An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36736427
PubMed Central
PMC9986714
DOI
10.1016/j.jbc.2023.102970
PII: S0021-9258(23)00102-3
Knihovny.cz E-zdroje
- Klíčová slova
- cystatin, cysteine cathepsin, helminth parasite, protease inhibitor, protein evolution, protein structure, stefin,
- MeSH
- cystatiny * genetika chemie MeSH
- disulfidy MeSH
- Fasciola hepatica * genetika MeSH
- fylogeneze MeSH
- proteiny červů chemie genetika MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystatiny * MeSH
- disulfidy MeSH
- proteiny červů MeSH
Fasciolosis is a worldwide parasitic disease of ruminants and an emerging human disease caused by the liver fluke Fasciola hepatica. The cystatin superfamily of cysteine protease inhibitors is composed of distinct families of intracellular stefins and secreted true cystatins. FhCyLS-2 from F. hepatica is an unusual member of the superfamily, where our sequence and 3D structure analyses in this study revealed that it combines characteristics of both families. The protein architecture demonstrates its relationship to stefins, but FhCyLS-2 also contains the secretion signal peptide and disulfide bridges typical of true cystatins. The secretion status was confirmed by detecting the presence of FhCyLS-2 in excretory/secretory products, supported by immunolocalization. Our high-resolution crystal structure of FhCyLS-2 showed a distinct disulfide bridging pattern and functional reactive center. We determined that FhCyLS-2 is a broad specificity inhibitor of cysteine cathepsins from both the host and F. hepatica, suggesting a dual role in the regulation of exogenous and endogenous proteolysis. Based on phylogenetic analysis that identified several FhCyLS-2 homologues in liver/intestinal foodborne flukes, we propose a new group within the cystatin superfamily called cystatin-like stefins.
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences Budweis Czechia
Institute of Parasitology University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Mehmood K., Zhang H., Sabir A.J., Abbas R.Z., Ijaz M., Durrani A.Z., et al. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microb. Pathog. 2017;109:253–262. PubMed
Castro-Hermida J.A., Gonzalez-Warleta M., Martinez-Sernandez V., Ubeira F.M., Mezo M. Current challenges for fasciolicide treatment in ruminant livestock. Trends Parasitol. 2021;37:430–444. PubMed
Stubbs M.T., Laber B., Bode W., Huber R., Jerala R., Lenarcic B., et al. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990;9:1939–1947. PubMed PMC
Alvarez-Fernandez M., Barrett A.J., Gerhartz B., Dando P.M., Ni J.A., Abrahamson M. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 1999;274:19195–19203. PubMed
Turk V., Stoka V., Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front. Biosci. 2008;13:5406–5420. PubMed
Kordis D., Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. Bmc Evol. Biol. 2009;9:266. PubMed PMC
Stoka V., Turk V., Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 2016;32:22–37. PubMed
Magister S., Kos J. Cystatins in immune system. J. Cancer. 2013;4:45–56. PubMed PMC
Zavasnik-Bergant T. Cystatin protease inhibitors and immune functions. Front. Biosci. 2008;13:4625–4637. PubMed
Kotal J., Busa M., Urbanova V., Rezacova P., Chmelar J., Langhansova H., et al. Mialostatin, a novel midgut cystatin from ixodes ricinus ticks: crystal structure and regulation of host blood digestion. Int. J. Mol. Sci. 2021;22:5371. PubMed PMC
Chmelar J., Kotal J., Langhansova H., Kotsyfakis M. Protease inhibitors in tick saliva: the role of serpins and cystatins in tick-host-pathogen interaction. Front. Cell Infect. Microbiol. 2017;7:216. PubMed PMC
Manoury B., Gregory W.F., Maizels R.M., Watts C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr. Biol. 2001;11:447–451. PubMed
Schonemeyer A., Lucius R., Sonnenburg B., Brattig N., Sabat R., Schilling K., et al. Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J. Immunol. 2001;167:3207–3215. PubMed
Dainichi T., Maekawa Y., Ishii K., Zhang T., Nashed B.F., Sakai T., et al. Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis, inhibits antigen processing and modulates antigen-specific immune response. Infect. Immun. 2001;69:7380–7386. PubMed PMC
Schnoeller C., Rausch S., Pillai S., Avagyan A., Wittig B.M., Loddenkemper C., et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J. Immunol. 2008;180:4265–4272. PubMed
Maizels R.M., Smits H.H., McSorley H.J. Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. Immunity. 2018;49:801–818. PubMed PMC
Cwiklinski K., Donnelly S., Drysdale O., Jewhurst H., Smith D., De Marco Verissimo C., et al. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Adv. Parasitol. 2019;104:113–164. PubMed
McVeigh P., Maule A.G., Dalton J.P., Robinson M.W. Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes Infect. 2012;14:301–310. PubMed
Cancela M., Acosta D., Rinaldi G., Silva E., Duran R., Roche L., et al. A distinctive repertoire of cathepsins is expressed by juvenile invasive Fasciola hepatica. Biochimie. 2008;90:1461–1475. PubMed
