Mialostatin, a Novel Midgut Cystatin from Ixodes ricinus Ticks: Crystal Structure and Regulation of Host Blood Digestion
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-382 07247S
Grantová Agentura České Republiky
21-08826S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
project RVO 60077344
Czech Academy of Sciences
. 19-14704Y
Czech Science Foundation
RVO 61388963
Czech Academy of Sciences
PubMed
34065290
PubMed Central
PMC8161381
DOI
10.3390/ijms22105371
PII: ijms22105371
Knihovny.cz E-zdroje
- Klíčová slova
- Ixodes ricinus, cathepsin, crystal structure, cysteine protease, digestion, midgut, parasite,
- MeSH
- cystatiny metabolismus MeSH
- fylogeneze MeSH
- kathepsin L metabolismus MeSH
- klíšťata metabolismus MeSH
- klíště metabolismus MeSH
- krevní proteiny metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- proteolýza MeSH
- sekvence aminokyselin MeSH
- trávicí systém metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystatiny MeSH
- kathepsin L MeSH
- krevní proteiny MeSH
The hard tick Ixodes ricinus is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of I. ricinus. Here we characterize a novel cystatin-type protease inhibitor, mialostatin, from the I. ricinus midgut. Blood feeding rapidly induced mialostatin expression in the gut, which continued after tick detachment. Recombinant mialostatin inhibited a number of I. ricinus digestive cysteine cathepsins, with the greatest potency observed against cathepsin L isoforms, with which it co-localized in midgut digestive cells. The crystal structure of mialostatin was determined at 1.55 Å to explain its unique inhibitory specificity. Finally, mialostatin effectively blocked in vitro proteolysis of blood proteins by midgut cysteine cathepsins. Mialostatin is likely to be involved in the regulation of gut-associated proteolytic pathways, making midgut cystatins promising targets for tick control strategies.
Zobrazit více v PubMed
Lindgren E., Talleklint L., Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 2000;108:119–123. doi: 10.1289/ehp.00108119. PubMed DOI PMC
Yang Y., Christie J., Köster L., Du A., Yao C. Emerging Human Babesiosis with “Ground Zero” in North America. Microorganisms. 2021;9:440. doi: 10.3390/microorganisms9020440. PubMed DOI PMC
Sonenshine D.E., Roe R.M. Biology of Ticks. 2nd ed. Oxford University Press; New York, NY, USA: 2014.
Lara F.A., Lins U., Bechara G.H., Oliveira P.L. Tracing heme in a living cell: Hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 2005;208:3093–3101. doi: 10.1242/jeb.01749. PubMed DOI
Sojka D., Pytelková J., Perner J., Horn M., Konvičková J., Schrenková J., Mareš M., Kopáček P. Multienzyme degradation of host serum albumin in ticks. Ticks Tick-Borne Dis. 2016;7:604–613. doi: 10.1016/j.ttbdis.2015.12.014. PubMed DOI
Horn M., Nussbaumerová M., Šanda M., Kovářová Z., Srba J., Franta Z., Sojka D., Bogyo M., Caffrey C.R., Kopáček P., et al. Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase Pathway by Functional Proteomics. Chem. Biol. 2009;16:1053–1063. doi: 10.1016/j.chembiol.2009.09.009. PubMed DOI PMC
Sojka D., Hajdušek O., Dvořák J., Sajid M., Franta Z., Schneider E.L., Craik C.S., Vancová M., Burešová V., Bogyo M., et al. IrAE—An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. doi: 10.1016/j.ijpara.2006.12.020. PubMed DOI PMC
Sojka D., Franta Z., Frantová H., Bartošová P., Horn M., Váchová J., O’Donoghue A.J., Eroy-Reveles A.A., Craik C.S., Knudsen G.M., et al. Characterization of Gut-associated Cathepsin D Hemoglobinase from Tick Ixodes ricinus (IrCD1) J. Biol. Chem. 2012;287:21152–21163. doi: 10.1074/jbc.M112.347922. PubMed DOI PMC
Franta Z., Sojka D., Frantova H., Dvorak J., Horn M., Srba J., Talacko P., Mares M., Schneider E., Craik C.S., et al. IrCL1—The haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. Int. J. Parasitol. 2011;41:1253–1262. doi: 10.1016/j.ijpara.2011.06.006. PubMed DOI
Sojka D., Franta Z., Horn M., Hajdušek O., Caffrey C.R., Mares M., Kopáček P. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasites Vectors. 2008;1:7. doi: 10.1186/1756-3305-1-7. PubMed DOI PMC
Franta Z., Frantová H., Konvičková J., Horn M., Sojka D., Mareš M., Kopáček P. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasites Vectors. 2010;3:119. doi: 10.1186/1756-3305-3-119. PubMed DOI PMC
Sojka D., Francischetti I.M.B., Calvo E., Kotsyfakis M. Cysteine Proteases from Bloodfeeding Arthropod Ectoparasites. Adv. Exp. Med. Biol. 2011;712:177–191. doi: 10.1007/978-1-4419-8414-2_11. PubMed DOI PMC
Sojka D., Franta Z., Horn M., Caffrey C.R., Mareš M., Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. doi: 10.1016/j.pt.2013.04.002. PubMed DOI
Caffrey C.R., Goupil L., Rebello K.M., Dalton J.P., Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl. Trop. Dis. 2018;12:e0005840. doi: 10.1371/journal.pntd.0005840. PubMed DOI PMC
Novinec M., Lenarčič B., Turk B. Cysteine Cathepsin Activity Regulation by Glycosaminoglycans. BioMed Res. Int. 2014;2014:1–9. doi: 10.1155/2014/309718. PubMed DOI PMC
Turk V., Bode W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. doi: 10.1016/0014-5793(91)80804-C. PubMed DOI
Rawlings N.D., Waller M., Barrett A.J., Bateman A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014;42:D503–D509. doi: 10.1093/nar/gkt953. PubMed DOI PMC
Schwarz A., Valdés J.J., Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick-Borne Dis. 2012;3:117–127. doi: 10.1016/j.ttbdis.2012.03.004. PubMed DOI PMC
Chmelař J., Kotál J., Langhansová H., Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell. Infect. Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC
Martins L.A., Kotál J., Bensaoud C., Chmelař J., Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. Biochim. Biophys. Acta BBA Proteins Proteom. 2020;1868:140336. doi: 10.1016/j.bbapap.2019.140336. PubMed DOI
Lima C.A., Sasaki S.D., Tanaka A.S. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus. Biochem. Biophys. Res. Commun. 2006;347:44–50. doi: 10.1016/j.bbrc.2006.06.018. PubMed DOI
Parizi L.F., Githaka N.W., Acevedo C., Benavides U., Seixas A., Logullo C., Konnai S., Ohashi K., Masuda A., Vaz I.D.S. Sequence characterization and immunogenicity of cystatins from the cattle tick Rhipicephalus (Boophilus) microplus. Ticks Tick-Borne Dis. 2013;4:492–499. doi: 10.1016/j.ttbdis.2013.06.005. PubMed DOI
Grunclová L., Horn M., Vancová M., Sojka D., Franta Z., Mares M., Kopáček P. Two secreted cystatins of the soft tick Ornithodoros moubata: Differential expression pattern and inhibitory specificity. Biol. Chem. 2006;387:1635–1644. doi: 10.1515/BC.2006.204. PubMed DOI
Salát J., Paesen G.C., Řezáčová P., Kotsyfakis M., Kovářová Z., Šanda M., Majtán J., Grunclová L., Horká H., Andersen J.F., et al. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem. J. 2010;429:103–112. doi: 10.1042/BJ20100280. PubMed DOI PMC
Zavašnik-Bergant T., Vidmar R., Sekirnik A., Fonović M., Salát J., Grunclová L., Kopáček P., Turk B. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells. Front. Cell. Infect. Microbiol. 2017;7:288. doi: 10.3389/fcimb.2017.00288. PubMed DOI PMC
Parizi L.F., Sabadin G.A., Alzugaray M.F., Seixas A., Logullo C., Konnai S., Ohashi K., Masuda A., da Sliva Vaz I., Jr. Rhipicephalus microplus and Ixodes ovatus cystatins in tick blood digestion and evasion of host immune response. Parasites Vectors. 2015;8:122. doi: 10.1186/s13071-015-0743-3. PubMed DOI PMC
Rangel C.K., Parizi L.F., Sabadin G.A., Costa E.P., Romeiro N.C., Isezaki M., Githaka N.W., Seixas A., Logullo C., Konnai S., et al. Molecular and structural characterization of novel cystatins from the taiga tick Ixodes persulcatus. Ticks Tick-Borne Dis. 2017;8:432–441. doi: 10.1016/j.ttbdis.2017.01.007. PubMed DOI
Charrier N.P., Couton M., Voordouw M.J., Rais O., Durand-Hermouet A., Hervet C., Plantard O., Rispe C. Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasites Vectors. 2018;11:1–15. doi: 10.1186/s13071-018-2932-3. PubMed DOI PMC
Kotsyfakis M., Schwarz A., Erhart J., Ribeiro J.M.C. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 2015;5:srep09103. doi: 10.1038/srep09103. PubMed DOI PMC
Cramaro W.J., Revets D., Hunewald O.E., Sinner R., Reye A.L., Muller C.P. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. BMC Genom. 2015;16:871. doi: 10.1186/s12864-015-1981-7. PubMed DOI PMC
Perner J., Provazník J., Schrenková J., Urbanová V., Ribeiro J.M.C., Kopáček P. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 2016;6:36695. doi: 10.1038/srep36695. PubMed DOI PMC
Kotál J., Stergiou N., Buša M., Chlastáková A., Beránková Z., Řezáčová P., Langhansová H., Schwarz A., Calvo E., Kopecký J., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell. Mol. Life Sci. 2019;76:2003–2013. doi: 10.1007/s00018-019-03034-3. PubMed DOI PMC
Kotsyfakis M., Horka H., Salat J., Andersen J.F. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol. Microbiol. 2010;77:456–470. doi: 10.1111/j.1365-2958.2010.07220.x. PubMed DOI PMC
Kotsyfakis M., Sá-Nunes A., Francischetti I.M.B., Mather T.N., Andersen J.F., Ribeiro J.M.C. Antiinflammatory and Immunosuppressive Activity of Sialostatin L, a Salivary Cystatin from the Tick Ixodes scapularis. J. Biol. Chem. 2006;281:26298–26307. doi: 10.1074/jbc.M513010200. PubMed DOI
Balbin M., Hall A., Grubb A., Mason R.W., Lopez-Otin C., Abrahamson M. Structural and functional characterization of two allelic variants of human cystatin D sharing a characteristic inhibition spectrum against mammalian cysteine proteinases. J. Biol. Chem. 1994;269:23156–23162. doi: 10.1016/S0021-9258(17)31633-2. PubMed DOI
Anastasi A., Brown M.A., Kembhavi A.A., Nicklin M.J.H., Sayers C.A., Sunter D.C., Barrett A.J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem. J. 1983;211:129–138. doi: 10.1042/bj2110129. PubMed DOI PMC
Vasiljeva O., Dolinar M., Turk V., Turk B. Recombinant Human Cathepsin H Lacking the Mini Chain Is an Endopeptidase. Biochemistry. 2003;42:13522–13528. doi: 10.1021/bi035355k. PubMed DOI
Pidugu L.S., Maity K., Ramaswamy K., Surolia N., Suguna K. Analysis of proteins with the ’Hot dog’ fold: Prediction of function and identification of catalytic residues of hypothetical proteins. BMC Struct. Biol. 2009;9:37. doi: 10.1186/1472-6807-9-37. PubMed DOI PMC
Alvarez-Fernandez M., Liang Y.-H., Abrahamson M., Su X.-D. Crystal Structure of Human Cystatin D, a Cysteine Peptidase Inhibitor with Restricted Inhibition Profile. J. Biol. Chem. 2005;280:18221–18228. doi: 10.1074/jbc.M411914200. PubMed DOI
Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., Brzin J., Kos J., Turk V. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988;7:2593–2599. doi: 10.1002/j.1460-2075.1988.tb03109.x. PubMed DOI PMC
Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., Turk D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta BBA Proteins Proteom. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC
Nandy S.K., Seal A. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes. PLoS ONE. 2016;11:e0164970. doi: 10.1371/journal.pone.0164970. PubMed DOI PMC
Wang Y., Yu X., Cao J., Zhou Y., Gong H., Zhang H., Li X., Zhou J. Characterization of a secreted cystatin from the tick Rhipicephalus haemaphysaloides. Exp. Appl. Acarol. 2015;67:289–298. doi: 10.1007/s10493-015-9946-8. PubMed DOI
Lu S., da Rocha L.A., Torquato R.J., Junior I.D.S.V., Florin-Christensen M., Tanaka A.S. A novel type 1 cystatin involved in the regulation of Rhipicephalus microplus midgut cysteine proteases. Ticks Tick-Borne Dis. 2020;11:101374. doi: 10.1016/j.ttbdis.2020.101374. PubMed DOI
Kordiš D., Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol. Biol. 2009;9:266. doi: 10.1186/1471-2148-9-266. PubMed DOI PMC
Kopáček P., Perner J., Sojka D., Šíma R., Hajdušek O. Ectoparasites. Volume 8. Wiley; New York, NY, USA: 2018. Molecular Targets to Impair Blood Meal Processing in Ticks; pp. 139–165.
Reyes J., Ayala-Chavez C., Sharma A., Pham M., Nuss A.B., Gulia-Nuss M. Blood Digestion by Trypsin-Like Serine Proteases in the Replete Lyme Disease Vector Tick, Ixodes scapularis. Insects. 2020;11:201. doi: 10.3390/insects11030201. PubMed DOI PMC
Cruz C.E., Fogaça A.C., Nakayasu E.S., Angeli C.B., Belmonte R., Almeida I.C., Miranda A., Miranda M.T.M., Tanaka A.S., Braz G.R., et al. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasites Vectors. 2010;3:63. doi: 10.1186/1756-3305-3-63. PubMed DOI PMC
Xavier M.A., Tirloni L., Torquato R., Tanaka A., Pinto A.F.M., Diedrich J.K., Yates J.R., 3rd, da Silva Vaz I., Jr., Seixas A., Termignoni C. Blood anticlotting activity of a Rhipicephalus microplus cathepsin L-like enzyme. Biochimie. 2019;163:12–20. doi: 10.1016/j.biochi.2019.04.025. PubMed DOI
Rodríguez-Mallon A. Developing Anti-tick Vaccines. Methods Mol. Biol. 2016;1404:243–259. doi: 10.1007/978-1-4939-3389-1_17. PubMed DOI
Nijhof A.M., Balk J.A., Postigo M., Jongejan F. Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus) microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86. BMC Mol. Biol. 2009;10:112. doi: 10.1186/1471-2199-10-112. PubMed DOI PMC
Urbanová V., Hartmann D., Grunclová L., Šíma R., Flemming T., Hajdušek O., Kopáček P. IrFC—An Ixodes ricinus injury-responsive molecule related to Limulus Factor C. Dev. Comp. Immunol. 2014;46:439–447. doi: 10.1016/j.dci.2014.05.016. PubMed DOI
Vechtova P., Fussy Z., Cegan R., Sterba J., Erhart J., Benes V., Grubhoffer L. Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasites Vectors. 2020;13:1–19. doi: 10.1186/s13071-020-04173-4. PubMed DOI PMC
Kopácek P., Zdychová J., Yoshiga T., Weise C., Rudenko N., Law J.H. Molecular cloning, expression and isolation of ferritins from two tick species--Ornithodoros moubata and Ixodes ricinus. Insect Biochem. Mol. Biol. 2003;33:103–113. doi: 10.1016/S0965-1748(02)00181-9. PubMed DOI
Hurrell J.G.R. Monoclonal Hybridoma Antibodies: Techniques and Applications. CRC Press; Boca Raton, FL, USA: 2017. p. 239.
Russo C., Callegaro L., Lanza E., Ferrone S. Purification of IgG monoclonal antibody by caprylic acid precipitation. J. Immunol. Methods. 1983;65:269–271. doi: 10.1016/0022-1759(83)90324-1. PubMed DOI
Hartmann D., Šíma R., Konvičková J., Perner J., Kopáček P., Sojka D. Multiple legumain isoenzymes in ticks. Int. J. Parasitol. 2018;48:167–178. doi: 10.1016/j.ijpara.2017.08.011. PubMed DOI
Hánová I., Brynda J., Houštecká R., Alam N., Sojka D., Kopáček P., Marešová L., Vondrášek J., Horn M., Schueler-Furman O., et al. Novel Structural Mechanism of Allosteric Regulation of Aspartic Peptidases via an Evolutionarily Conserved Exosite. Cell Chem. Biol. 2018;25:318–329.e4. doi: 10.1016/j.chembiol.2018.01.001. PubMed DOI
Schagger H. Tricine-SDS-PAGE. Nat. Protoc. 2006;1:16–22. doi: 10.1038/nprot.2006.4. PubMed DOI
Jones D.T., Taylor W.R., Thornton J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI
Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evol. Int. J. Org. Evol. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Mueller U., Darowski N., Fuchs M.R., Förster R., Hellmig M., Paithankar K.S., Pühringer S., Steffien M., Zocher G., Weiss M.S. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 2012;19:442–449. doi: 10.1107/S0909049512006395. PubMed DOI PMC
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Cryst. Sect. D Biol. Cryst. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC
Vagin A., Teplyakov A. Molecular replacement with MOLREP. Int. Tables Crystallogr. 2012;66:364–366. doi: 10.1107/97809553602060000843. PubMed DOI
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G.W., McCoy A., et al. Overview of theCCP4 suite and current developments. Acta Cryst. Sect. D Biol. Cryst. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development ofCoot. Acta Cryst. Sect. D Biol. Cryst. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Chen V.B., Arendall W.B., 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Cryst. D Biol. Cryst. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC
Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
Editorial: Special Issue on the "Molecular Biology of Disease Vectors"