Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 EB005011
NIBIB NIH HHS - United States
U54 RR020843
NCRR NIH HHS - United States
U54 RR020843-028126
NCRR NIH HHS - United States
U54-RR020843
NCRR NIH HHS - United States
PubMed
19875079
PubMed Central
PMC2801564
DOI
10.1016/j.chembiol.2009.09.009
PII: S1074-5521(09)00291-9
Knihovny.cz E-zdroje
- MeSH
- cysteinové endopeptidasy metabolismus MeSH
- endopeptidasy metabolismus MeSH
- hemoglobiny chemie metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- katalytická doména MeSH
- kathepsin B metabolismus MeSH
- kathepsin C metabolismus MeSH
- kathepsin D metabolismus MeSH
- kathepsin L metabolismus MeSH
- klíště enzymologie MeSH
- koncentrace vodíkových iontů MeSH
- molekulární sekvence - údaje MeSH
- proteomika metody MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- asparaginylendopeptidase MeSH Prohlížeč
- cysteinové endopeptidasy MeSH
- endopeptidasy MeSH
- hemoglobiny MeSH
- inhibitory enzymů MeSH
- kathepsin B MeSH
- kathepsin C MeSH
- kathepsin D MeSH
- kathepsin L MeSH
Hemoglobin digestion is an essential process for blood-feeding parasites. Using chemical tools, we deconvoluted the intracellular hemoglobinolytic cascade in the tick Ixodes ricinus, a vector of Lyme disease and tick-borne encephalitis. In tick gut tissue, a network of peptidases was demonstrated through imaging with specific activity-based probes and activity profiling with peptidic substrates and inhibitors. This peptidase network is induced upon blood feeding and degrades hemoglobin at acidic pH. Selective inhibitors were applied to dissect the roles of the individual peptidases and to determine the peptidase-specific cleavage map of the hemoglobin molecule. The degradation pathway is initiated by endopeptidases of aspartic and cysteine class (cathepsin D supported by cathepsin L and legumain) and is continued by cysteine amino- and carboxy-dipeptidases (cathepsins C and B). The identified enzymes are potential targets to developing novel anti-tick vaccines.
Zobrazit více v PubMed
Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae) BMC. Genomics. 2008;9:552. PubMed PMC
Auld DS. Use of chelating agents to inhibit enzymes. Methods Enzymol. 1988;158:110–114. PubMed
Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 1982;201:189–198. PubMed PMC
Barrett AJ, Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt C):535–561. PubMed
Barrett AJ, Rawlings ND, Woessner JF. Handbook of Proteolytic Enzymes. Elsevier; London: 2004.
Boldbaatar D, Sikalizyo SC, Battsetseg B, Xuan X, Fujisaki K. Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol. 2006;36:25–36. PubMed
Boys BL, Kuprowski MC, Konermann L. Symmetric behavior of hemoglobin alpha- and beta- subunits during acid-induced denaturation observed by electrospray mass spectrometry. Biochemistry. 2007;46:10675–10684. PubMed
Brinkworth RI, Prociv P, Loukas A, Brindley PJ. Hemoglobin-degrading, aspartic proteases of blood-feeding parasites: substrate specificity revealed by homology models. J. Biol. Chem. 2001;276:38844–38851. PubMed
Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood `n' guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004;20:241–248. PubMed
Caffrey CR, Ruppel A. Cathepsin B-like activity predominates over cathepsin L-like activity in adult Schistosoma mansoni and S. japonicum. Parasitol. Res. 1997;83:632–635. PubMed
Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Bromme D, Ellman JA, Craik CS. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 2006;281:12824–12832. PubMed
Coons LB, Alberti G. The Acari-Ticks. In Microscopic Anatomy of Invertebrates. In: Harrison FW, Foelix R, editors. Chelicerata Arthropoda. Vol. 8B. Wiley-Liss; New York: 1999. pp. 267–514.
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. PubMed PMC
de la Fuente J, Kocan KM. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol. 2006;28:275–283. PubMed
Delcroix M, Sajid M, Caffrey CR, Lim KC, Dvorak J, Hsieh I, Bahgat M, Dissous C, McKerrow JH. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 2006;281:39316–39329. PubMed
Ekici OD, Gotz MG, James KE, Li ZZ, Rukamp BJ, Asgian JL, Caffrey CR, Hansell E, Dvorak J, McKerrow JH, Potempa J, Travis J, Mikolajczyk J, Salvesen GS, Powers JC. Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases. J. Med. Chem. 2004;47:1889–1892. PubMed
Estrela A, Seixas A, Termignoni C. A cysteine endopeptidase from tick (Rhipicephalus (Boophilus) microplus) larvae with vitellin digestion activity. Comp Biochem. Physiol B Biochem. Mol. Biol. 2007;148:410–416. PubMed
Fonovic M, Bogyo M. Activity-based probes as a tool for functional proteomic analysis of proteases. Expert. Rev. Proteomics. 2008;5:721–730. PubMed PMC
Garcia-Calvo M, Peterson EP, Rasper DM, Vaillancourt JP, Zamboni R, Nicholson DW, Thornberry NA. Purification and catalytic properties of human caspase family members. Cell Death. Differ. 1999;6:362–369. PubMed
Goldberg DE. Hemoglobin degradation. Curr. Top. Microbiol. Immunol. 2005;295:275–291. PubMed
Goldberg DE, Slater AF, Beavis R, Chait B, Cerami A, Henderson GB. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J. Exp. Med. 1991;173:961–969. PubMed PMC
Green GD, Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J. Biol. Chem. 1981;256:1923–1928. PubMed
Greenbaum D, Baruch A, Hayrapetian L, Darula Z, Burlingame A, Medzihradszky KF, Bogyo M. Chemical approaches for functionally probing the proteome. Mol. Cell Proteomics. 2002;1:60–68. PubMed
Grunclova L, Horn M, Vancova M, Sojka D, Franta Z, Mares M, Kopacek P. Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol. Chem. 2006;387:1635–1644. PubMed
Hatta T, Kazama K, Miyoshi T, Umemiya R, Liao M, Inoue N, Xuan X, Tsuji N, Fujisaki K. Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int. J. Parasitol. 2006;36:1123–1132. PubMed
Horn M, Baudys M, Voburka Z, Kluh I, Vondrasek J, Mares M. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I) Protein Sci. 2002;11:933–943. PubMed PMC
James GT. Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal. Biochem. 1978;86:574–579. PubMed
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129(Suppl):S3–14. PubMed
Kam CM, Gotz MG, Koot G, McGuire M, Thiele D, Hudig D, Powers JC. Design and evaluation of inhibitors for dipeptidyl peptidase I (Cathepsin C) Arch. Biochem. Biophys. 2004;427:123–134. PubMed
Kato D, Boatright KM, Berger AB, Nazif T, Blum G, Ryan C, Chehade KA, Salvesen GS, Bogyo M. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 2005;1:33–38. PubMed
Kembhavi AA, Buttle DJ, Knight CG, Barrett AJ. The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch. Biochem. Biophys. 1993;303:208–213. PubMed
Knight CG, Barrett AJ. Interaction of human cathepsin D with the inhibitor pepstatin. Biochem. J. 1976;155:117–125. PubMed PMC
Lara FA, Lins U, Bechara GH, Oliveira PL. Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 2005;208:3093–3101. PubMed
Lara FA, Lins U, Paiva-Silva G, Almeida IC, Braga CM, Miguens FC, Oliveira PL, nsa-Petretski M. A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. J. Exp. Biol. 2003;206:1707–1715. PubMed
Majer P, Collins JR, Gulnik SV, Erickson JW. Structure-based subsite specificity mapping of human cathepsin D using statine-based inhibitors. Protein Sci. 1997;6:1458–1466. PubMed PMC
Masa M, Maresova L, Vondrasek J, Horn M, Jezek J, Mares M. Cathepsin D propeptide: mechanism and regulation of its interaction with the catalytic core. Biochemistry. 2006;45:15474–15482. PubMed
McGuire MJ, Lipsky PE, Thiele DL. Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C) Biochim. Biophys. Acta. 1997;1351:267–273. PubMed
Mendiola J, Alonso M, Marquetti MC, Finlay C. Boophilus microplus: multiple proteolytic activities in the midgut. Exp. Parasitol. 1996;82:27–33. PubMed
Miyoshi T, Tsuji N, Islam MK, Huang X, Motobu M, Alim MA, Fujisaki K. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. J. Insect Physiol. 2007;53:195–203. PubMed
Motobu M, Tsuji N, Miyoshi T, Huang X, Islam MK, Alim MA, Fujisaki K. Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis. FEBS J. 2007;274:3299–3312. PubMed
Murata M, Miyashita S, Yokoo C, Tamai M, Hanada K, Hatayama K, Towatari T, Nikawa T, Katunuma N. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 1991;280:307–310. PubMed
Nicklin MJ, Barrett AJ. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem. J. 1984;223:245–253. PubMed PMC
Pohl J, Davinic S, Blaha I, Strop P, Kostka V. Chromophoric and fluorophoric peptide substrates cleaved through the dipeptidyl carboxypeptidase activity of cathepsin B. Anal. Biochem. 1987;165:96–101. PubMed
Ranjit N, Zhan B, Hamilton B, Stenzel D, Lowther J, Pearson M, Gorman J, Hotez P, Loukas A. Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. J. Infect. Dis. 2009;199:904–912. PubMed
Renard G, Garcia JF, Cardoso FC, Richter MF, Sakanari JA, Ozaki LS, Termignoni C, Masuda A. Cloning and functional expression of a Boophilus microplus cathepsin L-like enzyme. Insect Biochem. Mol. Biol. 2000;30:1017–1026. PubMed
Rotari VI, Dando PM, Barrett AJ. Legumain forms from plants and animals differ in their specificity. Biol. Chem. 2001;382:953–959. PubMed
Schagger H. Tricine-SDS-PAGE. Nat. Protoc. 2006;1:16–22. PubMed
Sexton KB, Witte MD, Blum G, Bogyo M. Design of cell-permeable, fluorescent activity-based probes for the lysosomal cysteine protease asparaginyl endopeptidase (AEP)/legumain. Bioorg. Med. Chem. Lett. 2007;17:649–653. PubMed PMC
Sforca ML, Machado A, Figueredo RC, Oyama S, Jr, Silva FD, Miranda A, Daffre S, Miranda MT, Spisni A, Pertinhez TA. The micelle-bound structure of an antimicrobial peptide derived from the alpha-chain of bovine hemoglobin isolated from the tick Boophilus microplus. Biochemistry. 2005;44:6440–6451. PubMed
Sojka D, Franta Z, Horn M, Hajdusek O, Caffrey CR, Mares M, Kopacek P. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit. Vectors. 2008;1:7. PubMed PMC
Sojka D, Hajdusek O, Dvorak J, Sajid M, Franta Z, Schneider EL, Craik CS, Vancova M, Buresova V, Bogyo M, Sexton KB, McKerrow JH, Caffrey CR, Kopacek P. IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. PubMed PMC
Sonenshine DE. Biology of the Tick. vol. 1. Oxford University Press; New York: 1991.
Sorgine MH, Logullo C, Zingali RB, Paiva-Silva GO, Juliano L, Oliveira PL. A heme-binding aspartic proteinase from the eggs of the hard tick Boophilus microplus. J. Biol. Chem. 2000;275:28659–28665. PubMed
Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS. Pathog. 2008;4:e1000062. PubMed PMC
Turk V, Stoka V, Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci. 2008;13:5406–5420. PubMed
Williamson AL, Lecchi P, Turk BE, Choe Y, Hotez PJ, McKerrow JH, Cantley LC, Sajid M, Craik CS, Loukas A. A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. J. Biol. Chem. 2004;279:35950–35957. PubMed
Yuan F, Verhelst SH, Blum G, Coussens LM, Bogyo M. A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J. Am. Chem. Soc. 2006;128:5616–5617. PubMed
Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks
Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions
Interaction of the tick immune system with transmitted pathogens
Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1)
Cysteine proteases from bloodfeeding arthropod ectoparasites
Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus
Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus