Interaction of the tick immune system with transmitted pathogens
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23875177
PubMed Central
PMC3712896
DOI
10.3389/fcimb.2013.00026
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma, Babesia, Borrelia, antimicrobial peptides, innate immunity, phagocytosis, tick, tick-borne diseases,
- MeSH
- Anaplasma imunologie patogenita MeSH
- arachnida jako vektory imunologie mikrobiologie parazitologie MeSH
- Babesia imunologie patogenita MeSH
- Borrelia imunologie patogenita MeSH
- interakce hostitele a patogenu * MeSH
- klíšťata imunologie mikrobiologie parazitologie MeSH
- přirozená imunita * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Ticks are hematophagous arachnids transmitting a wide variety of pathogens including viruses, bacteria, and protozoans to their vertebrate hosts. The tick vector competence has to be intimately linked to the ability of transmitted pathogens to evade tick defense mechanisms encountered on their route through the tick body comprising midgut, hemolymph, salivary glands or ovaries. Tick innate immunity is, like in other invertebrates, based on an orchestrated action of humoral and cellular immune responses. The direct antimicrobial defense in ticks is accomplished by a variety of small molecules such as defensins, lysozymes or by tick-specific antimicrobial compounds such as microplusin/hebraein or 5.3-kDa family proteins. Phagocytosis of the invading microbes by tick hemocytes is likely mediated by the primordial complement-like system composed of thioester-containing proteins, fibrinogen-related lectins and convertase-like factors. Moreover, an important role in survival of the ingested microbes seems to be played by host proteins and redox balance maintenance in the tick midgut. Here, we summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens, represented by spirochetes (Borrelia), rickettsiae (Anaplasma), and protozoans (Babesia). Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens.
Zobrazit více v PubMed
Allsopp M. T., Allsopp B. A. (2006). Molecular sequence evidence for the reclassification of some Babesia species. Ann. N.Y. Acad. Sci. 1081, 509–517 10.1196/annals.1373.076 PubMed DOI
Anderson J. M., Sonenshine D. E., Valenzuela J. G. (2008). Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics 9:552 10.1186/1471-2164-9-552 PubMed DOI PMC
Andreotti R., Perez De Leon A. A., Dowd S. E., Guerrero F. D., Bendele K. G., Scoles G. A. (2011). Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 11:6 10.1186/1471-2180-11-6 PubMed DOI PMC
Antunes S., Galindo R. C., Almazan C., Rudenko N., Golovchenko M., Grubhoffer L., et al. (2012). Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int. J. Parasitol. 42, 187–195 10.1016/j.ijpara.2011.12.003 PubMed DOI
Ariki S., Takahara S., Shibata T., Fukuoka T., Ozaki A., Endo Y., et al. (2008). Factor C acts as a lipopolysaccharide-responsive C3 convertase in horseshoe crab complement activation. J. Immunol. 181, 7994–8001 PubMed
Ayllón N., Villar M., Busby A. T., Kocan K. M., Blouin E. F., Bonzón-Kulichenko E., et al. (2013). Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect. Immun. 81, 2415–2425 10.1128/IAI.00194-13 PubMed DOI PMC
Bacon R. M., Kugeler K. J., Mead P. S. (2008). Surveillance for Lyme disease–United States, 1992-2006. MMWR. Surveill. Summ. 57, 1–9 PubMed
Balashov I. U. S. (1972). A Translation of Bloodsucking Ticks (Ixodoidea)–Vectors of Diseases of Man and Animals. College Park, MD: Entomological Society of America
Blandin S., Shiao S. H., Moita L. F., Janse C. J., Waters A. P., Kafatos F. C., et al. (2004). Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116, 661–670 10.1016/S0092-8674(04)00173-4 PubMed DOI
Blandin S. A., Marois E., Levashina E. A. (2008). Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe 3, 364–374 10.1016/j.chom.2008.05.007 PubMed DOI
Boldbaatar D., Battsetseg B., Matsuo T., Hatta T., Umemiya-Shirafuji R., Xuan X., et al. (2008). Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem. Cell Biol. 86, 331–344 10.1139/O08-071 PubMed DOI
Borovickova B., Hypsa V. (2005). Ontogeny of tick hemocytes: a comparative analysis of Ixodes ricinus and Ornithodoros moubata. Exp. Appl. Acarol. 35, 317–333 10.1007/s10493-004-2209-8 PubMed DOI
Buresova V., Franta Z., Kopacek P. (2006). A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tick Ixodes ricinus. J. Invertebr. Pathol. 93, 96–104 10.1016/j.jip.2006.05.006 PubMed DOI
Buresova V., Hajdusek O., Franta Z., Loosova G., Grunclova L., Levashina E. A., et al. (2011). Functional genomics of tick thioester-containing proteins reveal the ancient origin of the complement system. J. Innate. Immun. 3, 623–630 10.1159/000328851 PubMed DOI
Buresova V., Hajdusek O., Franta Z., Sojka D., Kopacek P. (2009). IrAM-An alpha2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Dev. Comp. Immunol. 33, 489–498 10.1016/j.dci.2008.09.011 PubMed DOI
Burgdorfer W., Hayes S. F., Corwin D. (1989). Pathophysiology of the Lyme disease spirochete, Borrelia burgdorferi, in ixodid ticks. Rev Infect Dis 11Suppl. 6, S1442–S1450 10.1093/clinids/11.Supplement_6.S1442 PubMed DOI
Busby A. T., Ayllon N., Kocan K. M., Blouin E. F., De La Fuente G., Galindo R. C., et al. (2012). Ex‘ion of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behaviour in the tick, Ixodes scapularis. Med. Vet. Entomol. 26, 92–102 10.1111/j.1365-2915.2011.00973.x PubMed DOI
Carpi G., Cagnacci F., Wittekindt N. E., Zhao F., Qi J., Tomsho L. P., et al. (2011). Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE 6:e25604 10.1371/journal.pone.0025604 PubMed DOI PMC
Cen-Aguilar J. F., Rodriguez-Vivas R. I., Dominguez-Alpizar J. L., Wagner G. G. (1998). Studies on the effect of infection by Babesia sp. on oviposition of Boophilus microplus engorged females naturally infected in the Mexican tropics. Vet. Parasitol. 78, 253–257 10.1016/S0304-4017(98)00148-4 PubMed DOI
Ceraul S. M., Sonenshine D. E., Hynes W. L. (2002). Resistance of the tick Dermacentor variabilis (Acari: Ixodidae) following challenge with the bacterium Escherichia coli (Enterobacteriales: Enterobacteriaceae). J. Med. Entomol. 39, 376–383 10.1603/0022-2585-39.2.376 PubMed DOI
Chauvin A., Moreau E., Bonnet S., Plantard O., Malandrin L. (2009). Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 40, 37 10.1051/vetres/2009020 PubMed DOI PMC
Chmelar J., Calvo E., Pedra J. H., Francischetti I. M., Kotsyfakis M. (2012). Tick salivary secretion as a source of antihemostatics. J. Proteomics 75, 3842–3854 10.1016/j.jprot.2012.04.026 PubMed DOI PMC
Chrudimska T., Chrudimsky T., Golovchenko M., Rudenko N., Grubhoffer L. (2010). New defensins from hard and soft ticks: similarities, differences, and phylogenetic analyses. Vet. Parasitol. 167, 298–303 10.1016/j.vetpar.2009.09.032 PubMed DOI
Cirimotich C. M., Dong Y., Clayton A. M., Sandiford S. L., Souza-Neto J. A., Mulenga M., et al. (2011). Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332, 855–858 10.1126/science.1201618 PubMed DOI PMC
Citelli M., Lara F. A., Da Silva Vaz I., Jr., Oliveira P. L. (2007). Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Mol. Biochem. Parasitol. 151, 81–88 10.1016/j.molbiopara.2006.10.008 PubMed DOI
Coleman J. L., Gebbia J. A., Piesman J., Degen J. L., Bugge T. H., Benach J. L. (1997). Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89, 1111–1119 10.1016/S0092-8674(00)80298-6 PubMed DOI
Coleman J. L., Sellati T. J., Testa J. E., Kew R. R., Furie M. B., Benach J. L. (1995). Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers. Infect. Immun. 63, 2478–2484 PubMed PMC
Cornillot E., Hadj-Kaddour K., Dassouli A., Noel B., Ranwez V., Vacherie B., et al. (2012). Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti. Nucleic Acids Res. 40, 9102–9114 10.1093/nar/gks700 PubMed DOI PMC
Cruz C. E., Fogaca A. C., Nakayasu E. S., Angeli C. B., Belmonte R., Almeida I. C., et al. (2010). Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasit. Vectors 3:63 10.1186/1756-3305-3-63 PubMed DOI PMC
Dai J., Narasimhan S., Zhang L., Liu L., Wang P., Fikrig E. (2010). Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the lyme disease agent. PLoS Pathog. 6:e1001205 10.1371/journal.ppat.1001205 PubMed DOI PMC
Dai J., Wang P., Adusumilli S., Booth C. J., Narasimhan S., Anguita J., et al. (2009). Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe 6, 482–492 10.1016/j.chom.2009.10.006 PubMed DOI PMC
Das S., Banerjee G., Deponte K., Marcantonio N., Kantor F. S., Fikrig E. (2001). Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J. Infect. Dis. 184, 1056–1064 10.1086/323351 PubMed DOI
De La Fuente J. (2012). Vaccines for vector control: exciting possibilities for the future. Vet. J. 194, 139–140 10.1016/j.tvjl.2012.07.029 PubMed DOI
De La Fuente J., Almazan C., Blas-Machado U., Naranjo V., Mangold A. J., Blouin E. F., et al. (2006). The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. Vaccine 24, 4082–4095 10.1016/j.vaccine.2006.02.046 PubMed DOI
De La Fuente J., Blouin E. F., Manzano-Roman R., Naranjo V., Almazan C., Perez De La Lastra J. M., et al. (2007a). Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. Genomics 90, 712–722 10.1016/j.ygeno.2007.08.009 PubMed DOI
De La Fuente J., Kocan K. M., Almazan C., Blouin E. F. (2007b). RNA interference for the study and genetic manipulation of ticks. Trends Parasitol. 23, 427–433 10.1016/j.pt.2007.07.002 PubMed DOI
De La Fuente J., Blouin E. F., Manzano-Roman R., Naranjo V., Almazan C., Perez De La Lastra J. M., et al. (2008). Differential expression of the tick protective antigen subolesin in Anaplasma marginale- and A. phagocytophilum-infected host cells. Ann. N. Y. Acad. Sci. 1149, 27–35 10.1196/annals.1428.056 PubMed DOI
De La Fuente J., Moreno-Cid J. A., Canales M., Villar M., De La Lastra J. M., Kocan K. M., et al. (2011). Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet. Parasitol. 181, 17–22 10.1016/j.vetpar.2011.04.018 PubMed DOI
De Silva A. M., Fikrig E. (1995). Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am. J. Trop. Med. Hyg. 53, 397–404 PubMed
De Silva A. M., Telford S. R., 3rd., Brunet L. R., Barthold S. W., Fikrig E. (1996). Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J. Exp. Med. 183, 271–275 10.1084/jem.183.1.271 PubMed DOI PMC
De Taeye S. W., Kreuk L., Van Dam A. P., Hovius J. W., Schuijt T. J. (2013). Complement evasion by Borrelia burgdorferi: it takes three to tango. Trends Parasitol. 29, 119–128 10.1016/j.pt.2012.12.001 PubMed DOI
Dumler J. S., Barbet A. F., Bekker C. P., Dasch G. A., Palmer G. H., Ray S. C., et al. (2001). Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 51, 2145–2165 10.1099/00207713-51-6-2145 PubMed DOI
Dunham-Ems S. M., Caimano M. J., Pal U., Wolgemuth C. W., Eggers C. H., Balic A., et al. (2009). Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J. Clin. Invest. 119, 3652–3665 10.1172/JCI39401 PubMed DOI PMC
Eggenberger L. R., Lamoreaux W. J., Coons L. B. (1990). Hemocytic encapsulation of implants in the tick Dermacentor variabilis. Exp. Appl. Acarol. 9, 279–287 10.1007/BF01193434 PubMed DOI
Ferrandon D., Imler J. L., Hetru C., Hoffmann J. A. (2007). The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862–874 10.1038/nri2194 PubMed DOI
Florin-Christensen M., Schnittger L. (2009). Piroplasmids and ticks: a long-lasting intimate relationship. Front. Biosci. 14, 3064–3073 10.2741/3435 PubMed DOI
Fogaca A. C., Almeida I. C., Eberlin M. N., Tanaka A. S., Bulet P., Daffre S. (2006). Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides 27, 667–674 10.1016/j.peptides.2005.07.013 PubMed DOI
Fogaca A. C., Da Silva P. I., Jr., Miranda M. T., Bianchi A. G., Miranda A., Ribolla P. E., et al. (1999). Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J. Biol. Chem. 274, 25330–25334 10.1074/jbc.274.36.25330 PubMed DOI
Fogaca A. C., Lorenzini D. M., Kaku L. M., Esteves E., Bulet P., Daffre S. (2004). Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev. Comp. Immunol. 28, 191–200 10.1016/j.dci.2003.08.001 PubMed DOI
Francischetti I. M., Sa-Nunes A., Mans B. J., Santos I. M., Ribeiro J. M. (2009). The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088 10.2741/3363 PubMed DOI PMC
Galindo R. C., Doncel-Perez E., Zivkovic Z., Naranjo V., Gortazar C., Mangold A. J., et al. (2009). Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev. Comp. Immunol. 33, 612–617 10.1016/j.dci.2008.11.002 PubMed DOI
Garcia S., Billecocq A., Crance J. M., Prins M., Garin D., Bouloy M. (2006). Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J. Gen. Virol. 87, 1985–1989 10.1099/vir.0.81827-0 PubMed DOI
Gokudan S., Muta T., Tsuda R., Koori K., Kawahara T., Seki N., et al. (1999). Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc. Natl. Acad. Sci. U.S.A. 96, 10086–10091 10.1073/pnas.96.18.10086 PubMed DOI PMC
Grubhoffer L., Rego R. O. M., Hajdušek O., Hypša V., Kováø V., Rudenko N., et al. (2008). Tick lectins and fibrinogen-related proteins, in Ticks: Biology, Disease and Control, eds Bowman A. S., Nuttall P. A. (Cambridge; New York: Cambridge University Press; ), 127–142 10.1017/CBO9780511551802.007 DOI
Grunclova L., Fouquier H., Hypsa V., Kopacek P. (2003). Lysozyme from the gut of the soft tick Ornithodoros moubata: the sequence, phylogeny and post-feeding regulation. Dev. Comp. Immunol. 27, 651–660 10.1016/S0145-305X(03)00052-1 PubMed DOI
Hanington P. C., Zhang S. M. (2011). The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J. Innate. Immun. 3, 17–27 10.1159/000321882 PubMed DOI PMC
Heekin A. M., Guerrero F. D., Bendele K. G., Saldivar L., Scoles G. A., Gondro C., et al. (2012). Analysis of Babesia bovis infection-induced gene expression changes in larvae from the cattle tick, Rhipicephalus (Boophilus) microplus. Parasit. Vectors 5, 162 10.1186/1756-3305-5-162 PubMed DOI PMC
Hillyer J. F. (2010). Mosquito immunity. Adv. Exp. Med. Biol. 708, 218–238 10.1007/978-1-4419-8059-5_12 PubMed DOI
Hojgaard A., Eisen R. J., Piesman J. (2008). Transmission dynamics of Borrelia burgdorferi s.s. during the key third day of feeding by nymphal Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 45, 732–736 10.1603/0022-2585(2008)45[732:TDOBBS]2.0.CO;2 PubMed DOI
Horn M., Nussbaumerova M., Sanda M., Kovarova Z., Srba J., Franta Z., et al. (2009). Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 16, 1053–1063 10.1016/j.chembiol.2009.09.009 PubMed DOI PMC
Hynes W. L., Ceraul S. M., Todd S. M., Seguin K. C., Sonenshine D. E. (2005). A defensin-like gene expressed in the black-legged tick, Ixodes scapularis. Med. Vet. Entomol. 19, 339–344 10.1111/j.1365-2915.2005.00579.x PubMed DOI
Hynes W. L., Stokes M. M., Hensley S. M., Todd S. M., Sonenshine D. E. (2008). Using RNA interference to determine the role of varisin in the innate immune system of the hard tick Dermacentor variabilis (Acari: Ixodidae). Exp. Appl. Acarol. 46, 7–15 10.1007/s10493-008-9158-6 PubMed DOI
Inoue N., Hanada K., Tsuji N., Igarashi I., Nagasawa H., Mikami T., et al. (2001). Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae). J. Med. Entomol. 38, 514–519 10.1603/0022-2585-38.4.514 PubMed DOI
Iwanaga S., Lee B. L. (2005). Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 38, 128–150 10.5483/BMBRep.2005.38.2.128 PubMed DOI
Jaworski D. C., Zou Z., Bowen C. J., Wasala N. B., Madden R., Wang Y., et al. (2010). Pyrosequencing and characterization of immune response genes from the American dog tick, Dermacentor variabilis (L.). Insect Mol. Biol. 19, 617–630 10.1111/j.1365-2583.2010.01037.x PubMed DOI PMC
Johns R., Ohnishi J., Broadwater A., Sonenshine D. E., De Silva A. M., Hynes W. L. (2001a). Contrasts in tick innate immune responses to Borrelia burgdorferi challenge: immunotolerance in Ixodes scapularis versus immunocompetence in Dermacentor variabilis (Acari: Ixodidae). J. Med. Entomol. 38, 99–107 10.1603/0022-2585-38.1.99 PubMed DOI
Johns R., Sonenshine D. E., Hynes W. L. (2001b). Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis. Insect Biochem. Mol. Biol. 31, 857–865 10.1016/S0965-1748(01)00031-5 PubMed DOI
Johns R., Sonenshine D. E., Hynes W. L. (2000). Response of the tick Dermacentor variabilis (Acari: Ixodidae) to hemocoelic inoculation of Borrelia burgdorferi (Spirochetales). J. Med. Entomol. 37, 265–270 10.1603/0022-2585-37.2.265 PubMed DOI
Jongejan F., Uilenberg G. (2004). The global importance of ticks. Parasitology 129Suppl. S3–S14 10.1017/S0031182004005967 PubMed DOI
Karim S., Singh P., Ribeiro J. M. (2011). A deep insight into the sialotranscriptome of the gulf coast tick, Amblyomma maculatum. PLoS ONE 6:e28525 10.1371/journal.pone.0028525 PubMed DOI PMC
Kaufman W. R., Phillips J. E. (1973). Ion and Water-Balance in Ixodid Tick Dermacentor andersoni.1. Routes of Ion and Water Excretion. J. Exp. Biol. 58, 523–536
Kawabata S. (2010). Immunocompetent molecules and their response network in horseshoe crabs. Adv. Exp. Med. Biol. 708, 122–136 10.1007/978-1-4419-8059-5_7 PubMed DOI
Kawabata S., Tsuda R. (2002). Molecular basis of non-self recognition by the horseshoe crab tachylectins. Biochim. Biophys. Acta 1572, 414–421 10.1016/S0304-4165(02)00322-7 PubMed DOI
Kocan K. M., De La Fuente J., Blouin E. F. (2008a). Advances toward understanding the molecular biology of the Anaplasma-tick interface. Front. Biosci. 13, 7032–7045 10.2741/3208 PubMed DOI
Kocan K. M., De La Fuente J., Manzano-Roman R., Naranjo V., Hynes W. L., Sonenshine D. E. (2008b). Silencing expression of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections. Exp. Appl. Acarol. 46, 17–28 10.1007/s10493-008-9159-5 PubMed DOI
Kocan K. M., De La Fuente J., Blouin E. F., Coetzee J. F., Ewing S. A. (2010). The natural history of Anaplasma marginale. Vet. Parasitol. 167, 95–107 10.1016/j.vetpar.2009.09.012 PubMed DOI
Kocan K. M., Goff W. L., Stiller D., Claypool P. L., Edwards W., Ewing S. A., et al. (1992a). Persistence of Anaplasma marginale (Rickettsiales: Anaplasmataceae) in male Dermacentor andersoni (Acari: Ixodidae) transferred successively from infected to susceptible calves. J. Med. Entomol. 29, 657–668 PubMed
Kocan K. M., Stiller D., Goff W. L., Claypool P. L., Edwards W., Ewing S. A., et al. (1992b). Development of Anaplasma marginale in male Dermacentor andersoni transferred from parasitemic to susceptible cattle. Am. J. Vet. Res. 53, 499–507 PubMed
Kocan K. M., Holbert D., Edwards W., Ewing S. A., Barron S. J., Hair J. A. (1986). Longevity of colonies of Anaplasma marginale in midgut epithelial cells of Dermacentor andersoni. Am. J. Vet. Res. 47, 1657–1661 PubMed
Kocan K. M., Zivkovic Z., Blouin E. F., Naranjo V., Almazan C., Mitra R., et al. (2009). Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis. BMC Dev. Biol. 9:42 10.1186/1471-213X-9-42 PubMed DOI PMC
Kopacek P., Hajdusek O., Buresova V. (2012). Tick as a model for the study of a primitive complement system. Adv. Exp. Med. Biol. 710, 83–93 10.1007/978-1-4419-5638-5_9 PubMed DOI
Kopacek P., Hajdusek O., Buresova V., Daffre S. (2010). Tick innate immunity. Adv. Exp. Med. Biol. 708, 137–162 10.1007/978-1-4419-8059-5_8 PubMed DOI
Kopacek P., Vogt R., Jindrak L., Weise C., Safarik I. (1999). Purification and characterization of the lysozyme from the gut of the soft tick Ornithodoros moubata. Insect Biochem. Mol. Biol. 29, 989–997 10.1016/S0965-1748(99)00075-2 PubMed DOI
Kopacek P., Weise C., Saravanan T., Vitova K., Grubhoffer L. (2000). Characterization of an alpha-macroglobulin-like glycoprotein isolated from the plasma of the soft tick Ornithodoros moubata. Eur. J. Biochem. 267, 465–475 10.1046/j.1432-1327.2000.01020.x PubMed DOI
Kovar V., Kopacek P., Grubhoffer L. (2000). Isolation and characterization of Dorin, M, a lectin from plasma of the soft tick Ornithodoros moubata. Insect Biochem. Mol. Biol. 30, 195–205 10.1016/S0965-1748(99)00107-1 PubMed DOI
Krober T., Guerin P. M. (2007). In vitro feeding assays for hard ticks. Trends Parasitol. 23, 445–449 10.1016/j.pt.2007.07.010 PubMed DOI
Kumar S., Molina-Cruz A., Gupta L., Rodrigues J., Barillas-Mury C. (2010). A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327, 1644–1648 10.1126/science.1184008 PubMed DOI PMC
Kurscheid S., Lew-Tabor A. E., Rodriguez Valle M., Bruyeres A. G., Doogan V. J., Munderloh U. G., et al. (2009). Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila. BMC Mol. Biol. 10:26 10.1186/1471-2199-10-26 PubMed DOI PMC
Lai R., Takeuchi H., Lomas L. O., Jonczy J., Rigden D. J., Rees H. H., et al. (2004). A new type of antimicrobial protein with multiple histidines from the hard tick, Amblyomma hebraeum. FASEB J. 18, 1447–1449 PubMed
Lara F. A., Lins U., Bechara G. H., Oliveira P. L. (2005). Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 208, 3093–3101 10.1242/jeb.01749 PubMed DOI
Lara F. A., Lins U., Paiva-Silva G., Almeida I. C., Braga C. M., Miguens F. C., et al. (2003). A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. J. Exp. Biol. 206, 1707–1715 10.1242/jeb.00334 PubMed DOI
Lehane M. J., Aksoy S., Levashina E. (2004). Immune responses and parasite transmission in blood-feeding insects. Trends Parasitol. 20, 433–439 10.1016/j.pt.2004.07.002 PubMed DOI
Lindbo J. A., Silva-Rosales L., Proebsting W. M., Dougherty W. G. (1993). Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759 PubMed PMC
Liu L., Dai J., Zhao Y. O., Narasimhan S., Yang Y., Zhang L., et al. (2012). Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis. J. Infect. Dis. 206, 1233–1241 10.1093/infdis/jis484 PubMed DOI PMC
Liu L., Narasimhan S., Dai J., Zhang L., Cheng G., Fikrig E. (2011). Ixodes scapularis salivary gland protein P11 facilitates migration of Anaplasma phagocytophilum from the tick gut to salivary glands. EMBO Rep. 12, 1196–1203 10.1038/embor.2011.177 PubMed DOI PMC
Liu Z., Liu H., Liu X., Wu X. (2008). Purification and cloning of a novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 149, 557–561 10.1016/j.cbpb.2007.10.002 PubMed DOI
Loosova G., Jindrak L., Kopacek P. (2001). Mortality caused by experimental infection with the yeast Candida haemulonii in the adults of Ornithodoros moubata (Acarina: Argasidae). Folia Parasitol. 48, 149–153 PubMed
Lu X., Che Q., Lv Y., Wang M., Lu Z., Feng F., et al. (2010). A novel defensin-like peptide from salivary glands of the hard tick, Haemaphysalis longicornis. Protein Sci. 19, 392–397 PubMed PMC
Mans B. J. (2011). Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods. J. Innate. Immun. 3, 41–51 10.1159/000321599 PubMed DOI
Mans B. J., Andersen J. F., Francischetti I. M., Valenzuela J. G., Schwan T. G., Pham V. M., et al. (2008). Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem. Mol. Biol. 38, 42–58 10.1016/j.ibmb.2007.09.003 PubMed DOI PMC
Megy K., Emrich S. J., Lawson D., Campbell D., Dialynas E., Hughes D. S., et al. (2012). VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res. 40, D729–D734 10.1093/nar/gkr1089 PubMed DOI PMC
Merino O., Almazan C., Canales M., Villar M., Moreno-Cid J. A., Galindo R. C., et al. (2011). Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine 29, 8575–8579 10.1016/j.vaccine.2011.09.023 PubMed DOI
Myers J. W., Ferrell J. E. (2005). Silencing gene expression with Dicer-generated siRNA pools. Methods Mol. Biol. 309, 93–196 PubMed
Nakajima Y., Ogihara K., Taylor D., Yamakawa M. (2003). Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae). J. Med. Entomol. 40, 78–81 10.1603/0022-2585-40.1.78 PubMed DOI
Nakajima Y., Van Der Goes Van Naters-Yasui A., Taylor D., Yamakawa M. (2001). Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem. Mol. Biol. 31, 747–751 10.1016/S0965-1748(01)00066-2 PubMed DOI
Nakajima Y., Van Der Goes Van Naters-Yasui A., Taylor D., Yamakawa M. (2002). Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol. Biol. 11, 611–618 10.1046/j.1365-2583.2002.00372.x PubMed DOI
Naranjo N., Ayllón N., Pérez De La Lastra J. M., Galindo R. C., Kocan K. M., Blouin E. F., et al. (2013). Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, Ixodes scapularis. PLoS ONE. 8:e65915 10.1371/journal.pone.0065915 PubMed DOI PMC
Narasimhan S., Deponte K., Marcantonio N., Liang X., Royce T. E., Nelson K. F., et al. (2007a). Immunity against Ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs Borrelia transmission. PLoS ONE 2:e451 10.1371/journal.pone.0000451 PubMed DOI PMC
Narasimhan S., Sukumaran B., Bozdogan U., Thomas V., Liang X., Deponte K., et al. (2007b). A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2, 7–18 10.1016/j.chom.2007.06.001 PubMed DOI PMC
Nelson N. (2003). A journey from mammals to yeast with vacuolar H+-ATPase (V-ATPase). J. Bioenerg. Biomembr. 35, 281–289 10.1023/A:1025768529677 PubMed DOI
Ng P. M., Le Saux A., Lee C. M., Tan N. S., Lu J., Thiel S., et al. (2007). C-reactive protein collaborates with plasma lectins to boost immune response against bacteria. EMBO J. 26, 3431–3440 10.1038/sj.emboj.7601762 PubMed DOI PMC
Nonaka M., Kimura A. (2006). Genomic view of the evolution of the complement system. Immunogenetics 58, 701–713 10.1007/s00251-006-0142-1 PubMed DOI PMC
Oakley A. (2011). Glutathione transferases: a structural perspective. Drug Metab. Rev. 43, 138–151 10.3109/03602532.2011.558093 PubMed DOI
Ohnishi J., Piesman J., De Silva A. M. (2001). Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc. Natl. Acad. Sci. U.S.A. 98, 670–675 10.1073/pnas.98.2.670 PubMed DOI PMC
Okubo K., Yokoyama N., Govind Y., Alhassan A., Igarashi I. (2007). Babesia bovis: effects of cysteine protease inhibitors on in vitro growth. Exp. Parasitol. 117, 214–217 10.1016/j.exppara.2007.04.009 PubMed DOI
Oliveira J. H., Goncalves R. L., Lara F. A., Dias F. A., Gandara A. C., Menna-Barreto R. F., et al. (2011). Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 7:e1001320 10.1371/journal.ppat.1001320 PubMed DOI PMC
Oliveira Gde A., Lieberman J., Barillas-Mury C. (2012). Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335, 856–859 10.1126/science.1209678 PubMed DOI PMC
Osta M. A., Christophides G. K., Vlachou D., Kafatos F. C. (2004). Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J. Exp. Biol. 207, 2551–2563 10.1242/jeb.01066 PubMed DOI
Pagel Van Zee J., Geraci N. S., Guerrero F. D., Wikel S. K., Stuart J. J., Nene V. M., et al. (2007). Tick genomics: the Ixodes genome project and beyond. Int. J. Parasitol. 37, 1297–1305 10.1016/j.ijpara.2007.05.011 PubMed DOI
Pal U., Li X., Wang T., Montgomery R. R., Ramamoorthi N., Desilva A. M., et al. (2004). TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119, 457–468 10.1016/j.cell.2004.10.027 PubMed DOI
Pedra J. H., Narasimhan S., Rendic D., Deponte K., Bell-Sakyi L., Wilson I. B., et al. (2010). Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell. Microbiol. 12, 1222–1234 10.1111/j.1462-5822.2010.01464.x PubMed DOI PMC
Pereira L. S., Oliveira P. L., Barja-Fidalgo C., Daffre S. (2001). Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Exp. Parasitol. 99, 66–72 10.1006/expr.2001.4657 PubMed DOI
Pichu S., Ribeiro J. M., Mather T. N. (2009). Purification and characterization of a novel salivary antimicrobial peptide from the tick, Ixodes scapularis. Biochem. Biophys. Res. Commun. 390, 511–515 10.1016/j.bbrc.2009.09.127 PubMed DOI PMC
Rachinsky A., Guerrero F. D., Scoles G. A. (2007). Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem. Mol. Biol. 37, 1291–1308 10.1016/j.ibmb.2007.08.001 PubMed DOI
Rachinsky A., Guerrero F. D., Scoles G. A. (2008). Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet. Parasitol. 152, 294–313 10.1016/j.vetpar.2007.12.027 PubMed DOI
Radolf J. D., Samuels D. S. (2010). Borrelia: molecular biology, host interaction, and pathogenesis. Norfolk, VA: Caister Academic Press
Ramamoorthi N., Narasimhan S., Pal U., Bao F. K., Yang X. F. F., Fish D., et al. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577 10.1038/nature03812 PubMed DOI PMC
Ratcliff F. G., Macfarlane S. A., Baulcombe D. C. (1999). Gene silencing without DNA. rna-mediated cross-protection between viruses. Plant Cell 11, 1207–1216 PubMed PMC
Reeves M. A., Hoffmann P. R. (2009). The human selenoproteome: recent insights into functions and regulation. Cell. Mol. Life Sci. 66, 2457–2478 10.1007/s00018-009-0032-4 PubMed DOI PMC
Rego R. O., Hajdusek O., Kovar V., Kopacek P., Grubhoffer L., Hypsa V. (2005). Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochem. Mol. Biol. 35, 991–1004 10.1016/j.ibmb.2005.04.001 PubMed DOI
Rego R. O., Kovar V., Kopacek P., Weise C., Man P., Sauman I., et al. (2006). The tick plasma lectin, Dorin, M, is a fibrinogen-related molecule. Insect Biochem. Mol. Biol. 36, 291–299 10.1016/j.ibmb.2006.01.008 PubMed DOI
Ribeiro J. M., Alarcon-Chaidez F., Francischetti I. M., Mans B. J., Mather T. N., Valenzuela J. G., et al. (2006). An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 36, 111–129 10.1016/j.ibmb.2005.11.005 PubMed DOI
Rittig M. G., Kuhn K. H., Dechant C. A., Gauckler A., Modolell M., Ricciardi-Castagnoli P., et al. (1996). Phagocytes from both vertebrate and invertebrate species use "coiling" phagocytosis. Dev. Comp. Immunol. 20, 393–406 10.1016/S0145-305X(96)00023-7 PubMed DOI
Rollend L., Fish D., Childs J. E. (2013). Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks Tick Borne Dis. 4, 46–51 10.1016/j.ttbdis.2012.06.008 PubMed DOI
Rudenko N., Golovchenko M., Edwards M. J., Grubhoffer L. (2005). Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J. Med. Entomol. 42, 36–41 10.1603/0022-2585(2005)042[0036:DEOIRT]2.0.CO;2 PubMed DOI
Saravanan T., Weise C., Sojka D., Kopacek P. (2003). Molecular cloning, structure and bait region splice variants of alpha2-macroglobulin from the soft tick Ornithodoros moubata. Insect Biochem. Mol. Biol. 33, 841–851 10.1016/S0965-1748(03)00083-3 PubMed DOI
Severo M. S., Sakhon O. S., Choy A., Stephens K. D., Pedra J. H. (2013). The ‘ubiquitous’ reality of vector immunology. Cell Microbiol. 15, 1070–1078 10.1111/cmi.12128 PubMed DOI PMC
Schuijt T. J., Coumou J., Narasimhan S., Dai J., Deponte K., Wouters D., et al. (2011a). A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe 10, 136–146 10.1016/j.chom.2011.06.010 PubMed DOI PMC
Schuijt T. J., Narasimhan S., Daffre S., Deponte K., Hovius J. W., Van't Veer C., et al. (2011b). Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display. PLoS ONE 6:e15926 10.1371/journal.pone.0015926 PubMed DOI PMC
Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. (1995). Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc. Natl. Acad. Sci. U.S.A. 92, 2909–2913 10.1073/pnas.92.7.2909 PubMed DOI PMC
Shkap V., Kocan K., Molad T., Mazuz M., Leibovich B., Krigel Y., et al. (2009). Experimental transmission of field Anaplasma marginale and the A. centrale vaccine strain by Hyalomma excavatum, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) annulatus ticks. Vet. Microbiol. 134, 254–260 10.1016/j.vetmic.2008.08.004 PubMed DOI
Silva F. D., Rezende C. A., Rossi D. C., Esteves E., Dyszy F. H., Schreier S., et al. (2009). Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J. Biol. Chem. 284, 34735–34746 10.1074/jbc.M109.016410 PubMed DOI PMC
Söderhäll K. (2010). Invertebrate Immunity. New York, NY, Austin, Tex.: Springer Science+Business Media; Landes Bioscience; 10.1007/978-1-4419-8059-5 DOI
Sojka D., Franta Z., Horn M., Caffer C. R., Mareš M., Kopáèek P. (2013). New insights into the machinery of blood digestion in ticks. Trends Parasitol. 29, 276–285 10.1016/j.pt.2013.04.002 PubMed DOI
Sojka D., Franta Z., Horn M., Hajdusek O., Caffrey C. R., Mares M., et al. (2008). Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit. Vectors 1, 7 10.1186/1756-3305-1-7 PubMed DOI PMC
Sonenshine D. E. (1991). Biology of Ticks. New York, NY: Oxford University Press
Sonenshine D. E., Hynes W. L. (2008). Molecular characterization and related aspects of the innate immune response in ticks. Front. Biosci. 13, 7046–7063 10.2741/3209 PubMed DOI
Sonenshine D. E., Hynes W. L., Ceraul S. M., Mitchell R., Benzine T. (2005). Host blood proteins and peptides in the midgut of the tick Dermacentor variabilis contribute to bacterial control. Exp. Appl. Acarol. 36, 207–223 10.1007/s10493-005-2564-0 PubMed DOI
Stanek G., Wormser G. P., Gray J., Strle F. (2012). Lyme borreliosis. Lancet 379, 461–473 10.1016/S0140-6736(11)60103-7 PubMed DOI
Steere A. C., Coburn J., Glickstein L. (2004). The emergence of Lyme disease. J. Clin. Invest. 113, 1093–1101 PubMed PMC
Sterba J., Dupejova J., Fiser M., Vancova M., Grubhoffer L. (2011). Fibrinogen-related proteins in ixodid ticks. Parasit. Vectors 4, 127 10.1186/1756-3305-4-127 PubMed DOI PMC
Sukumaran B., Narasimhan S., Anderson J. F., Deponte K., Marcantonio N., Krishnan M. N., et al. (2006). An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J. Exp. Med. 203, 1507–1517 10.1084/jem.20060208 PubMed DOI PMC
Sultana H., Neelakanta G., Kantor F. S., Malawista S. E., Fish D., Montgomery R. R., et al. (2010). Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J. Exp. Med. 207, 1727–1743 10.1084/jem.20100276 PubMed DOI PMC
Tsuji N., Battsetseg B., Boldbaatar D., Miyoshi T., Xuan X., Oliver J. H., et al. (2007). Babesial vector tick defensin against Babesia sp. parasites. Infect. Immun. 75, 3633–3640 10.1128/IAI.00256-07 PubMed DOI PMC
Tsuji N., Fujisaki K. (2007). Longicin plays a crucial role in inhibiting the transmission of Babesia parasites in the vector tick Haemaphysalis longicornis. Future Microbiol. 2, 575–578 10.2217/17460913.2.6.575 PubMed DOI
Tsuji N., Miyoshi T., Battsetseg B., Matsuo T., Xuan X., Fujisaki K. (2008). A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog. 4:e1000062 10.1371/journal.ppat.1000062 PubMed DOI PMC
Tyson K., Elkins C., Patterson H., Fikrig E., De Silva A. (2007). Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol. Biol. 16, 469–479 10.1111/j.1365-2583.2007.00742.x PubMed DOI
Tyson K. R., Elkins C., De Silva A. M. (2008). A novel mechanism of complement inhibition unmasked by a tick salivary protein that binds to properdin. J. Immunol. 180, 3964–3968 PubMed
Urieli-Shoval S., Linke R. P., Matzner Y. (2000). Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr. Opin. Hematol. 7, 64–69 10.1097/00062752-200001000-00012 PubMed DOI
Villar M., Ayllon N., Busby A. T., Galindo R. C., Blouin E. F., Kocan K. M., et al. (2010a). Expression of heat shock and other stress response proteins in ticks and cultured tick cells in response to Anaplasma spp. infection and heat Shock. Int. J. Proteomics 2010, 657261 10.1155/2010/657261 PubMed DOI PMC
Villar M., Torina A., Nunez Y., Zivkovic Z., Marina A., Alongi A., et al. (2010b). Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Sci. 8:43 10.1186/1477-5956-8-43 PubMed DOI PMC
Wang W. A., Groenendyk J., Michalak M. (2012). Calreticulin signaling in health and disease. Int. J. Biochem. Cell Biol. 44, 842–846 10.1016/j.biocel.2012.02.009 PubMed DOI
Wang Y., Zhu S. (2011). The defensin gene family expansion in the tick Ixodes scapularis. Dev. Comp. Immunol. 35, 1128–1134 10.1016/j.dci.2011.03.030 PubMed DOI
Woldehiwet Z. (2010). The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 167, 108–122 10.1016/j.vetpar.2009.09.013 PubMed DOI
Yu D., Sheng Z., Xu X., Li J., Yang H., Liu Z., et al. (2006). A novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Peptides 27, 31–35 10.1016/j.peptides.2005.06.020 PubMed DOI
Zhang L., Zhang Y., Adusumilli S., Liu L., Narasimhan S., Dai J., et al. (2011). Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog. 7:e1002079 10.1371/journal.ppat.1002079 PubMed DOI PMC
Zhou J., Liao M., Ueda M., Gong H., Xuan X., Fujisaki K. (2007). Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides 28, 1304–1310 10.1016/j.peptides.2007.04.019 PubMed DOI
Zhou J., Ueda M., Umemiya R., Battsetseg B., Boldbaatar D., Xuan X., et al. (2006). A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem. Mol. Biol. 36, 527–535 10.1016/j.ibmb.2006.03.003 PubMed DOI
Zhu Y., Thangamani S., Ho B., Ding J. L. (2005). The ancient origin of the complement system. EMBO J. 24, 382–394 10.1038/sj.emboj.7600533 PubMed DOI PMC
Zintl A., Mulcahy G., Skerrett H. E., Taylor S. M., Gray J. S. (2003). Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbiol. Rev. 16, 622–636 10.1128/CMR.16.4.622-636.2003 PubMed DOI PMC
Zivkovic Z., Blouin E. F., Manzano-Roman R., Almazan C., Naranjo V., Massung R. F., et al. (2009). Anaplasma phagocytophilum and Anaplasma marginale elicit different gene expression responses in cultured tick cells. Comp. Funct. Genomics 705034 10.1155/2009/705034 PubMed DOI PMC
Zivkovic Z., Torina A., Mitra R., Alongi A., Scimeca S., Kocan K. M., et al. (2010). Subolesin expression in response to pathogen infection in ticks. BMC Immunol. 11:7 10.1186/1471-2172-11-7 PubMed DOI PMC
Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
Experimental Infection of Mice and Ticks with the Human Isolate of Anaplasma phagocytophilum NY-18
Serpins in Tick Physiology and Tick-Host Interaction
Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges
Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice
Functional Evolution of Subolesin/Akirin
The Complexity of Piroplasms Life Cycles
Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions