Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I)
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11910036
PubMed Central
PMC2384168
DOI
10.1110/ps.2910102
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- cystein chemie MeSH
- disulfidy chemie MeSH
- kathepsin C chemie izolace a purifikace metabolismus MeSH
- konformace proteinů MeSH
- lysin chemie MeSH
- molekulární sekvence - údaje MeSH
- molekulová hmotnost MeSH
- peptidové fragmenty MeSH
- posttranslační úpravy proteinů MeSH
- sbalování proteinů MeSH
- sekvence aminokyselin MeSH
- skot MeSH
- slezina enzymologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystein MeSH
- disulfidy MeSH
- kathepsin C MeSH
- lysin MeSH
- peptidové fragmenty MeSH
The mature bovine cathepsin C (CC) molecule is composed of four identical monomers, each proteolytically processed into three chains. Five intrachain disulfides and three nonpaired cysteine residues per monomer were identified. Beside catalytic Cys234 in the active site, free-thiol Cys331 and Cys424 were characterized. Cys424 can be classified as inaccessible buried residue. Selective modification of Cys331 results in dissociation of native CC tetramer into dimers. The 3D homology-based model of the CC catalytic core suggests that Cys331 becomes exposed as the activation peptide is removed during procathepsin C activation. The model further shows that exposed Cys331 is surrounded by a surface hydrophobic cluster, unique to CC, forming a dimer-dimer interaction interface. Substrate/inhibitor recognition of the active site in the CC dimer differs significantly from that in the native tetramer. Taken together, a mechanism is proposed that assumes that the CC tetramer formation results in a site-specific occlusion of endopeptidase-like active site cleft of each CC monomeric unit. Thus, tetramerization provides for the structural basis of the dipeptidyl peptidase activity of CC through a substrate access-limiting mechanism different from those found in homologous monomeric exopeptidases cathepsin H and B. In conclusion, the mechanism of tetramer formation as well as specific posttranslational processing segregates CC in the family of papain proteases.
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences 16610 Praha Czech Republic
Zobrazit více v PubMed
Barrett, A.J., Kembhavi, A.A., Brown, M.A., Kirschke, H., Knight, C.G., Tamai, M., and Hanada, K. 1982. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 201 189–198. PubMed PMC
Baudyš, M., Meloun, B., Gan-Erdene, T., Fusek, M., Mareš, M., Kostka, V., Pohl, J., and Blake, C.C.F. 1991. S-S bridges of cathepsin B and H from bovine spleen: A basis for cathepsin B model building and possible functional implications for discrimination between exo- and endopeptidase activities among cathepsins B, H and L. Biomed. Biochem. Acta 50 569–577. PubMed
Baudyš, M., Meloun, B., Gan-Erdene, T., Pohl, J., and Kostka, V. 1990. Disulfide bridges of bovine spleen cathepsin B. Biol. Chem. Hoppe-Seylers 371 485–491. PubMed
Baudyš, M., Meloun, B., Pohl, J., and Kostka, V. 1988. Identification of the second (buried) cysteine residue and of the C-terminal disulfide bridge of bovine spleen cathepsin B. Biol. Chem. Hoppe-Seylers 369 169–174. PubMed
Berti, P.J. and Storer, A.C. 1995. Alignment/phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol. 246 273–283. PubMed
Cigic, B., Dahl, S.W., and Pain, R.H. 2000. The residual pro-part of cathepsin C fulfills the criteria required for an intramolecular chaperone in folding and stabilizing the human proenzyme. Biochemistry 39 12382–12390. PubMed
Cigic, B., Krizaj, I., Kralj, B., Turk, V., and Pain, R.H. 1998. Stoichiometry and heterogeneity of the pro-region chain in tetrameric human cathepsin C. Biochim. Biophys. Acta 1382 143–150. PubMed
Cornell, W.D., Cieplak, P., Bayly, C.I, Gould, I.R., Merz, K.M., Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. 1995. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117 5179–5197.
Coulombe, R., Grochulski, P., Sivaraman, J., Menard, R., Mort, J. S., and Cygler, M. 1996. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 15 5492–5503. PubMed PMC
Cuozzo, J.W. and Sahagian, G.G. 1994. Lysine is a common determinant for mannose phosphorylation of lysosomal proteins. J. Biol. Chem. 269 14490–14496. PubMed
Cygler, M., Sivaraman, J., Grochulski, P., Coulombe, R., Storer, A.C., and Mort, J.S. 1996. Structure of rat procathepsin B: Model for inhibition of cysteine protease activity by the proregion. Structure 4 405–416. PubMed
Dahl, S.W., Halkier, T., Lauritzen, C., Dolenc, I., Pedersen, J., Turk, V., and Turk, B. 2001. Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40 1671–1678. PubMed
Dolenc, I., Turk, B., Kos, J., and Turk, V. 1996. Interaction of human cathepsin C with chicken cystatin. FEBS Lett. 392 277–280. PubMed
Dolenc, I., Turk, B., Pungercic, G., Ritonja, A., and Turk, V. 1995. Oligomeric structure and substrate induced inhibition of human cathepsin C. J. Biol. Chem. 270 21626–21631. PubMed
Frye, C.C., Hershberger, C.L., and Zhang, H. 2000. Bovine dipeptidylaminopeptidase 1. U.S. Patent no. 6027911.
Green, G.D.J., and Shaw, E. 1981. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J. Biol. Chem. 256 1923–1928. PubMed
Guncar, G., Podobnik, M., Pungercar, J., Strukelj, B., Turk, V., Turk, D. 1998. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: Location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 6 51–61. PubMed
Hart, T.C., Hart, P.S., Bowden, D.W., Michalec, M.D., Callison, S.A., Walker, S.J., Zhang, Y., Firatli, E. 1999. Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome. J. Med. Genet. 36 881–887. PubMed PMC
Hart, P.S., Zhang, Y., Firatli, E., Uygur, C., Lotfazar, M., Michalec, M.D., Marks, J.J., Lu, X., Coates, B.J., Seow, W.K., Marshall, R., Williams, D., Reed, J.B., Wright, J.T., and Hart, T.C. 2000. Identification of cathepsin C mutations in ethnically diverse papillon-Lefevre syndrome patients. J. Med. Genet. 37 927–932. PubMed PMC
Hayashi, R. 1976. Carboxypeptidse Y. Methods Enzymol. 45 568–587. PubMed
Henschen, A. 1978. Disulfide bridges in the middle part of human fibrinogen. Hoppe-Seylers Z. Physiol. Chem. 359 1757–1770. PubMed
Hola-Jamriska, L., Tort, J.F., Dalton, J.P., Day, S.R., Fan, J., Aaskov, J., and Brindley, P.J. 1998. Cathepsin C from Schistosoma japonicum—cDNA encoding the preproenzyme and its phylogenetic relationships. Eur. J. Biochem. 255 527–534. PubMed
Horn, M., Pavlík, M., Dolečková, L., Baudyš, M., and Mareš, M. 2000. Arginine-based structures are specific inhibitors of cathepsin C. Application of peptide combinatorial libraries. Eur. J. Biochem. 267 3330–3336. PubMed
Horst, M. and Hasilik, A. 1991. Expression and maturation of human cathepsin D in baby-hamster kidney cells. Biochem. J. 273 355–361 PubMed PMC
Ishidoh, K., Muno, D., Sato, N., and Kominami, E. 1991. Molecular cloning of cDNA for rat cathepsin C. Cathepsin C, a cysteine proteinase with an extremely long propeptide. J. Biol. Chem. 266 16312–16317. PubMed
Jones, S., Marin, A., and Thornton, J.M. 2000. Protein domain interfaces: Characterization and comparison with oligomeric protein interfaces. Protein Eng. 13 77–82. PubMed
Kummer, J.A., Kamp, A.M., Citarella, F., Horrevoets, A.J., and Hack, C.E. 1996. Expression of human recombinant granzyme A zymogen and its activation by the cysteine proteinase cathepsin C. J. Biol. Chem. 271 9281–9286. PubMed
Kuribayashi, M., Yamada, H., Ohmori, T., Yanai, M., and Imoto, T. 1993. Endopeptidase activity of cathepsin C, dipeptidyl aminopeptidase I, from bovine spleen. J. Biochem. 113 441–449. PubMed
Larsen, T.A., Olson, A.J., and Goodsell, D.S. 1998. Morphology of protein–protein interfaces. Structure 6 421–427. PubMed
Lindley, H. 1972. The specificity of dipeptidyl aminopeptidase I (cathepsin C) and its use in peptide sequence studies. Biochem. J. 126 683–685. PubMed PMC
McDonald, J.K. and Schwabe, C. 1977. Intracellular exopeptidases. In Proteinases in mammalian cells tissues (ed. J.J. Barrett), pp. 311–391. North Holland Publishing, Amsterdam.
McDonald, J.K., Zeitman, B.B., Reilly, and T.J., Ellis, S. 1969. New observations on the substrate specificity of cathepsin C (dipeptidyl aminopeptidase I). Including the degradation of beta-corticotropin and other peptide hormones. J. Biol. Chem. 244 2693–709. PubMed
McEuen, A.R., Ashworth, D.M., and Walls, A.F. 1998. The conversion of recombinant human mast cell prochymase to enzymatically active chymase by dipeptidyl peptidase I is inhibited by heparin and histamine. Eur. J. Biochem. 253 300–308. PubMed
McGuire, M.J., Lipsky, P.E., and Thiele, D.L. 1992. Purification and characterization of dipeptidyl peptidase I from human spleen. Arch. Biochem. Biophys. 295 280–288. PubMed
McGuire, M.J., Lipsky, P.E., and Thiele, D.L. 1993. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J. Biol. Chem. 268 2458–2467. PubMed
McGuire, M.J., Lipsky, P.E., and Thiele, D.L. 1997. Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C). Biochim. Biophys. Acta 1351 267–273. PubMed
Meloun, B., Baudyš, M., Pohl, J., Pavlík, M., and Kostka, V. 1988. Amino acid sequence of bovine spleen cathepsin B. J. Biol. Chem. 263 9087–9093. PubMed
Metrione, R.M., Neves, A.G., and Fruton, J.S. 1966. Purification and properties of dipeptidyl transferase (cathepsin C). Biochemistry 5 1597–1604. PubMed
Metrione, R.M., Okuda, Y., and Fairclough, G.F. 1970. Subunit structure of dipeptidyl transferase. Biochemistry 9 2427–2432. PubMed
Muno, D., Ishidoh, K., Ueno, T., and Kominami, E. 1993. Processing and transport of the precursor of cathepsin C during its transfer into lysosomes. Arch. Biochem. Biophys. 306 103–110. PubMed
Murakami, M., Karnik, S.S., and Husain, A. 1995. Human prochymase activation. A novel role for heparin in zymogen processing. J. Biol. Chem. 270 2218–2223. PubMed
Musil, D., Zucic, D., Turk, D., Engh, R.A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N., and Bode, W. 1991. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: The structural basis for its specificity. EMBO J. 10 2321–2330. PubMed PMC
Mycek, M.J. 1970. Cathepsin C (dipeptidyl transferase). Methods Enzymol. 19 285–315.
Nicklin, M.J. and Barrett, A.J. 1984. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem. J. 223 245–253. PubMed PMC
Nikawa, T., Towatari, T., and Katunuma, N. 1992. Purification and characterization of cathepsin J from rat liver. Eur. J. Biochem. 204 381–393. PubMed
Paris, A., Strukelj, B., Pungercar, J., Renko, M., Dolenc, I., and Turk, V. 1995. Molecular cloning and sequence analysis of human preprocathepsin C. FEBS Lett. 369 326–330. PubMed
Pham, C.T. and Ley, T.J. 1999. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl. Acad. Sci. 96 8627–8632. PubMed PMC
Pham, C.T., Armstrong, R.J., Zimonjic, D.B., Popescu, N.C., Payan, D.G., and Ley, T.J. 1997. Molecular cloning, chromosomal localization, and expression of murine dipeptidyl peptidase I. J. Biol. Chem. 272 10695–10703. PubMed
Rao, N.V., Rao, G.V., Hoidal, J.R. 1997. Human dipeptidyl-peptidase I. Gene characterization, localization, and expression. J. Biol. Chem. 272 10260–10265. PubMed
Rawlings, N.D. and Barrett, A.J. 2000. MEROPS: The peptidase database. Nucleic Acids Res. 28 323–325. PubMed PMC
Riddles, P.W., Blakely, R.L., and Zerner, B. 1983. Reassessment of Ellman's reagent. Methods Enzymol. 91 49–60. PubMed
Sakai, K., Ren, S., and Schwartz, L.B. 1996. A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I. J. Clin. Invest. 97 988–95. PubMed PMC
Seifried, S.E., Wang, Y., and von Hippel, P.H. 1988. Fluorescent modification of the cysteine 202 residue of Escherichia coli transcription termination factor rho. J. Biol. Chem. 263 13511–13514 PubMed
Smyth, M.J., McGuire, M.J., and Thia, K.Y. 1995. Expression of recombinant human granzyme B. A processing and activation role for dipeptidyl peptidase I. J. Immunol. 154 6299–6305. PubMed
Toomes, C., James, J., Wood, A.J., Wu, C.L., McCormick, D., Lench, N., Hewitt, C., Moynihan, L., Roberts, E., Woods, C.G., Markham, A., Wong, M., Widmer, R., Ghaffar, K.A., Pemberton, M., Hussein, I.R., Temtamy, S.A., Davies, R., Read, A.P., Sloan, P., Dixon, M.J., and Thakker, N.S. 1999. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat. Genet. 23 421–424. PubMed
Veronese, F.M., Boccu, E., and Fontana, A. 1976. Isolation and properties of 6-phosphogluconate dehydrogenase from Escherichia coli. Some comparisons with the thermophilic enzyme from Bacillus stearothermophilus. Biochemistry 15 4026–4033. PubMed
Wilharm, E., Parry, M.A., Friebel, R., Tschesche, H., Matschiner, G., Sommerhoff, C.P., and Jenne, D.E. 1999. Generation of catalytically active granzyme K from Escherichia coli inclusion bodies and identification of efficient granzyme K inhibitors in human plasma. J. Biol. Chem. 274 27331–27337. PubMed
Wolters, P.J., Laig-Webster, M., and Caughey, G.H. 2000. Dipeptidyl peptidase I cleaves matrix-associated proteins and is expressed mainly by mast cells in normal dog airways. Am. J. Respir. Cell. Mol. Biol. 22 183–190. PubMed
Wolters, P.J., Raymond, W.W., Blount, J.L, and Caughey, G.H. 1998. Regulated expression, processing, and secretion of dog mast cell dipeptidyl peptidase I. J. Biol. Chem. 273 15514–1520. PubMed