Protease-bound structure of Ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-38207247S
Grantová Agentura České Republiky
PubMed
37898573
PubMed Central
PMC11071917
DOI
10.1007/s00018-023-04993-4
PII: 10.1007/s00018-023-04993-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cystatins, Host–parasite interactions, Ixodes ricinus, Protease inhibition, Protein structure, Tick saliva,
- MeSH
- cystatiny * farmakologie MeSH
- cystein metabolismus MeSH
- endopeptidasy metabolismus MeSH
- kathepsiny metabolismus MeSH
- klíště * chemie MeSH
- obratlovci MeSH
- proteasy metabolismus MeSH
- slinné cystatiny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystatiny * MeSH
- cystein MeSH
- endopeptidasy MeSH
- kathepsiny MeSH
- proteasy MeSH
- slinné cystatiny MeSH
Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.
Zobrazit více v PubMed
Stubbs MT, Laber B, Bode W, et al. The refined 2.4 Å X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990;9:1939–1947. doi: 10.1002/J.1460-2075.1990.TB08321.X. PubMed DOI PMC
Alvarez-Fernandez M, Barrett AJ, Gerhartz B, et al. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem. 1999;274:19195–19203. doi: 10.1074/JBC.274.27.19195. PubMed DOI
Turk V, Stoka V, Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci. 2008;13:5406–5420. doi: 10.2741/3089. PubMed DOI
Kordiš D, Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol Biol. 2009;9:1–22. doi: 10.1186/1471-2148-9-266/FIGURES/9. PubMed DOI PMC
Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev. 2016;32:22–37. doi: 10.1016/J.ARR.2016.04.010. PubMed DOI
Magister Š, Kos J. Cystatins in immune system. J Cancer. 2013;4:45–56. doi: 10.7150/JCA.5044. PubMed DOI PMC
Zavasnik-Bergant T. Cystatin protease inhibitors and immune functions. Front Biosci. 2008;13:4625–4637. doi: 10.2741/3028. PubMed DOI
Schwarz A, Valdés JJ, Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis. 2012;3:117–127. doi: 10.1016/j.ttbdis.2012.03.004. PubMed DOI PMC
Chmelař J, Kotál J, Langhansová H, Kotsyfakis M. Protease inhibitors in tick saliva: the role of serpins and cystatins in tick-host-pathogen interaction. Front Cell Infect Microbiol. 2017;7:216. doi: 10.3389/FCIMB.2017.00216/BIBTEX. PubMed DOI PMC
Parizi LF, Sabadin GA, Alzugaray MF, et al. Rhipicephalus microplus and ixodes ovatus cystatins in tick blood digestion and evasion of host immune response. Parasit Vectors. 2015;8:1–11. doi: 10.1186/S13071-015-0743-3/FIGURES/6. PubMed DOI PMC
Zavašnik-Bergant T, Turk B. Cysteine cathepsins in the immune response. Tissue Antigens. 2006;67:349–355. doi: 10.1111/J.1399-0039.2006.00585.X. PubMed DOI
Kotsyfakis M, Sá-Nunes A, Francischetti IMB, et al. Antiinflammatory and immunosuppressive activity of Sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem. 2006;281:26298–26307. doi: 10.1074/jbc.M513010200. PubMed DOI
Kotsyfakis M, Karim S, Andersen JF, et al. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem. 2007;282:29256–29263. doi: 10.1074/jbc.M703143200. PubMed DOI
Kotál J, Stergiou N, Buša M, et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol Life Sci. 2019;76:2003–2013. doi: 10.1007/s00018-019-03034-3. PubMed DOI PMC
Buša M, Matoušková Z, Bartošová-Sojková P, et al. An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily. J Biol Chem. 2023;299:102970. doi: 10.1016/j.jbc.2023.102970. PubMed DOI PMC
Kotsyfakis M, Horka H, Salat J, Andersen JF. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol Microbiol. 2010;77:456–470. doi: 10.1111/j.1365-2958.2010.07220.x. PubMed DOI PMC
Karim S, Miller NJ, Valenzuela J, et al. RNAi-mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding. Biochem Biophys Res Commun. 2005;334:1336–1342. doi: 10.1016/J.BBRC.2005.07.036. PubMed DOI
Salát J, Paesen GC, Řezáčová P, et al. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem J. 2010;429:103–112. doi: 10.1042/BJ20100280. PubMed DOI PMC
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:275–282. doi: 10.1093/BIOINFORMATICS/8.3.275. PubMed DOI
Hall T. BioEdit a user-friendly biological sequence alignment editor and analysis Program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.
Felsenstein J. Confidence limits on phylogenies: an approach using the Bootstrap. Evolution (N Y) 1985;39:783. doi: 10.2307/2408678. PubMed DOI
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. doi: 10.1093/MOLBEV/MSY096. PubMed DOI PMC
Schwarz A, von Reumont BM, Erhart J, et al. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 2013;27:4745–4756. doi: 10.1096/fj.13-232140. PubMed DOI PMC
Wang B, Shi GP, Yao PM, et al. Human cathepsin F. Molecular cloning, functional expression, tissue localization, and enzymatic characterization. J Biol Chem. 1998;273:32000–32008. doi: 10.1074/JBC.273.48.32000. PubMed DOI
Brömme D, Li Z, Barnes M, Mehler E. Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry. 1999;38:2377–2385. doi: 10.1021/BI982175F. PubMed DOI
Mueller U, Darowski N, Fuchs MR, et al. Facilities for macromolecular crystallography at the Helmholtz–Zentrum Berlin. J Synchrotron Radiat. 2012;19:442. doi: 10.1107/S0909049512006395. PubMed DOI PMC
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC
Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI
Winn MD, Ballard CC, Cowtan KD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Murshudov GN, Skubák P, Lebedev AA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. doi: 10.1002/PRO.3330. PubMed DOI PMC
Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019;75:861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774–797. doi: 10.1016/J.JMB.2007.05.022. PubMed DOI
Adasme MF, Linnemann KL, Bolz SN, et al. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49:W530–W534. doi: 10.1093/NAR/GKAB294. PubMed DOI PMC
Chlastáková A, Kotál J, Beránková Z, et al. Iripin-3, a new salivary protein isolated from Ixodes ricinus ticks, displays immunomodulatory and anti-hemostatic properties in vitro. Front Immunol. 2021 doi: 10.3389/FIMMU.2021.626200. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ÄÄCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Adami C, Brunda MJ, Palleroni AV. In vivo immortalization of murine peritoneal macrophages: a new rapid and efficient method for obtaining macrophage cell lines. J Leukoc Biol. 1993;53:475–478. doi: 10.1002/JLB.53.4.475. PubMed DOI
Abrahamson M. Cystatins. Methods Enzymol. 1994;244:685–700. doi: 10.1016/0076-6879(94)44051-4. PubMed DOI
Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. doi: 10.1016/0014-5793(91)80804-C. PubMed DOI
Chen JM, Dando PM, Rawlings ND, et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997;272:8090–8098. doi: 10.1074/JBC.272.12.8090. PubMed DOI
Dolenc I, Turk B, Kos J, Turk V. Interaction of human cathepsin C with chicken cystatin. FEBS Lett. 1996;392:277–280. doi: 10.1016/0014-5793(96)00828-9. PubMed DOI
Abrahamson M, Barrett AJ, Salvesen G, Grubb A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J Biol Chem. 1986;261:11282–11289. doi: 10.1016/S0021-9258(18)67380-6. PubMed DOI
Kotál J, Buša M, Urbanová V, et al. Mialostatin, a novel midgut cystatin from Ixodes ricinus ticks: crystal structure and regulation of host blood digestion. Int J Mol Sci. 2021 doi: 10.3390/IJMS22105371. PubMed DOI PMC
Kotsyfakis M, Anderson JM, Andersen JF, et al. Cutting edge: immunity against a “Silent” salivary antigen of the lyme vector Ixodes scapularis impairs its ability to feed. J Immunol. 2008;181:5209–5212. doi: 10.4049/jimmunol.181.8.5209. PubMed DOI PMC
Sa-Nunes A, Bafica A, Antonelli LR, et al. The Immunomodulatory action of Sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol. 2009;182:7422–7429. doi: 10.4049/jimmunol.0900075. PubMed DOI PMC
Wang SX, Pandey KC, Somoza JR, et al. Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Proc Natl Acad Sci USA. 2006;103:11503–11508. doi: 10.1073/PNAS.0600489103. PubMed DOI PMC
Chu MH, Liu KL, Wu HY, et al. Crystal structure of tarocystatin–papain complex: implications for the inhibition property of group-2 phytocystatins. Planta. 2011;234:243. doi: 10.1007/S00425-011-1398-8. PubMed DOI PMC
Pidugu LS, Maity K, Ramaswamy K, et al. Analysis of proteins with the “hot dog” fold: prediction of function and identification of catalytic residues of hypothetical proteins. BMC Struct Biol. 2009;9:1–16. doi: 10.1186/1472-6807-9-37/FIGURES/11. PubMed DOI PMC
Renko M, Pogan U, Majera D, Turk D. Stefin A displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft. FEBS J. 2010;277:4338–4345. doi: 10.1111/J.1742-4658.2010.07824.X. PubMed DOI
Somoza JR, Zhan H, Bowman KK, et al. Crystal structure of human cathepsin V. Biochemistry. 2000;39:12543–12551. doi: 10.1021/BI000951P. PubMed DOI
Renko M, Sabotič J, Mihelič M, et al. Versatile loops in mycocypins inhibit three protease families. J Biol Chem. 2010;285:308. doi: 10.1074/JBC.M109.043331. PubMed DOI PMC
Turk V, Stoka V, Vasiljeva O, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta (BBA) Proteins Proteom. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC
Nandy SK, Seal A. Structural dynamics investigation of human family 1 & 2 Cystatin–Cathepsin L1 interaction: a comparison of binding modes. PLoS One. 2016;11:e0164970. doi: 10.1371/JOURNAL.PONE.0164970. PubMed DOI PMC
Gunčar G, Podobnik M, Pungerčar J, et al. Crystal structure of porcine cathepsin H determined at 2.1 Å resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure. 1998;6:51–61. doi: 10.1016/S0969-2126(98)00007-0. PubMed DOI
Jenko S, Dolenc I, Gunčar G, et al. Crystal structure of Stefin A in complex with cathepsin H: N-terminal residues of inhibitors can adapt to the active sites of endo- and exopeptidases. J Mol Biol. 2003;326:875–885. doi: 10.1016/S0022-2836(02)01432-8. PubMed DOI
Jílková A, Horn M, Řezáčová P, et al. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure. 2014;22:1786–1798. doi: 10.1016/J.STR.2014.09.015. PubMed DOI
Musil D, Zucic D, Turk D, et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991;10:2321. doi: 10.1002/J.1460-2075.1991.TB07771.X. PubMed DOI PMC
Francischetti IMB, Sa-Nunes A, Mans BJ, et al. The role of saliva in tick feeding. Front Biosci (Landmark Ed) 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC
Aounallah H, Bensaoud C, M’ghirbi Y, et al. Tick salivary compounds for targeted immunomodulatory therapy. Front Immunol. 2020;11:2440. doi: 10.3389/FIMMU.2020.583845/BIBTEX. PubMed DOI PMC
Wikel S. Immunobiology of tick-host-pathogen interactions. Parasite Immunol. 2021;43:e12818. doi: 10.1111/PIM.12818. PubMed DOI
Wikel SK. Tick-host-pathogen systems immunobiology: an interactive trio. Front Biosci Landmark. 2018;23:265–283. doi: 10.2741/4590. PubMed DOI
Vray B, Hartmann S, Hoebeke J. Immunomodulatory properties of cystatins. Cell Mol Life Sci. 2002;59:1503–1512. doi: 10.1007/S00018-002-8525-4. PubMed DOI PMC
Conus S, Simon HU. Cathepsins and their involvement in immune responses. Swiss Med Wkly. 2010;140:w13042–w13042. doi: 10.4414/SMW.2010.13042. PubMed DOI
Adkison AM, Raptis SZ, Kelley DG, Pham CTN. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Investig. 2002;109:363–371. doi: 10.1172/JCI13462. PubMed DOI PMC
Kýcková K, Kopecký J. Effect of tick saliva on mechanisms of innate immune response against Borrelia afzelii. J Med Entomol. 2006;43:1208–1214. doi: 10.1093/jmedent/43.6.1208. PubMed DOI
Sun T, Wang F, Pan W, et al. An immunosuppressive tick salivary gland protein DsCystatin interferes with toll-like receptor signaling by downregulating TRAF6. Front Immunol. 2018 doi: 10.3389/fimmu.2018.01245. PubMed DOI PMC
Horka H, Staudt V, Klein M, et al. The tick salivary protein sialostatin L inhibits the Th9-derived production of the asthma-promoting cytokine interleukin-9 and is effective in the prevention of experimental asthma. J Immunol. 2012;188:2669. doi: 10.4049/JIMMUNOL.1100529. PubMed DOI PMC
Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev. 2013;252:104–115. doi: 10.1111/IMR.12028. PubMed DOI PMC
Luckheeram RV, Zhou R, Verma AD, Xia B. CD4 +T cells: differentiation and functions. Clin Dev Immunol. 2012 doi: 10.1155/2012/925135. PubMed DOI PMC