Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I)

. 2002 Apr ; 11 (4) : 933-43.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid11910036

The mature bovine cathepsin C (CC) molecule is composed of four identical monomers, each proteolytically processed into three chains. Five intrachain disulfides and three nonpaired cysteine residues per monomer were identified. Beside catalytic Cys234 in the active site, free-thiol Cys331 and Cys424 were characterized. Cys424 can be classified as inaccessible buried residue. Selective modification of Cys331 results in dissociation of native CC tetramer into dimers. The 3D homology-based model of the CC catalytic core suggests that Cys331 becomes exposed as the activation peptide is removed during procathepsin C activation. The model further shows that exposed Cys331 is surrounded by a surface hydrophobic cluster, unique to CC, forming a dimer-dimer interaction interface. Substrate/inhibitor recognition of the active site in the CC dimer differs significantly from that in the native tetramer. Taken together, a mechanism is proposed that assumes that the CC tetramer formation results in a site-specific occlusion of endopeptidase-like active site cleft of each CC monomeric unit. Thus, tetramerization provides for the structural basis of the dipeptidyl peptidase activity of CC through a substrate access-limiting mechanism different from those found in homologous monomeric exopeptidases cathepsin H and B. In conclusion, the mechanism of tetramer formation as well as specific posttranslational processing segregates CC in the family of papain proteases.

Zobrazit více v PubMed

Barrett, A.J., Kembhavi, A.A., Brown, M.A., Kirschke, H., Knight, C.G., Tamai, M., and Hanada, K. 1982. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 201 189–198. PubMed PMC

Baudyš, M., Meloun, B., Gan-Erdene, T., Fusek, M., Mareš, M., Kostka, V., Pohl, J., and Blake, C.C.F. 1991. S-S bridges of cathepsin B and H from bovine spleen: A basis for cathepsin B model building and possible functional implications for discrimination between exo- and endopeptidase activities among cathepsins B, H and L. Biomed. Biochem. Acta 50 569–577. PubMed

Baudyš, M., Meloun, B., Gan-Erdene, T., Pohl, J., and Kostka, V. 1990. Disulfide bridges of bovine spleen cathepsin B. Biol. Chem. Hoppe-Seylers 371 485–491. PubMed

Baudyš, M., Meloun, B., Pohl, J., and Kostka, V. 1988. Identification of the second (buried) cysteine residue and of the C-terminal disulfide bridge of bovine spleen cathepsin B. Biol. Chem. Hoppe-Seylers 369 169–174. PubMed

Berti, P.J. and Storer, A.C. 1995. Alignment/phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol. 246 273–283. PubMed

Cigic, B., Dahl, S.W., and Pain, R.H. 2000. The residual pro-part of cathepsin C fulfills the criteria required for an intramolecular chaperone in folding and stabilizing the human proenzyme. Biochemistry 39 12382–12390. PubMed

Cigic, B., Krizaj, I., Kralj, B., Turk, V., and Pain, R.H. 1998. Stoichiometry and heterogeneity of the pro-region chain in tetrameric human cathepsin C. Biochim. Biophys. Acta 1382 143–150. PubMed

Cornell, W.D., Cieplak, P., Bayly, C.I, Gould, I.R., Merz, K.M., Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. 1995. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117 5179–5197.

Coulombe, R., Grochulski, P., Sivaraman, J., Menard, R., Mort, J. S., and Cygler, M. 1996. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 15 5492–5503. PubMed PMC

Cuozzo, J.W. and Sahagian, G.G. 1994. Lysine is a common determinant for mannose phosphorylation of lysosomal proteins. J. Biol. Chem. 269 14490–14496. PubMed

Cygler, M., Sivaraman, J., Grochulski, P., Coulombe, R., Storer, A.C., and Mort, J.S. 1996. Structure of rat procathepsin B: Model for inhibition of cysteine protease activity by the proregion. Structure 4 405–416. PubMed

Dahl, S.W., Halkier, T., Lauritzen, C., Dolenc, I., Pedersen, J., Turk, V., and Turk, B. 2001. Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40 1671–1678. PubMed

Dolenc, I., Turk, B., Kos, J., and Turk, V. 1996. Interaction of human cathepsin C with chicken cystatin. FEBS Lett. 392 277–280. PubMed

Dolenc, I., Turk, B., Pungercic, G., Ritonja, A., and Turk, V. 1995. Oligomeric structure and substrate induced inhibition of human cathepsin C. J. Biol. Chem. 270 21626–21631. PubMed

Frye, C.C., Hershberger, C.L., and Zhang, H. 2000. Bovine dipeptidylaminopeptidase 1. U.S. Patent no. 6027911.

Green, G.D.J., and Shaw, E. 1981. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J. Biol. Chem. 256 1923–1928. PubMed

Guncar, G., Podobnik, M., Pungercar, J., Strukelj, B., Turk, V., Turk, D. 1998. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: Location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 6 51–61. PubMed

Hart, T.C., Hart, P.S., Bowden, D.W., Michalec, M.D., Callison, S.A., Walker, S.J., Zhang, Y., Firatli, E. 1999. Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome. J. Med. Genet. 36 881–887. PubMed PMC

Hart, P.S., Zhang, Y., Firatli, E., Uygur, C., Lotfazar, M., Michalec, M.D., Marks, J.J., Lu, X., Coates, B.J., Seow, W.K., Marshall, R., Williams, D., Reed, J.B., Wright, J.T., and Hart, T.C. 2000. Identification of cathepsin C mutations in ethnically diverse papillon-Lefevre syndrome patients. J. Med. Genet. 37 927–932. PubMed PMC

Hayashi, R. 1976. Carboxypeptidse Y. Methods Enzymol. 45 568–587. PubMed

Henschen, A. 1978. Disulfide bridges in the middle part of human fibrinogen. Hoppe-Seylers Z. Physiol. Chem. 359 1757–1770. PubMed

Hola-Jamriska, L., Tort, J.F., Dalton, J.P., Day, S.R., Fan, J., Aaskov, J., and Brindley, P.J. 1998. Cathepsin C from Schistosoma japonicum—cDNA encoding the preproenzyme and its phylogenetic relationships. Eur. J. Biochem. 255 527–534. PubMed

Horn, M., Pavlík, M., Dolečková, L., Baudyš, M., and Mareš, M. 2000. Arginine-based structures are specific inhibitors of cathepsin C. Application of peptide combinatorial libraries. Eur. J. Biochem. 267 3330–3336. PubMed

Horst, M. and Hasilik, A. 1991. Expression and maturation of human cathepsin D in baby-hamster kidney cells. Biochem. J. 273 355–361 PubMed PMC

Ishidoh, K., Muno, D., Sato, N., and Kominami, E. 1991. Molecular cloning of cDNA for rat cathepsin C. Cathepsin C, a cysteine proteinase with an extremely long propeptide. J. Biol. Chem. 266 16312–16317. PubMed

Jones, S., Marin, A., and Thornton, J.M. 2000. Protein domain interfaces: Characterization and comparison with oligomeric protein interfaces. Protein Eng. 13 77–82. PubMed

Kummer, J.A., Kamp, A.M., Citarella, F., Horrevoets, A.J., and Hack, C.E. 1996. Expression of human recombinant granzyme A zymogen and its activation by the cysteine proteinase cathepsin C. J. Biol. Chem. 271 9281–9286. PubMed

Kuribayashi, M., Yamada, H., Ohmori, T., Yanai, M., and Imoto, T. 1993. Endopeptidase activity of cathepsin C, dipeptidyl aminopeptidase I, from bovine spleen. J. Biochem. 113 441–449. PubMed

Larsen, T.A., Olson, A.J., and Goodsell, D.S. 1998. Morphology of protein–protein interfaces. Structure 6 421–427. PubMed

Lindley, H. 1972. The specificity of dipeptidyl aminopeptidase I (cathepsin C) and its use in peptide sequence studies. Biochem. J. 126 683–685. PubMed PMC

McDonald, J.K. and Schwabe, C. 1977. Intracellular exopeptidases. In Proteinases in mammalian cells tissues (ed. J.J. Barrett), pp. 311–391. North Holland Publishing, Amsterdam.

McDonald, J.K., Zeitman, B.B., Reilly, and T.J., Ellis, S. 1969. New observations on the substrate specificity of cathepsin C (dipeptidyl aminopeptidase I). Including the degradation of beta-corticotropin and other peptide hormones. J. Biol. Chem. 244 2693–709. PubMed

McEuen, A.R., Ashworth, D.M., and Walls, A.F. 1998. The conversion of recombinant human mast cell prochymase to enzymatically active chymase by dipeptidyl peptidase I is inhibited by heparin and histamine. Eur. J. Biochem. 253 300–308. PubMed

McGuire, M.J., Lipsky, P.E., and Thiele, D.L. 1992. Purification and characterization of dipeptidyl peptidase I from human spleen. Arch. Biochem. Biophys. 295 280–288. PubMed

McGuire, M.J., Lipsky, P.E., and Thiele, D.L. 1993. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J. Biol. Chem. 268 2458–2467. PubMed

McGuire, M.J., Lipsky, P.E., and Thiele, D.L. 1997. Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C). Biochim. Biophys. Acta 1351 267–273. PubMed

Meloun, B., Baudyš, M., Pohl, J., Pavlík, M., and Kostka, V. 1988. Amino acid sequence of bovine spleen cathepsin B. J. Biol. Chem. 263 9087–9093. PubMed

Metrione, R.M., Neves, A.G., and Fruton, J.S. 1966. Purification and properties of dipeptidyl transferase (cathepsin C). Biochemistry 5 1597–1604. PubMed

Metrione, R.M., Okuda, Y., and Fairclough, G.F. 1970. Subunit structure of dipeptidyl transferase. Biochemistry 9 2427–2432. PubMed

Muno, D., Ishidoh, K., Ueno, T., and Kominami, E. 1993. Processing and transport of the precursor of cathepsin C during its transfer into lysosomes. Arch. Biochem. Biophys. 306 103–110. PubMed

Murakami, M., Karnik, S.S., and Husain, A. 1995. Human prochymase activation. A novel role for heparin in zymogen processing. J. Biol. Chem. 270 2218–2223. PubMed

Musil, D., Zucic, D., Turk, D., Engh, R.A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N., and Bode, W. 1991. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: The structural basis for its specificity. EMBO J. 10 2321–2330. PubMed PMC

Mycek, M.J. 1970. Cathepsin C (dipeptidyl transferase). Methods Enzymol. 19 285–315.

Nicklin, M.J. and Barrett, A.J. 1984. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem. J. 223 245–253. PubMed PMC

Nikawa, T., Towatari, T., and Katunuma, N. 1992. Purification and characterization of cathepsin J from rat liver. Eur. J. Biochem. 204 381–393. PubMed

Paris, A., Strukelj, B., Pungercar, J., Renko, M., Dolenc, I., and Turk, V. 1995. Molecular cloning and sequence analysis of human preprocathepsin C. FEBS Lett. 369 326–330. PubMed

Pham, C.T. and Ley, T.J. 1999. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl. Acad. Sci. 96 8627–8632. PubMed PMC

Pham, C.T., Armstrong, R.J., Zimonjic, D.B., Popescu, N.C., Payan, D.G., and Ley, T.J. 1997. Molecular cloning, chromosomal localization, and expression of murine dipeptidyl peptidase I. J. Biol. Chem. 272 10695–10703. PubMed

Rao, N.V., Rao, G.V., Hoidal, J.R. 1997. Human dipeptidyl-peptidase I. Gene characterization, localization, and expression. J. Biol. Chem. 272 10260–10265. PubMed

Rawlings, N.D. and Barrett, A.J. 2000. MEROPS: The peptidase database. Nucleic Acids Res. 28 323–325. PubMed PMC

Riddles, P.W., Blakely, R.L., and Zerner, B. 1983. Reassessment of Ellman's reagent. Methods Enzymol. 91 49–60. PubMed

Sakai, K., Ren, S., and Schwartz, L.B. 1996. A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I. J. Clin. Invest. 97 988–95. PubMed PMC

Seifried, S.E., Wang, Y., and von Hippel, P.H. 1988. Fluorescent modification of the cysteine 202 residue of Escherichia coli transcription termination factor rho. J. Biol. Chem. 263 13511–13514 PubMed

Smyth, M.J., McGuire, M.J., and Thia, K.Y. 1995. Expression of recombinant human granzyme B. A processing and activation role for dipeptidyl peptidase I. J. Immunol. 154 6299–6305. PubMed

Toomes, C., James, J., Wood, A.J., Wu, C.L., McCormick, D., Lench, N., Hewitt, C., Moynihan, L., Roberts, E., Woods, C.G., Markham, A., Wong, M., Widmer, R., Ghaffar, K.A., Pemberton, M., Hussein, I.R., Temtamy, S.A., Davies, R., Read, A.P., Sloan, P., Dixon, M.J., and Thakker, N.S. 1999. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat. Genet. 23 421–424. PubMed

Veronese, F.M., Boccu, E., and Fontana, A. 1976. Isolation and properties of 6-phosphogluconate dehydrogenase from Escherichia coli. Some comparisons with the thermophilic enzyme from Bacillus stearothermophilus. Biochemistry 15 4026–4033. PubMed

Wilharm, E., Parry, M.A., Friebel, R., Tschesche, H., Matschiner, G., Sommerhoff, C.P., and Jenne, D.E. 1999. Generation of catalytically active granzyme K from Escherichia coli inclusion bodies and identification of efficient granzyme K inhibitors in human plasma. J. Biol. Chem. 274 27331–27337. PubMed

Wolters, P.J., Laig-Webster, M., and Caughey, G.H. 2000. Dipeptidyl peptidase I cleaves matrix-associated proteins and is expressed mainly by mast cells in normal dog airways. Am. J. Respir. Cell. Mol. Biol. 22 183–190. PubMed

Wolters, P.J., Raymond, W.W., Blount, J.L, and Caughey, G.H. 1998. Regulated expression, processing, and secretion of dog mast cell dipeptidyl peptidase I. J. Biol. Chem. 273 15514–1520. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

An Unusual Two-Domain Thyropin from Tick Saliva: NMR Solution Structure and Highly Selective Inhibition of Cysteine Cathepsins Modulated by Glycosaminoglycans

. 2024 Feb 13 ; 25 (4) : . [epub] 20240213

An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily

. 2023 Mar ; 299 (3) : 102970. [epub] 20230201

Characterization of P. falciparum dipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptide-based substrates and covalent inhibitors

. 2019 Oct ; 286 (20) : 3998-4023. [epub] 20190624

Enzymatic activity and immunoreactivity of Aca s 4, an alpha-amylase allergen from the storage mite Acarus siro

. 2012 Jan 31 ; 13 () : 3. [epub] 20120131

Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics

. 2009 Oct 30 ; 16 (10) : 1053-63.

Differential elicitation of two processing proteases controls the processing pattern of the trypsin proteinase inhibitor precursor in Nicotiana attenuata

. 2005 Sep ; 139 (1) : 375-88. [epub] 20050819

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...