An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily

. 2023 Mar ; 299 (3) : 102970. [epub] 20230201

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36736427
Odkazy

PubMed 36736427
PubMed Central PMC9986714
DOI 10.1016/j.jbc.2023.102970
PII: S0021-9258(23)00102-3
Knihovny.cz E-zdroje

Fasciolosis is a worldwide parasitic disease of ruminants and an emerging human disease caused by the liver fluke Fasciola hepatica. The cystatin superfamily of cysteine protease inhibitors is composed of distinct families of intracellular stefins and secreted true cystatins. FhCyLS-2 from F. hepatica is an unusual member of the superfamily, where our sequence and 3D structure analyses in this study revealed that it combines characteristics of both families. The protein architecture demonstrates its relationship to stefins, but FhCyLS-2 also contains the secretion signal peptide and disulfide bridges typical of true cystatins. The secretion status was confirmed by detecting the presence of FhCyLS-2 in excretory/secretory products, supported by immunolocalization. Our high-resolution crystal structure of FhCyLS-2 showed a distinct disulfide bridging pattern and functional reactive center. We determined that FhCyLS-2 is a broad specificity inhibitor of cysteine cathepsins from both the host and F. hepatica, suggesting a dual role in the regulation of exogenous and endogenous proteolysis. Based on phylogenetic analysis that identified several FhCyLS-2 homologues in liver/intestinal foodborne flukes, we propose a new group within the cystatin superfamily called cystatin-like stefins.

Zobrazit více v PubMed

Mehmood K., Zhang H., Sabir A.J., Abbas R.Z., Ijaz M., Durrani A.Z., et al. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microb. Pathog. 2017;109:253–262. PubMed

Castro-Hermida J.A., Gonzalez-Warleta M., Martinez-Sernandez V., Ubeira F.M., Mezo M. Current challenges for fasciolicide treatment in ruminant livestock. Trends Parasitol. 2021;37:430–444. PubMed

Stubbs M.T., Laber B., Bode W., Huber R., Jerala R., Lenarcic B., et al. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990;9:1939–1947. PubMed PMC

Alvarez-Fernandez M., Barrett A.J., Gerhartz B., Dando P.M., Ni J.A., Abrahamson M. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 1999;274:19195–19203. PubMed

Turk V., Stoka V., Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front. Biosci. 2008;13:5406–5420. PubMed

Kordis D., Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. Bmc Evol. Biol. 2009;9:266. PubMed PMC

Stoka V., Turk V., Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 2016;32:22–37. PubMed

Magister S., Kos J. Cystatins in immune system. J. Cancer. 2013;4:45–56. PubMed PMC

Zavasnik-Bergant T. Cystatin protease inhibitors and immune functions. Front. Biosci. 2008;13:4625–4637. PubMed

Kotal J., Busa M., Urbanova V., Rezacova P., Chmelar J., Langhansova H., et al. Mialostatin, a novel midgut cystatin from ixodes ricinus ticks: crystal structure and regulation of host blood digestion. Int. J. Mol. Sci. 2021;22:5371. PubMed PMC

Chmelar J., Kotal J., Langhansova H., Kotsyfakis M. Protease inhibitors in tick saliva: the role of serpins and cystatins in tick-host-pathogen interaction. Front. Cell Infect. Microbiol. 2017;7:216. PubMed PMC

Manoury B., Gregory W.F., Maizels R.M., Watts C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr. Biol. 2001;11:447–451. PubMed

Schonemeyer A., Lucius R., Sonnenburg B., Brattig N., Sabat R., Schilling K., et al. Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J. Immunol. 2001;167:3207–3215. PubMed

Dainichi T., Maekawa Y., Ishii K., Zhang T., Nashed B.F., Sakai T., et al. Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis, inhibits antigen processing and modulates antigen-specific immune response. Infect. Immun. 2001;69:7380–7386. PubMed PMC

Schnoeller C., Rausch S., Pillai S., Avagyan A., Wittig B.M., Loddenkemper C., et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J. Immunol. 2008;180:4265–4272. PubMed

Maizels R.M., Smits H.H., McSorley H.J. Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. Immunity. 2018;49:801–818. PubMed PMC

Cwiklinski K., Donnelly S., Drysdale O., Jewhurst H., Smith D., De Marco Verissimo C., et al. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Adv. Parasitol. 2019;104:113–164. PubMed

McVeigh P., Maule A.G., Dalton J.P., Robinson M.W. Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes Infect. 2012;14:301–310. PubMed

Cancela M., Acosta D., Rinaldi G., Silva E., Duran R., Roche L., et al. A distinctive repertoire of cathepsins is expressed by juvenile invasive Fasciola hepatica. Biochimie. 2008;90:1461–1475. PubMed

Law R.H., Smooker P.M., Irving J.A., Piedrafita D., Ponting R., Kennedy N.J., et al. Cloning and expression of the major secreted cathepsin B-like protein from juvenile Fasciola hepatica and analysis of immunogenicity following liver fluke infection. Infect. Immun. 2003;71:6921–6932. PubMed PMC

Cancela M., Corvo I., da Silva E., Teichmann A., Roche L., Diaz A., et al. Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica. Parasitology. 2017;144:1695–1707. PubMed

Khaznadji E., Collins P., Dalton J.P., Bigot Y., Moire N. A new multi-domain member of the cystatin superfamily expressed by Fasciola hepatica. Int. J. Parasitol. 2005;35:1115–1125. PubMed

Smith D., Cwiklinski K., Jewhurst H., Tikhonova I.G., Dalton J.P. An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite Fasciola hepatica. Sci. Rep. 2020;10:20657. PubMed PMC

Cwiklinski K., Drysdale O., Corrales J.L., Corripio-Miyar Y., Verissimo C.D., Jewhurst H., et al. Targeting secreted protease/anti-protease balance as a vaccine strategy against the helminth Fasciola hepatica. Vaccines-Basel. 2022;10:155. PubMed PMC

Zhang K., Liu Y., Zhang G., Wang X., Li Z., Shang Y., et al. Molecular characteristics and potent immunomodulatory activity of Fasciola hepatica cystatin. Korean J. Parasitol. 2022;60:117–126. PubMed PMC

Siricoon S., Grams S.V., Grams R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol. Biochem. Parasit. 2012;186:126–133. PubMed

Geadkaew A., Kosa N., Siricoon S., Grams S.V., Grams R. A 170kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system. Mol. Biochem. Parasitol. 2014;196:100–107. PubMed

Park S.Y., Jeong M.S., Park S.A., Ha S.C., Na B.K., Jang S.B. Structural basis of the cystein protease inhibitor Clonorchis sinensis Stefin-1. Biochem. Biophys. Res. Commun. 2018;498:9–17. PubMed

Mei G.Q., Dong J.M., Li Z.T., Liu S.L., Liu Y.F., Sun M.Z., et al. Structural basis for the immunomodulatory function of cysteine protease inhibitor from human roundworm Ascaris lumbricoides. PLoS One. 2014;9 PubMed PMC

Bartosova-Sojkova P., Kyslik J., Alama-Bermejo G., Hartigan A., Atkinson S.D., Bartholomew J.L., et al. Evolutionary analysis of cystatins of early-emerging metazoans reveals a novel subtype in parasitic Cnidarians. Biology (Basel) 2021;10:110. PubMed PMC

Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., et al. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988;7:2593–2599. PubMed PMC

Rawlings N.D., Barrett A.J. Evolution of proteins of the cystatin superfamily. J. Mol. Evol. 1990;30:60–71. PubMed

Dall E., Fegg J.C., Briza P., Brandstetter H. Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain. Angew. Chem. Int. Edit. 2015;54:2917–2921. PubMed PMC

Robinson P.J., Bulleid N.J. Mechanisms of disulfide bond formation in nascent polypeptides entering the secretory pathway. Cells. 2020;9:1994. PubMed PMC

Nanut M.P., Fonovic U.P., Jakos T., Kos J. The role of cysteine peptidases in hematopoietic stem cell differentiation and modulation of immune system function. Front. Immunol. 2021;12:680279. PubMed PMC

Olson O.C., Joyce J.A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer. 2015;15:712–729. PubMed

Salat J., Paesen G.C., Rezacova P., Kotsyfakis M., Kovarova Z., Sanda M., et al. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem. J. 2010;429:103–112. PubMed PMC

Cribb T.H., Bray R.A., Olson P.D., Littlewood D.T. Life cycle evolution in the digenea: a new perspective from phylogeny. Adv. Parasitol. 2003;54:197–254. PubMed

Netea M.G., Schlitzer A., Placek K., Joosten L.A.B., Schultze J.L. Innate and adaptive immune memory: an evolutionary continuum in the host's response to pathogens. Cell Host Microbe. 2019;25:13–26. PubMed

Stefanic S., Dvorak J., Horn M., Braschi S., Sojka D., Ruelas D.S., et al. RNA interference in schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl. Trop. D. 2010;4 PubMed PMC

Horn M., Fajtova P., Arreola L.R., Ulrychova L., Bartosova-Sojkova P., Franta Z., et al. Trypsin- and chymotrypsin-like serine proteases in schistosoma mansoni - 'the Undiscovered country. PLoS Negl. Trop. Dis. 2014;8 PubMed PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. PubMed

Almagro Armenteros J.J., Tsirigos K.D., Sonderby C.K., Petersen T.N., Winther O., Brunak S., et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. PubMed

Jilkova A., Horn M., Mares M. Structural and functional characterization of schistosoma mansoni cathepsin B1. Met. Mol. Biol. 2020;2151:145–158. PubMed

Mueller U., Darowski N., Fuchs M.R., Forster R., Hellmig M., Paithankar K.S., et al. Facilities for macromolecular crystallography at the helmholtz-zentrum Berlin. J. Synchrotron Radiat. 2012;19:442–449. PubMed PMC

Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 2010;66:133–144. PubMed PMC

Dauter Z., Dauter M., Rajashankar K.R. Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D Biol. Crystallogr. 2000;56:232–237. PubMed

Pape T., Schneider T.R. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Crystallogr. 2004;37:843–844.

