor is critical for PubMed DOI PMC
Dai J., Wang P., Adusumilli S., Booth C. J., Narasimhan S., Anguita J., et al. (2009). Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe 6, 482–492 10.1016/j.chom.2009.10.006 PubMed DOI PMC
Das S., Banerjee G., Deponte K., Marcantonio N., Kantor F. S., Fikrig E. (2001). Salp25D, an PubMed DOI
De La Fuente J. (2012). Vaccines for vector control: exciting possibilities for the future. Vet. J. 194, 139–140 10.1016/j.tvjl.2012.07.029 PubMed DOI
De La Fuente J., Almazan C., Blas-Machado U., Naranjo V., Mangold A. J., Blouin E. F., et al. (2006). The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. Vaccine 24, 4082–4095 10.1016/j.vaccine.2006.02.046 PubMed DOI
De La Fuente J., Blouin E. F., Manzano-Roman R., Naranjo V., Almazan C., Perez De La Lastra J. M., et al. (2007a). Functional genomic studies of tick cells in response to infection with the cattle pathogen, PubMed DOI
De La Fuente J., Kocan K. M., Almazan C., Blouin E. F. (2007b). RNA interference for the study and genetic manipulation of ticks. Trends Parasitol. 23, 427–433 10.1016/j.pt.2007.07.002 PubMed DOI
De La Fuente J., Blouin E. F., Manzano-Roman R., Naranjo V., Almazan C., Perez De La Lastra J. M., et al. (2008). Differential expression of the tick protective antigen subolesin in PubMed DOI
De La Fuente J., Moreno-Cid J. A., Canales M., Villar M., De La Lastra J. M., Kocan K. M., et al. (2011). Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet. Parasitol. 181, 17–22 10.1016/j.vetpar.2011.04.018 PubMed DOI
De Silva A. M., Fikrig E. (1995). Growth and migration of PubMed
De Silva A. M., Telford S. R., 3rd., Brunet L. R., Barthold S. W., Fikrig E. (1996). PubMed DOI PMC
De Taeye S. W., Kreuk L., Van Dam A. P., Hovius J. W., Schuijt T. J. (2013). Complement evasion by PubMed DOI
Dumler J. S., Barbet A. F., Bekker C. P., Dasch G. A., Palmer G. H., Ray S. C., et al. (2001). Reorganization of genera in the families PubMed DOI
Dunham-Ems S. M., Caimano M. J., Pal U., Wolgemuth C. W., Eggers C. H., Balic A., et al. (2009). Live imaging reveals a biphasic mode of dissemination of PubMed DOI PMC
Eggenberger L. R., Lamoreaux W. J., Coons L. B. (1990). Hemocytic encapsulation of implants in the tick PubMed DOI
Ferrandon D., Imler J. L., Hetru C., Hoffmann J. A. (2007). The PubMed DOI
Florin-Christensen M., Schnittger L. (2009). Piroplasmids and ticks: a long-lasting intimate relationship. Front. Biosci. 14, 3064–3073 10.2741/3435 PubMed DOI
Fogaca A. C., Almeida I. C., Eberlin M. N., Tanaka A. S., Bulet P., Daffre S. (2006). Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick PubMed DOI
Fogaca A. C., Da Silva P. I., Jr., Miranda M. T., Bianchi A. G., Miranda A., Ribolla P. E., et al. (1999). Antimicrobial activity of a bovine hemoglobin fragment in the tick PubMed DOI
Fogaca A. C., Lorenzini D. M., Kaku L. M., Esteves E., Bulet P., Daffre S. (2004). Cysteine-rich antimicrobial peptides of the cattle tick PubMed DOI
Francischetti I. M., Sa-Nunes A., Mans B. J., Santos I. M., Ribeiro J. M. (2009). The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088 10.2741/3363 PubMed DOI PMC
Galindo R. C., Doncel-Perez E., Zivkovic Z., Naranjo V., Gortazar C., Mangold A. J., et al. (2009). Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev. Comp. Immunol. 33, 612–617 10.1016/j.dci.2008.11.002 PubMed DOI
Garcia S., Billecocq A., Crance J. M., Prins M., Garin D., Bouloy M. (2006). Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J. Gen. Virol. 87, 1985–1989 10.1099/vir.0.81827-0 PubMed DOI