Law R.H., Smooker P.M., Irving J.A., Piedrafita D., Ponting R., Kennedy N.J., et al. Cloning and expression of the major secreted cathepsin B-like protein from juvenile Fasciola hepatica and analysis of immunogenicity following liver fluke infection. Infect. Immun. 2003;71:6921–6932. PubMed PMC
Cancela M., Corvo I., da Silva E., Teichmann A., Roche L., Diaz A., et al. Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica. Parasitology. 2017;144:1695–1707. PubMed
Khaznadji E., Collins P., Dalton J.P., Bigot Y., Moire N. A new multi-domain member of the cystatin superfamily expressed by Fasciola hepatica. Int. J. Parasitol. 2005;35:1115–1125. PubMed
Smith D., Cwiklinski K., Jewhurst H., Tikhonova I.G., Dalton J.P. An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite Fasciola hepatica. Sci. Rep. 2020;10:20657. PubMed PMC
Cwiklinski K., Drysdale O., Corrales J.L., Corripio-Miyar Y., Verissimo C.D., Jewhurst H., et al. Targeting secreted protease/anti-protease balance as a vaccine strategy against the helminth Fasciola hepatica. Vaccines-Basel. 2022;10:155. PubMed PMC
Zhang K., Liu Y., Zhang G., Wang X., Li Z., Shang Y., et al. Molecular characteristics and potent immunomodulatory activity of Fasciola hepatica cystatin. Korean J. Parasitol. 2022;60:117–126. PubMed PMC
Siricoon S., Grams S.V., Grams R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol. Biochem. Parasit. 2012;186:126–133. PubMed
Geadkaew A., Kosa N., Siricoon S., Grams S.V., Grams R. A 170kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system. Mol. Biochem. Parasitol. 2014;196:100–107. PubMed
Park S.Y., Jeong M.S., Park S.A., Ha S.C., Na B.K., Jang S.B. Structural basis of the cystein protease inhibitor Clonorchis sinensis Stefin-1. Biochem. Biophys. Res. Commun. 2018;498:9–17. PubMed
Mei G.Q., Dong J.M., Li Z.T., Liu S.L., Liu Y.F., Sun M.Z., et al. Structural basis for the immunomodulatory function of cysteine protease inhibitor from human roundworm Ascaris lumbricoides. PLoS One. 2014;9 PubMed PMC
Bartosova-Sojkova P., Kyslik J., Alama-Bermejo G., Hartigan A., Atkinson S.D., Bartholomew J.L., et al. Evolutionary analysis of cystatins of early-emerging metazoans reveals a novel subtype in parasitic Cnidarians. Biology (Basel) 2021;10:110. PubMed PMC
Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., et al. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988;7:2593–2599. PubMed PMC
Rawlings N.D., Barrett A.J. Evolution of proteins of the cystatin superfamily. J. Mol. Evol. 1990;30:60–71. PubMed
Dall E., Fegg J.C., Briza P., Brandstetter H. Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain. Angew. Chem. Int. Edit. 2015;54:2917–2921. PubMed PMC
Robinson P.J., Bulleid N.J. Mechanisms of disulfide bond formation in nascent polypeptides entering the secretory pathway. Cells. 2020;9:1994. PubMed PMC
Nanut M.P., Fonovic U.P., Jakos T., Kos J. The role of cysteine peptidases in hematopoietic stem cell differentiation and modulation of immune system function. Front. Immunol. 2021;12:680279. PubMed PMC
Olson O.C., Joyce J.A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer. 2015;15:712–729. PubMed
Salat J., Paesen G.C., Rezacova P., Kotsyfakis M., Kovarova Z., Sanda M., et al. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem. J. 2010;429:103–112. PubMed PMC
Cribb T.H., Bray R.A., Olson P.D., Littlewood D.T. Life cycle evolution in the digenea: a new perspective from phylogeny. Adv. Parasitol. 2003;54:197–254. PubMed
Netea M.G., Schlitzer A., Placek K., Joosten L.A.B., Schultze J.L. Innate and adaptive immune memory: an evolutionary continuum in the host's response to pathogens. Cell Host Microbe. 2019;25:13–26. PubMed
Stefanic S., Dvorak J., Horn M., Braschi S., Sojka D., Ruelas D.S., et al. RNA interference in schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl. Trop. D. 2010;4 PubMed PMC
Horn M., Fajtova P., Arreola L.R., Ulrychova L., Bartosova-Sojkova P., Franta Z., et al. Trypsin- and chymotrypsin-like serine proteases in schistosoma mansoni - 'the Undiscovered country. PLoS Negl. Trop. Dis. 2014;8 PubMed PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. PubMed
Almagro Armenteros J.J., Tsirigos K.D., Sonderby C.K., Petersen T.N., Winther O., Brunak S., et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. PubMed
Jilkova A., Horn M., Mares M. Structural and functional characterization of schistosoma mansoni cathepsin B1. Met. Mol. Biol. 2020;2151:145–158. PubMed
Mueller U., Darowski N., Fuchs M.R., Forster R., Hellmig M., Paithankar K.S., et al. Facilities for macromolecular crystallography at the helmholtz-zentrum Berlin. J. Synchrotron Radiat. 2012;19:442–449. PubMed PMC
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 2010;66:133–144. PubMed PMC
Dauter Z., Dauter M., Rajashankar K.R. Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D Biol. Crystallogr. 2000;56:232–237. PubMed
Pape T., Schneider T.R. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Crystallogr. 2004;37:843–844.
Sheldrick G.M. A short history of SHELX. Acta Crystallogr. A. 2008;64:112–122. PubMed
Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 2006;62:1002–1011. PubMed
Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011;67:355–367. PubMed PMC
Moriarty N.W., Liebschner D., Klei H.E., Echols N., Afonine P.V., Headd J.J., et al. Interactive comparison and remediation of collections of macromolecular structures. Protein Sci. 2018;27:182–194. PubMed PMC
Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. PubMed PMC
Weiss M. Global indicators of X-ray data quality. J. Appl. Crystallogr. 2001;34:130–135.
Janson G., Zhang C., Prado M.G., Paiardini A. PyMod 2.0: Improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinformatics. 2017;33:444–446. PubMed
Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr. D. 2019;75:861–877. PubMed PMC
Horn M., Baudys M., Voburka Z., Kluh I., Vondrasek J., Mares M. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I) Protein Sci. 2002;11:933–943. PubMed PMC
Horn M., Doleckova-Maresova L., Rulisek L., Masa M., Vasiljeva O., Turk B., et al. Activation processing of cathepsin H impairs recognition by its propeptide. Biol. Chem. 2005;386:941–947. PubMed
Stack C.M., Caffrey C.R., Donnelly S.M., Seshaadri A., Lowther J., Tort J.F., et al. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J. Biol. Chem. 2008;283:9896–9908. PubMed PMC
Corvo I., Cancela M., Cappetta M., Pi-Denis N., Tort J.F., Roche L. The major cathepsin L secreted by the invasive juvenile Fasciola hepatica prefers proline in the S2 subsite and can cleave collagen. Mol. Biochem. Parasitol. 2009;167:41–47. PubMed
Martini F., Eckmair B., Stefanic S., Jin C., Garg M., Yan S., et al. Highly modified and immunoactive N-glycans of the canine heartworm. Nat. Commun. 2019;10:75. PubMed PMC
Fajtova P., Stefanic S., Hradilek M., Dvorak J., Vondrasek J., Jilkova A., et al. Prolyl oligopeptidase from the blood fluke schistosoma mansoni: from functional analysis to anti-schistosomal inhibitors. PLoS Negl. Trop. Dis. 2015;9 PubMed PMC
Eichenberger R.M., Lewis F., Gabriel S., Dorny P., Torgerson P.R., Deplazes P. Multi-test analysis and model-based estimation of the prevalence of Taenia saginata cysticercus infection in naturally infected dairy cows in the absence of a 'gold standard' reference test. Int. J. Parasitol. 2013;43:853–859. PubMed
Katoh K., Kuma K., Miyata T., Toh H. Improvement in the accuracy of multiple sequence alignment program MAFFT. Genome Inform. 2005;16:22–33. PubMed
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC
Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucl. Acids Res. 2016;44:W232–235. PubMed PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Met. 2017;14:587–589. PubMed PMC
Kotal J., Stergiou N., Busa M., Chlastakova A., Berankova Z., Rezacova P., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol. Life Sci. 2019;76:2003–2013. PubMed PMC
Kotsyfakis M., Horka H., Salat J., Andersen J.F. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol. Microbiol. 2010;77:456–470. PubMed PMC
Wang Y., Zhou Y., Gong H., Cao J., Zhang H., Li X., et al. Functional characterization of a cystatin from the tick Rhipicephalus haemaphysaloides. Parasit Vectors. 2015;8:140. PubMed PMC
Abrahamson M., Barrett A.J., Salvesen G., Grubb A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 1986;261:11282–11289. PubMed
Barrett A.J., Rawlings N.D., Davies M.E., Machleidt W., Salvesen G., Turk V. Elsevier; Amsterdam: 1986. Cysteine Proteinase Inhibitors of the Cystatin Superfamily.
Abrahamson M. Cystatins. Met. Enzymol. 1994;244:685–700. PubMed
Ni J., Fernandez M.A., Danielsson L., Chillakuru R.A., Zhang J.L., Grubb A., et al. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J. Biol. Chem. 1998;273:24797–24804. PubMed
Langerholc T., Zavasnik-Bergant V., Turk B., Turk V., Abrahamson M., Kos J. Inhibitory properties of cystatin F and its localization in U937 promonocyte cells. FEBS J. 2005;272:1535–1545. PubMed