Sheldrick G.M. A short history of SHELX. Acta Crystallogr. A. 2008;64:112–122. PubMed

Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 2006;62:1002–1011. PubMed

Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011;67:355–367. PubMed PMC

Moriarty N.W., Liebschner D., Klei H.E., Echols N., Afonine P.V., Headd J.J., et al. Interactive comparison and remediation of collections of macromolecular structures. Protein Sci. 2018;27:182–194. PubMed PMC

Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. PubMed PMC

Weiss M. Global indicators of X-ray data quality. J. Appl. Crystallogr. 2001;34:130–135.

Janson G., Zhang C., Prado M.G., Paiardini A. PyMod 2.0: Improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinformatics. 2017;33:444–446. PubMed

Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr. D. 2019;75:861–877. PubMed PMC

Horn M., Baudys M., Voburka Z., Kluh I., Vondrasek J., Mares M. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I) Protein Sci. 2002;11:933–943. PubMed PMC

Horn M., Doleckova-Maresova L., Rulisek L., Masa M., Vasiljeva O., Turk B., et al. Activation processing of cathepsin H impairs recognition by its propeptide. Biol. Chem. 2005;386:941–947. PubMed

Stack C.M., Caffrey C.R., Donnelly S.M., Seshaadri A., Lowther J., Tort J.F., et al. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J. Biol. Chem. 2008;283:9896–9908. PubMed PMC

Corvo I., Cancela M., Cappetta M., Pi-Denis N., Tort J.F., Roche L. The major cathepsin L secreted by the invasive juvenile Fasciola hepatica prefers proline in the S2 subsite and can cleave collagen. Mol. Biochem. Parasitol. 2009;167:41–47. PubMed

Martini F., Eckmair B., Stefanic S., Jin C., Garg M., Yan S., et al. Highly modified and immunoactive N-glycans of the canine heartworm. Nat. Commun. 2019;10:75. PubMed PMC

Fajtova P., Stefanic S., Hradilek M., Dvorak J., Vondrasek J., Jilkova A., et al. Prolyl oligopeptidase from the blood fluke schistosoma mansoni: from functional analysis to anti-schistosomal inhibitors. PLoS Negl. Trop. Dis. 2015;9 PubMed PMC

Eichenberger R.M., Lewis F., Gabriel S., Dorny P., Torgerson P.R., Deplazes P. Multi-test analysis and model-based estimation of the prevalence of Taenia saginata cysticercus infection in naturally infected dairy cows in the absence of a 'gold standard' reference test. Int. J. Parasitol. 2013;43:853–859. PubMed

Katoh K., Kuma K., Miyata T., Toh H. Improvement in the accuracy of multiple sequence alignment program MAFFT. Genome Inform. 2005;16:22–33. PubMed

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC

Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucl. Acids Res. 2016;44:W232–235. PubMed PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Met. 2017;14:587–589. PubMed PMC

Kotal J., Stergiou N., Busa M., Chlastakova A., Berankova Z., Rezacova P., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol. Life Sci. 2019;76:2003–2013. PubMed PMC

Kotsyfakis M., Horka H., Salat J., Andersen J.F. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol. Microbiol. 2010;77:456–470. PubMed PMC

Wang Y., Zhou Y., Gong H., Cao J., Zhang H., Li X., et al. Functional characterization of a cystatin from the tick Rhipicephalus haemaphysaloides. Parasit Vectors. 2015;8:140. PubMed PMC

Abrahamson M., Barrett A.J., Salvesen G., Grubb A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 1986;261:11282–11289. PubMed

Barrett A.J., Rawlings N.D., Davies M.E., Machleidt W., Salvesen G., Turk V. Elsevier; Amsterdam: 1986. Cysteine Proteinase Inhibitors of the Cystatin Superfamily.

Abrahamson M. Cystatins. Met. Enzymol. 1994;244:685–700. PubMed

Ni J., Fernandez M.A., Danielsson L., Chillakuru R.A., Zhang J.L., Grubb A., et al. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J. Biol. Chem. 1998;273:24797–24804. PubMed

Langerholc T., Zavasnik-Bergant V., Turk B., Turk V., Abrahamson M., Kos J. Inhibitory properties of cystatin F and its localization in U937 promonocyte cells. FEBS J. 2005;272:1535–1545. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...