Gokudan S., Muta T., Tsuda R., Koori K., Kawahara T., Seki N., et al. (1999). Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc. Natl. Acad. Sci. U.S.A. 96, 10086–10091 10.1073/pnas.96.18.10086 PubMed DOI PMC
Grubhoffer L., Rego R. O. M., Hajdušek O., Hypša V., Kováø V., Rudenko N., et al. (2008). Tick lectins and fibrinogen-related proteins, in Ticks: Biology, Disease and Control, eds Bowman A. S., Nuttall P. A. (Cambridge; New York: Cambridge University Press; ), 127–142 10.1017/CBO9780511551802.007 DOI
Grunclova L., Fouquier H., Hypsa V., Kopacek P. (2003). Lysozyme from the gut of the soft tick PubMed DOI
Hanington P. C., Zhang S. M. (2011). The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J. Innate. Immun. 3, 17–27 10.1159/000321882 PubMed DOI PMC
Heekin A. M., Guerrero F. D., Bendele K. G., Saldivar L., Scoles G. A., Gondro C., et al. (2012). Analysis of PubMed DOI PMC
Hillyer J. F. (2010). Mosquito immunity. Adv. Exp. Med. Biol. 708, 218–238 10.1007/978-1-4419-8059-5_12 PubMed DOI
Hojgaard A., Eisen R. J., Piesman J. (2008). Transmission dynamics of PubMed DOI
Horn M., Nussbaumerova M., Sanda M., Kovarova Z., Srba J., Franta Z., et al. (2009). Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 16, 1053–1063 10.1016/j.chembiol.2009.09.009 PubMed DOI PMC
Hynes W. L., Ceraul S. M., Todd S. M., Seguin K. C., Sonenshine D. E. (2005). A defensin-like gene expressed in the black-legged tick, PubMed DOI
Hynes W. L., Stokes M. M., Hensley S. M., Todd S. M., Sonenshine D. E. (2008). Using RNA interference to determine the role of varisin in the innate immune system of the hard tick PubMed DOI
Inoue N., Hanada K., Tsuji N., Igarashi I., Nagasawa H., Mikami T., et al. (2001). Characterization of phagocytic hemocytes in PubMed DOI
Iwanaga S., Lee B. L. (2005). Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 38, 128–150 10.5483/BMBRep.2005.38.2.128 PubMed DOI
Jaworski D. C., Zou Z., Bowen C. J., Wasala N. B., Madden R., Wang Y., et al. (2010). Pyrosequencing and characterization of immune response genes from the American dog tick, PubMed DOI PMC
Johns R., Ohnishi J., Broadwater A., Sonenshine D. E., De Silva A. M., Hynes W. L. (2001a). Contrasts in tick innate immune responses to PubMed DOI
Johns R., Sonenshine D. E., Hynes W. L. (2001b). Identification of a defensin from the hemolymph of the American dog tick, PubMed DOI
Johns R., Sonenshine D. E., Hynes W. L. (2000). Response of the tick PubMed DOI
Jongejan F., Uilenberg G. (2004). The global importance of ticks. Parasitology 129Suppl. S3–S14 10.1017/S0031182004005967 PubMed DOI
Karim S., Singh P., Ribeiro J. M. (2011). A deep insight into the sialotranscriptome of the gulf coast tick, PubMed DOI PMC
Kaufman W. R., Phillips J. E. (1973). Ion and Water-Balance in Ixodid Tick
Kawabata S. (2010). Immunocompetent molecules and their response network in horseshoe crabs. Adv. Exp. Med. Biol. 708, 122–136 10.1007/978-1-4419-8059-5_7 PubMed DOI
Kawabata S., Tsuda R. (2002). Molecular basis of non-self recognition by the horseshoe crab tachylectins. Biochim. Biophys. Acta 1572, 414–421 10.1016/S0304-4165(02)00322-7 PubMed DOI
Kocan K. M., De La Fuente J., Blouin E. F. (2008a). Advances toward understanding the molecular biology of the PubMed DOI
Kocan K. M., De La Fuente J., Manzano-Roman R., Naranjo V., Hynes W. L., Sonenshine D. E. (2008b). Silencing expression of the defensin, varisin, in male PubMed DOI
Kocan K. M., De La Fuente J., Blouin E. F., Coetzee J. F., Ewing S. A. (2010). The natural history of PubMed DOI
Kocan K. M., Goff W. L., Stiller D., Claypool P. L., Edwards W., Ewing S. A., et al. (1992a). Persistence of PubMed
Kocan K. M., Stiller D., Goff W. L., Claypool P. L., Edwards W., Ewing S. A., et al. (1992b). Development of PubMed
Kocan K. M., Holbert D., Edwards W., Ewing S. A., Barron S. J., Hair J. A. (1986). Longevity of colonies of PubMed
Kocan K. M., Zivkovic Z., Blouin E. F., Naranjo V., Almazan C., Mitra R., et al. (2009). Silencing of genes involved in PubMed DOI PMC
Kopacek P., Hajdusek O., Buresova V. (2012). Tick as a model for the study of a primitive complement system. Adv. Exp. Med. Biol. 710, 83–93 10.1007/978-1-4419-5638-5_9 PubMed DOI
Kopacek P., Hajdusek O., Buresova V., Daffre S. (2010). Tick innate immunity. Adv. Exp. Med. Biol. 708, 137–162 10.1007/978-1-4419-8059-5_8 PubMed DOI
Kopacek P., Vogt R., Jindrak L., Weise C., Safarik I. (1999). Purification and characterization of the lysozyme from the gut of the soft tick PubMed DOI
Kopacek P., Weise C., Saravanan T., Vitova K., Grubhoffer L. (2000). Characterization of an alpha-macroglobulin-like glycoprotein isolated from the plasma of the soft tick PubMed DOI
Kovar V., Kopacek P., Grubhoffer L. (2000). Isolation and characterization of Dorin, M, a lectin from plasma of the soft tick PubMed DOI
Krober T., Guerin P. M. (2007). PubMed DOI
Kumar S., Molina-Cruz A., Gupta L., Rodrigues J., Barillas-Mury C. (2010). A peroxidase/dual oxidase system modulates midgut epithelial immunity in PubMed DOI PMC
Kurscheid S., Lew-Tabor A. E., Rodriguez Valle M., Bruyeres A. G., Doogan V. J., Munderloh U. G., et al. (2009). Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in PubMed DOI PMC
Lai R., Takeuchi H., Lomas L. O., Jonczy J., Rigden D. J., Rees H. H., et al. (2004). A new type of antimicrobial protein with multiple histidines from the hard tick, PubMed
Lara F. A., Lins U., Bechara G. H., Oliveira P. L. (2005). Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick PubMed DOI
Lara F. A., Lins U., Paiva-Silva G., Almeida I. C., Braga C. M., Miguens F. C., et al. (2003). A new intracellular pathway of haem detoxification in the midgut of the cattle tick PubMed DOI
Lehane M. J., Aksoy S., Levashina E. (2004). Immune responses and parasite transmission in blood-feeding insects. Trends Parasitol. 20, 433–439 10.1016/j.pt.2004.07.002 PubMed DOI
Lindbo J. A., Silva-Rosales L., Proebsting W. M., Dougherty W. G. (1993). Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759 PubMed PMC
Liu L., Dai J., Zhao Y. O., Narasimhan S., Yang Y., Zhang L., et al. (2012). PubMed DOI PMC
Liu L., Narasimhan S., Dai J., Zhang L., Cheng G., Fikrig E. (2011). PubMed DOI PMC
Liu Z., Liu H., Liu X., Wu X. (2008). Purification and cloning of a novel antimicrobial peptide from salivary glands of the hard tick, PubMed DOI
Loosova G., Jindrak L., Kopacek P. (2001). Mortality caused by experimental infection with the yeast PubMed
Lu X., Che Q., Lv Y., Wang M., Lu Z., Feng F., et al. (2010). A novel defensin-like peptide from salivary glands of the hard tick, PubMed PMC
Mans B. J. (2011). Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods. J. Innate. Immun. 3, 41–51 10.1159/000321599 PubMed DOI
Mans B. J., Andersen J. F., Francischetti I. M., Valenzuela J. G., Schwan T. G., Pham V. M., et al. (2008). Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem. Mol. Biol. 38, 42–58 10.1016/j.ibmb.2007.09.003 PubMed DOI PMC
Megy K., Emrich S. J., Lawson D., Campbell D., Dialynas E., Hughes D. S., et al. (2012). VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res. 40, D729–D734 10.1093/nar/gkr1089 PubMed DOI PMC
Merino O., Almazan C., Canales M., Villar M., Moreno-Cid J. A., Galindo R. C., et al. (2011). Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by PubMed DOI
Myers J. W., Ferrell J. E. (2005). Silencing gene expression with Dicer-generated siRNA pools. Methods Mol. Biol. 309, 93–196 PubMed
Nakajima Y., Ogihara K., Taylor D., Yamakawa M. (2003). Antibacterial hemoglobin fragments from the midgut of the soft tick, PubMed DOI
Nakajima Y., Van Der Goes Van Naters-Yasui A., Taylor D., Yamakawa M. (2001). Two isoforms of a member of the arthropod defensin family from the soft tick, PubMed DOI
Nakajima Y., Van Der Goes Van Naters-Yasui A., Taylor D., Yamakawa M. (2002). Antibacterial peptide defensin is involved in midgut immunity of the soft tick, PubMed DOI
Naranjo N., Ayllón N., Pérez De La Lastra J. M., Galindo R. C., Kocan K. M., Blouin E. F., et al. (2013). Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, PubMed DOI PMC
Narasimhan S., Deponte K., Marcantonio N., Liang X., Royce T. E., Nelson K. F., et al. (2007a). Immunity against PubMed DOI PMC
Narasimhan S., Sukumaran B., Bozdogan U., Thomas V., Liang X., Deponte K., et al. (2007b). A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2, 7–18 10.1016/j.chom.2007.06.001 PubMed DOI PMC
Nelson N. (2003). A journey from mammals to yeast with vacuolar H+-ATPase (V-ATPase). J. Bioenerg. Biomembr. 35, 281–289 10.1023/A:1025768529677 PubMed DOI
Ng P. M., Le Saux A., Lee C. M., Tan N. S., Lu J., Thiel S., et al. (2007). C-reactive protein collaborates with plasma lectins to boost immune response against bacteria. EMBO J. 26, 3431–3440 10.1038/sj.emboj.7601762 PubMed DOI PMC
Nonaka M., Kimura A. (2006). Genomic view of the evolution of the complement system. Immunogenetics 58, 701–713 10.1007/s00251-006-0142-1 PubMed DOI PMC
Oakley A. (2011). Glutathione transferases: a structural perspective. Drug Metab. Rev. 43, 138–151 10.3109/03602532.2011.558093 PubMed DOI
Ohnishi J., Piesman J., De Silva A. M. (2001). Antigenic and genetic heterogeneity of PubMed DOI PMC
Okubo K., Yokoyama N., Govind Y., Alhassan A., Igarashi I. (2007). PubMed DOI
Oliveira J. H., Goncalves R. L., Lara F. A., Dias F. A., Gandara A. C., Menna-Barreto R. F., et al. (2011). Blood meal-derived heme decreases ROS levels in the midgut PubMed DOI PMC
Oliveira Gde A., Lieberman J., Barillas-Mury C. (2012). Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335, 856–859 10.1126/science.1209678 PubMed DOI PMC
Osta M. A., Christophides G. K., Vlachou D., Kafatos F. C. (2004). Innate immunity in the malaria vector PubMed DOI
Pagel Van Zee J., Geraci N. S., Guerrero F. D., Wikel S. K., Stuart J. J., Nene V. M., et al. (2007). Tick genomics: the PubMed DOI
Pal U., Li X., Wang T., Montgomery R. R., Ramamoorthi N., Desilva A. M., et al. (2004). TROSPA, an PubMed DOI
Pedra J. H., Narasimhan S., Rendic D., Deponte K., Bell-Sakyi L., Wilson I. B., et al. (2010). Fucosylation enhances colonization of ticks by PubMed DOI PMC
Pereira L. S., Oliveira P. L., Barja-Fidalgo C., Daffre S. (2001). Production of reactive oxygen species by hemocytes from the cattle tick PubMed DOI
Pichu S., Ribeiro J. M., Mather T. N. (2009). Purification and characterization of a novel salivary antimicrobial peptide from the tick, PubMed DOI PMC
Rachinsky A., Guerrero F. D., Scoles G. A. (2007). Differential protein expression in ovaries of uninfected and PubMed DOI
Rachinsky A., Guerrero F. D., Scoles G. A. (2008). Proteomic profiling of PubMed DOI
Radolf J. D., Samuels D. S. (2010). Borrelia: molecular biology, host interaction, and pathogenesis. Norfolk, VA: Caister Academic Press
Ramamoorthi N., Narasimhan S., Pal U., Bao F. K., Yang X. F. F., Fish D., et al. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577 10.1038/nature03812 PubMed DOI PMC
Ratcliff F. G., Macfarlane S. A., Baulcombe D. C. (1999). Gene silencing without DNA. rna-mediated cross-protection between viruses. Plant Cell 11, 1207–1216 PubMed PMC
Reeves M. A., Hoffmann P. R. (2009). The human selenoproteome: recent insights into functions and regulation. Cell. Mol. Life Sci. 66, 2457–2478 10.1007/s00018-009-0032-4 PubMed DOI PMC
Rego R. O., Hajdusek O., Kovar V., Kopacek P., Grubhoffer L., Hypsa V. (2005). Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick PubMed DOI
Rego R. O., Kovar V., Kopacek P., Weise C., Man P., Sauman I., et al. (2006). The tick plasma lectin, Dorin, M, is a fibrinogen-related molecule. Insect Biochem. Mol. Biol. 36, 291–299 10.1016/j.ibmb.2006.01.008 PubMed DOI
Ribeiro J. M., Alarcon-Chaidez F., Francischetti I. M., Mans B. J., Mather T. N., Valenzuela J. G., et al. (2006). An annotated catalog of salivary gland transcripts from PubMed DOI
Rittig M. G., Kuhn K. H., Dechant C. A., Gauckler A., Modolell M., Ricciardi-Castagnoli P., et al. (1996). Phagocytes from both vertebrate and invertebrate species use "coiling" phagocytosis. Dev. Comp. Immunol. 20, 393–406 10.1016/S0145-305X(96)00023-7 PubMed DOI
Rollend L., Fish D., Childs J. E. (2013). Transovarial transmission of PubMed DOI
Rudenko N., Golovchenko M., Edwards M. J., Grubhoffer L. (2005). Differential expression of PubMed DOI
Saravanan T., Weise C., Sojka D., Kopacek P. (2003). Molecular cloning, structure and bait region splice variants of alpha2-macroglobulin from the soft tick PubMed DOI
Severo M. S., Sakhon O. S., Choy A., Stephens K. D., Pedra J. H. (2013). The ‘ubiquitous’ reality of vector immunology. Cell Microbiol. 15, 1070–1078 10.1111/cmi.12128 PubMed DOI PMC
Schuijt T. J., Coumou J., Narasimhan S., Dai J., Deponte K., Wouters D., et al. (2011a). A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe 10, 136–146 10.1016/j.chom.2011.06.010 PubMed DOI PMC
Schuijt T. J., Narasimhan S., Daffre S., Deponte K., Hovius J. W., Van't Veer C., et al. (2011b). Identification and characterization of PubMed DOI PMC
Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. (1995). Induction of an outer surface protein on PubMed DOI PMC
Shkap V., Kocan K., Molad T., Mazuz M., Leibovich B., Krigel Y., et al. (2009). Experimental transmission of field PubMed DOI
Silva F. D., Rezende C. A., Rossi D. C., Esteves E., Dyszy F. H., Schreier S., et al. (2009). Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick PubMed DOI PMC
Söderhäll K. (2010). Invertebrate Immunity. New York, NY, Austin, Tex.: Springer Science+Business Media; Landes Bioscience; 10.1007/978-1-4419-8059-5 DOI
Sojka D., Franta Z., Horn M., Caffer C. R., Mareš M., Kopáèek P. (2013). New insights into the machinery of blood digestion in ticks. Trends Parasitol. 29, 276–285 10.1016/j.pt.2013.04.002 PubMed DOI
Sojka D., Franta Z., Horn M., Hajdusek O., Caffrey C. R., Mares M., et al. (2008). Profiling of proteolytic enzymes in the gut of the tick PubMed DOI PMC
Sonenshine D. E. (1991). Biology of Ticks. New York, NY: Oxford University Press
Sonenshine D. E., Hynes W. L. (2008). Molecular characterization and related aspects of the innate immune response in ticks. Front. Biosci. 13, 7046–7063 10.2741/3209 PubMed DOI
Sonenshine D. E., Hynes W. L., Ceraul S. M., Mitchell R., Benzine T. (2005). Host blood proteins and peptides in the midgut of the tick PubMed DOI
Stanek G., Wormser G. P., Gray J., Strle F. (2012). Lyme borreliosis. Lancet 379, 461–473 10.1016/S0140-6736(11)60103-7 PubMed DOI
Steere A. C., Coburn J., Glickstein L. (2004). The emergence of Lyme disease. J. Clin. Invest. 113, 1093–1101 PubMed PMC
Sterba J., Dupejova J., Fiser M., Vancova M., Grubhoffer L. (2011). Fibrinogen-related proteins in ixodid ticks. Parasit. Vectors 4, 127 10.1186/1756-3305-4-127 PubMed DOI PMC
Sukumaran B., Narasimhan S., Anderson J. F., Deponte K., Marcantonio N., Krishnan M. N., et al. (2006). An PubMed DOI PMC
Sultana H., Neelakanta G., Kantor F. S., Malawista S. E., Fish D., Montgomery R. R., et al. (2010). PubMed DOI PMC
Tsuji N., Battsetseg B., Boldbaatar D., Miyoshi T., Xuan X., Oliver J. H., et al. (2007). Babesial vector tick defensin against PubMed DOI PMC
Tsuji N., Fujisaki K. (2007). Longicin plays a crucial role in inhibiting the transmission of PubMed DOI
Tsuji N., Miyoshi T., Battsetseg B., Matsuo T., Xuan X., Fujisaki K. (2008). A cysteine protease is critical for PubMed DOI PMC
Tyson K., Elkins C., Patterson H., Fikrig E., De Silva A. (2007). Biochemical and functional characterization of Salp20, an PubMed DOI
Tyson K. R., Elkins C., De Silva A. M. (2008). A novel mechanism of complement inhibition unmasked by a tick salivary protein that binds to properdin. J. Immunol. 180, 3964–3968 PubMed
Urieli-Shoval S., Linke R. P., Matzner Y. (2000). Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr. Opin. Hematol. 7, 64–69 10.1097/00062752-200001000-00012 PubMed DOI
Villar M., Ayllon N., Busby A. T., Galindo R. C., Blouin E. F., Kocan K. M., et al. (2010a). Expression of heat shock and other stress response proteins in ticks and cultured tick cells in response to PubMed DOI PMC
Villar M., Torina A., Nunez Y., Zivkovic Z., Marina A., Alongi A., et al. (2010b). Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Sci. 8:43 10.1186/1477-5956-8-43 PubMed DOI PMC
Wang W. A., Groenendyk J., Michalak M. (2012). Calreticulin signaling in health and disease. Int. J. Biochem. Cell Biol. 44, 842–846 10.1016/j.biocel.2012.02.009 PubMed DOI
Wang Y., Zhu S. (2011). The defensin gene family expansion in the tick PubMed DOI
Woldehiwet Z. (2010). The natural history of PubMed DOI
Yu D., Sheng Z., Xu X., Li J., Yang H., Liu Z., et al. (2006). A novel antimicrobial peptide from salivary glands of the hard tick, PubMed DOI
Zhang L., Zhang Y., Adusumilli S., Liu L., Narasimhan S., Dai J., et al. (2011). Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog. 7:e1002079 10.1371/journal.ppat.1002079 PubMed DOI PMC
Zhou J., Liao M., Ueda M., Gong H., Xuan X., Fujisaki K. (2007). Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick PubMed DOI
Zhou J., Ueda M., Umemiya R., Battsetseg B., Boldbaatar D., Xuan X., et al. (2006). A secreted cystatin from the tick PubMed DOI
Zhu Y., Thangamani S., Ho B., Ding J. L. (2005). The ancient origin of the complement system. EMBO J. 24, 382–394 10.1038/sj.emboj.7600533 PubMed DOI PMC
Zintl A., Mulcahy G., Skerrett H. E., Taylor S. M., Gray J. S. (2003). PubMed DOI PMC
Zivkovic Z., Blouin E. F., Manzano-Roman R., Almazan C., Naranjo V., Massung R. F., et al. (2009). PubMed DOI PMC
Zivkovic Z., Torina A., Mitra R., Alongi A., Scimeca S., Kocan K. M., et al. (2010). Subolesin expression in response to pathogen infection in ticks. BMC Immunol. 11:7 10.1186/1471-2172-11-7 PubMed DOI PMC
Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
Experimental Infection of Mice and Ticks with the Human Isolate of Anaplasma phagocytophilum NY-18
Serpins in Tick Physiology and Tick-Host Interaction
Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges
Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice
Functional Evolution of Subolesin/Akirin
The Complexity of Piroplasms Life Cycles
Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions