Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics

. 2009 Oct 30 ; 16 (10) : 1053-63.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19875079

Grantová podpora
R01 EB005011 NIBIB NIH HHS - United States
U54 RR020843 NCRR NIH HHS - United States
U54 RR020843-028126 NCRR NIH HHS - United States
U54-RR020843 NCRR NIH HHS - United States

Odkazy

PubMed 19875079
PubMed Central PMC2801564
DOI 10.1016/j.chembiol.2009.09.009
PII: S1074-5521(09)00291-9
Knihovny.cz E-zdroje

Hemoglobin digestion is an essential process for blood-feeding parasites. Using chemical tools, we deconvoluted the intracellular hemoglobinolytic cascade in the tick Ixodes ricinus, a vector of Lyme disease and tick-borne encephalitis. In tick gut tissue, a network of peptidases was demonstrated through imaging with specific activity-based probes and activity profiling with peptidic substrates and inhibitors. This peptidase network is induced upon blood feeding and degrades hemoglobin at acidic pH. Selective inhibitors were applied to dissect the roles of the individual peptidases and to determine the peptidase-specific cleavage map of the hemoglobin molecule. The degradation pathway is initiated by endopeptidases of aspartic and cysteine class (cathepsin D supported by cathepsin L and legumain) and is continued by cysteine amino- and carboxy-dipeptidases (cathepsins C and B). The identified enzymes are potential targets to developing novel anti-tick vaccines.

Zobrazit více v PubMed

Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae) BMC. Genomics. 2008;9:552. PubMed PMC

Auld DS. Use of chelating agents to inhibit enzymes. Methods Enzymol. 1988;158:110–114. PubMed

Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 1982;201:189–198. PubMed PMC

Barrett AJ, Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt C):535–561. PubMed

Barrett AJ, Rawlings ND, Woessner JF. Handbook of Proteolytic Enzymes. Elsevier; London: 2004.

Boldbaatar D, Sikalizyo SC, Battsetseg B, Xuan X, Fujisaki K. Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol. 2006;36:25–36. PubMed

Boys BL, Kuprowski MC, Konermann L. Symmetric behavior of hemoglobin alpha- and beta- subunits during acid-induced denaturation observed by electrospray mass spectrometry. Biochemistry. 2007;46:10675–10684. PubMed

Brinkworth RI, Prociv P, Loukas A, Brindley PJ. Hemoglobin-degrading, aspartic proteases of blood-feeding parasites: substrate specificity revealed by homology models. J. Biol. Chem. 2001;276:38844–38851. PubMed

Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood `n' guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004;20:241–248. PubMed

Caffrey CR, Ruppel A. Cathepsin B-like activity predominates over cathepsin L-like activity in adult Schistosoma mansoni and S. japonicum. Parasitol. Res. 1997;83:632–635. PubMed

Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Bromme D, Ellman JA, Craik CS. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 2006;281:12824–12832. PubMed

Coons LB, Alberti G. The Acari-Ticks. In Microscopic Anatomy of Invertebrates. In: Harrison FW, Foelix R, editors. Chelicerata Arthropoda. Vol. 8B. Wiley-Liss; New York: 1999. pp. 267–514.

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. PubMed PMC

de la Fuente J, Kocan KM. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol. 2006;28:275–283. PubMed

Delcroix M, Sajid M, Caffrey CR, Lim KC, Dvorak J, Hsieh I, Bahgat M, Dissous C, McKerrow JH. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 2006;281:39316–39329. PubMed

Ekici OD, Gotz MG, James KE, Li ZZ, Rukamp BJ, Asgian JL, Caffrey CR, Hansell E, Dvorak J, McKerrow JH, Potempa J, Travis J, Mikolajczyk J, Salvesen GS, Powers JC. Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases. J. Med. Chem. 2004;47:1889–1892. PubMed

Estrela A, Seixas A, Termignoni C. A cysteine endopeptidase from tick (Rhipicephalus (Boophilus) microplus) larvae with vitellin digestion activity. Comp Biochem. Physiol B Biochem. Mol. Biol. 2007;148:410–416. PubMed

Fonovic M, Bogyo M. Activity-based probes as a tool for functional proteomic analysis of proteases. Expert. Rev. Proteomics. 2008;5:721–730. PubMed PMC

Garcia-Calvo M, Peterson EP, Rasper DM, Vaillancourt JP, Zamboni R, Nicholson DW, Thornberry NA. Purification and catalytic properties of human caspase family members. Cell Death. Differ. 1999;6:362–369. PubMed

Goldberg DE. Hemoglobin degradation. Curr. Top. Microbiol. Immunol. 2005;295:275–291. PubMed

Goldberg DE, Slater AF, Beavis R, Chait B, Cerami A, Henderson GB. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J. Exp. Med. 1991;173:961–969. PubMed PMC

Green GD, Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J. Biol. Chem. 1981;256:1923–1928. PubMed

Greenbaum D, Baruch A, Hayrapetian L, Darula Z, Burlingame A, Medzihradszky KF, Bogyo M. Chemical approaches for functionally probing the proteome. Mol. Cell Proteomics. 2002;1:60–68. PubMed

Grunclova L, Horn M, Vancova M, Sojka D, Franta Z, Mares M, Kopacek P. Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol. Chem. 2006;387:1635–1644. PubMed

Hatta T, Kazama K, Miyoshi T, Umemiya R, Liao M, Inoue N, Xuan X, Tsuji N, Fujisaki K. Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int. J. Parasitol. 2006;36:1123–1132. PubMed

Horn M, Baudys M, Voburka Z, Kluh I, Vondrasek J, Mares M. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I) Protein Sci. 2002;11:933–943. PubMed PMC

James GT. Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal. Biochem. 1978;86:574–579. PubMed

Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129(Suppl):S3–14. PubMed

Kam CM, Gotz MG, Koot G, McGuire M, Thiele D, Hudig D, Powers JC. Design and evaluation of inhibitors for dipeptidyl peptidase I (Cathepsin C) Arch. Biochem. Biophys. 2004;427:123–134. PubMed

Kato D, Boatright KM, Berger AB, Nazif T, Blum G, Ryan C, Chehade KA, Salvesen GS, Bogyo M. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 2005;1:33–38. PubMed

Kembhavi AA, Buttle DJ, Knight CG, Barrett AJ. The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch. Biochem. Biophys. 1993;303:208–213. PubMed

Knight CG, Barrett AJ. Interaction of human cathepsin D with the inhibitor pepstatin. Biochem. J. 1976;155:117–125. PubMed PMC

Lara FA, Lins U, Bechara GH, Oliveira PL. Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 2005;208:3093–3101. PubMed

Lara FA, Lins U, Paiva-Silva G, Almeida IC, Braga CM, Miguens FC, Oliveira PL, nsa-Petretski M. A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. J. Exp. Biol. 2003;206:1707–1715. PubMed

Majer P, Collins JR, Gulnik SV, Erickson JW. Structure-based subsite specificity mapping of human cathepsin D using statine-based inhibitors. Protein Sci. 1997;6:1458–1466. PubMed PMC

Masa M, Maresova L, Vondrasek J, Horn M, Jezek J, Mares M. Cathepsin D propeptide: mechanism and regulation of its interaction with the catalytic core. Biochemistry. 2006;45:15474–15482. PubMed

McGuire MJ, Lipsky PE, Thiele DL. Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C) Biochim. Biophys. Acta. 1997;1351:267–273. PubMed

Mendiola J, Alonso M, Marquetti MC, Finlay C. Boophilus microplus: multiple proteolytic activities in the midgut. Exp. Parasitol. 1996;82:27–33. PubMed

Miyoshi T, Tsuji N, Islam MK, Huang X, Motobu M, Alim MA, Fujisaki K. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. J. Insect Physiol. 2007;53:195–203. PubMed

Motobu M, Tsuji N, Miyoshi T, Huang X, Islam MK, Alim MA, Fujisaki K. Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis. FEBS J. 2007;274:3299–3312. PubMed

Murata M, Miyashita S, Yokoo C, Tamai M, Hanada K, Hatayama K, Towatari T, Nikawa T, Katunuma N. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 1991;280:307–310. PubMed

Nicklin MJ, Barrett AJ. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem. J. 1984;223:245–253. PubMed PMC

Pohl J, Davinic S, Blaha I, Strop P, Kostka V. Chromophoric and fluorophoric peptide substrates cleaved through the dipeptidyl carboxypeptidase activity of cathepsin B. Anal. Biochem. 1987;165:96–101. PubMed

Ranjit N, Zhan B, Hamilton B, Stenzel D, Lowther J, Pearson M, Gorman J, Hotez P, Loukas A. Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. J. Infect. Dis. 2009;199:904–912. PubMed

Renard G, Garcia JF, Cardoso FC, Richter MF, Sakanari JA, Ozaki LS, Termignoni C, Masuda A. Cloning and functional expression of a Boophilus microplus cathepsin L-like enzyme. Insect Biochem. Mol. Biol. 2000;30:1017–1026. PubMed

Rotari VI, Dando PM, Barrett AJ. Legumain forms from plants and animals differ in their specificity. Biol. Chem. 2001;382:953–959. PubMed

Schagger H. Tricine-SDS-PAGE. Nat. Protoc. 2006;1:16–22. PubMed

Sexton KB, Witte MD, Blum G, Bogyo M. Design of cell-permeable, fluorescent activity-based probes for the lysosomal cysteine protease asparaginyl endopeptidase (AEP)/legumain. Bioorg. Med. Chem. Lett. 2007;17:649–653. PubMed PMC

Sforca ML, Machado A, Figueredo RC, Oyama S, Jr, Silva FD, Miranda A, Daffre S, Miranda MT, Spisni A, Pertinhez TA. The micelle-bound structure of an antimicrobial peptide derived from the alpha-chain of bovine hemoglobin isolated from the tick Boophilus microplus. Biochemistry. 2005;44:6440–6451. PubMed

Sojka D, Franta Z, Horn M, Hajdusek O, Caffrey CR, Mares M, Kopacek P. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit. Vectors. 2008;1:7. PubMed PMC

Sojka D, Hajdusek O, Dvorak J, Sajid M, Franta Z, Schneider EL, Craik CS, Vancova M, Buresova V, Bogyo M, Sexton KB, McKerrow JH, Caffrey CR, Kopacek P. IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. PubMed PMC

Sonenshine DE. Biology of the Tick. vol. 1. Oxford University Press; New York: 1991.

Sorgine MH, Logullo C, Zingali RB, Paiva-Silva GO, Juliano L, Oliveira PL. A heme-binding aspartic proteinase from the eggs of the hard tick Boophilus microplus. J. Biol. Chem. 2000;275:28659–28665. PubMed

Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS. Pathog. 2008;4:e1000062. PubMed PMC

Turk V, Stoka V, Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci. 2008;13:5406–5420. PubMed

Williamson AL, Lecchi P, Turk BE, Choe Y, Hotez PJ, McKerrow JH, Cantley LC, Sajid M, Craik CS, Loukas A. A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. J. Biol. Chem. 2004;279:35950–35957. PubMed

Yuan F, Verhelst SH, Blum G, Coussens LM, Bogyo M. A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J. Am. Chem. Soc. 2006;128:5616–5617. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nature-Inspired Gallinamides Are Potent Antischistosomal Agents: Inhibition of the Cathepsin B1 Protease Target and Binding Mode Analysis

. 2024 Jun 14 ; 10 (6) : 1935-1948. [epub] 20240517

Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome

. 2023 Nov ; 22 (11) : 100663. [epub] 20231012

Blood-feeding adaptations and virome assessment of the poultry red mite Dermanyssus gallinae guided by RNA-seq

. 2023 May 13 ; 6 (1) : 517. [epub] 20230513

Highly potent inhibitors of cathepsin K with a differently positioned cyanohydrazide warhead: structural analysis of binding mode to mature and zymogen-like enzymes

. 2022 Dec ; 37 (1) : 515-526.

Mialostatin, a Novel Midgut Cystatin from Ixodes ricinus Ticks: Crystal Structure and Regulation of Host Blood Digestion

. 2021 May 20 ; 22 (10) : . [epub] 20210520

Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling

. 2021 Apr 15 ; 22 (1) : 274. [epub] 20210415

Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea)

. 2020 ; 15 (6) : e0231681. [epub] 20200617

SmSP2: A serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties

. 2018 Apr ; 12 (4) : e0006446. [epub] 20180420

Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction

. 2017 ; 7 () : 216. [epub] 20170529

RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks

. 2016 Nov 08 ; 6 () : 36695. [epub] 20161108

Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions

. 2016 Mar ; 32 (3) : 242-254. [epub] 20151028

Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host

. 2015 Mar 13 ; 5 () : 9103. [epub] 20150313

Interaction of the tick immune system with transmitted pathogens

. 2013 ; 3 () : 26. [epub] 20130716

Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1)

. 2012 Jun 15 ; 287 (25) : 21152-63. [epub] 20120426

Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni

. 2011 Oct 14 ; 286 (41) : 35770-35781. [epub] 20110810

Cysteine proteases from bloodfeeding arthropod ectoparasites

. 2011 ; 712 () : 177-91.

Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus

. 2010 Dec 14 ; 3 () : 119. [epub] 20101214

Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus

. 2010 Nov 01 ; 66 (Pt 11) : 1453-7. [epub] 20101028

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...