Mialostatin, a Novel Midgut Cystatin from Ixodes ricinus Ticks: Crystal Structure and Regulation of Host Blood Digestion

. 2021 May 20 ; 22 (10) : . [epub] 20210520

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34065290

Grantová podpora
19-382 07247S Grantová Agentura České Republiky
21-08826S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759 European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund
project RVO 60077344 Czech Academy of Sciences
. 19-14704Y Czech Science Foundation
RVO 61388963 Czech Academy of Sciences

The hard tick Ixodes ricinus is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of I. ricinus. Here we characterize a novel cystatin-type protease inhibitor, mialostatin, from the I. ricinus midgut. Blood feeding rapidly induced mialostatin expression in the gut, which continued after tick detachment. Recombinant mialostatin inhibited a number of I. ricinus digestive cysteine cathepsins, with the greatest potency observed against cathepsin L isoforms, with which it co-localized in midgut digestive cells. The crystal structure of mialostatin was determined at 1.55 Å to explain its unique inhibitory specificity. Finally, mialostatin effectively blocked in vitro proteolysis of blood proteins by midgut cysteine cathepsins. Mialostatin is likely to be involved in the regulation of gut-associated proteolytic pathways, making midgut cystatins promising targets for tick control strategies.

Zobrazit více v PubMed

Lindgren E., Talleklint L., Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 2000;108:119–123. doi: 10.1289/ehp.00108119. PubMed DOI PMC

Yang Y., Christie J., Köster L., Du A., Yao C. Emerging Human Babesiosis with “Ground Zero” in North America. Microorganisms. 2021;9:440. doi: 10.3390/microorganisms9020440. PubMed DOI PMC

Sonenshine D.E., Roe R.M. Biology of Ticks. 2nd ed. Oxford University Press; New York, NY, USA: 2014.

Lara F.A., Lins U., Bechara G.H., Oliveira P.L. Tracing heme in a living cell: Hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 2005;208:3093–3101. doi: 10.1242/jeb.01749. PubMed DOI

Sojka D., Pytelková J., Perner J., Horn M., Konvičková J., Schrenková J., Mareš M., Kopáček P. Multienzyme degradation of host serum albumin in ticks. Ticks Tick-Borne Dis. 2016;7:604–613. doi: 10.1016/j.ttbdis.2015.12.014. PubMed DOI

Horn M., Nussbaumerová M., Šanda M., Kovářová Z., Srba J., Franta Z., Sojka D., Bogyo M., Caffrey C.R., Kopáček P., et al. Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase Pathway by Functional Proteomics. Chem. Biol. 2009;16:1053–1063. doi: 10.1016/j.chembiol.2009.09.009. PubMed DOI PMC

Sojka D., Hajdušek O., Dvořák J., Sajid M., Franta Z., Schneider E.L., Craik C.S., Vancová M., Burešová V., Bogyo M., et al. IrAE—An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. doi: 10.1016/j.ijpara.2006.12.020. PubMed DOI PMC

Sojka D., Franta Z., Frantová H., Bartošová P., Horn M., Váchová J., O’Donoghue A.J., Eroy-Reveles A.A., Craik C.S., Knudsen G.M., et al. Characterization of Gut-associated Cathepsin D Hemoglobinase from Tick Ixodes ricinus (IrCD1) J. Biol. Chem. 2012;287:21152–21163. doi: 10.1074/jbc.M112.347922. PubMed DOI PMC

Franta Z., Sojka D., Frantova H., Dvorak J., Horn M., Srba J., Talacko P., Mares M., Schneider E., Craik C.S., et al. IrCL1—The haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. Int. J. Parasitol. 2011;41:1253–1262. doi: 10.1016/j.ijpara.2011.06.006. PubMed DOI

Sojka D., Franta Z., Horn M., Hajdušek O., Caffrey C.R., Mares M., Kopáček P. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasites Vectors. 2008;1:7. doi: 10.1186/1756-3305-1-7. PubMed DOI PMC

Franta Z., Frantová H., Konvičková J., Horn M., Sojka D., Mareš M., Kopáček P. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasites Vectors. 2010;3:119. doi: 10.1186/1756-3305-3-119. PubMed DOI PMC

Sojka D., Francischetti I.M.B., Calvo E., Kotsyfakis M. Cysteine Proteases from Bloodfeeding Arthropod Ectoparasites. Adv. Exp. Med. Biol. 2011;712:177–191. doi: 10.1007/978-1-4419-8414-2_11. PubMed DOI PMC

Sojka D., Franta Z., Horn M., Caffrey C.R., Mareš M., Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. doi: 10.1016/j.pt.2013.04.002. PubMed DOI

Caffrey C.R., Goupil L., Rebello K.M., Dalton J.P., Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl. Trop. Dis. 2018;12:e0005840. doi: 10.1371/journal.pntd.0005840. PubMed DOI PMC

Novinec M., Lenarčič B., Turk B. Cysteine Cathepsin Activity Regulation by Glycosaminoglycans. BioMed Res. Int. 2014;2014:1–9. doi: 10.1155/2014/309718. PubMed DOI PMC

Turk V., Bode W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. doi: 10.1016/0014-5793(91)80804-C. PubMed DOI

Rawlings N.D., Waller M., Barrett A.J., Bateman A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014;42:D503–D509. doi: 10.1093/nar/gkt953. PubMed DOI PMC

Schwarz A., Valdés J.J., Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick-Borne Dis. 2012;3:117–127. doi: 10.1016/j.ttbdis.2012.03.004. PubMed DOI PMC

Chmelař J., Kotál J., Langhansová H., Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell. Infect. Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC

Martins L.A., Kotál J., Bensaoud C., Chmelař J., Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. Biochim. Biophys. Acta BBA Proteins Proteom. 2020;1868:140336. doi: 10.1016/j.bbapap.2019.140336. PubMed DOI

Lima C.A., Sasaki S.D., Tanaka A.S. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus. Biochem. Biophys. Res. Commun. 2006;347:44–50. doi: 10.1016/j.bbrc.2006.06.018. PubMed DOI

Parizi L.F., Githaka N.W., Acevedo C., Benavides U., Seixas A., Logullo C., Konnai S., Ohashi K., Masuda A., Vaz I.D.S. Sequence characterization and immunogenicity of cystatins from the cattle tick Rhipicephalus (Boophilus) microplus. Ticks Tick-Borne Dis. 2013;4:492–499. doi: 10.1016/j.ttbdis.2013.06.005. PubMed DOI

Grunclová L., Horn M., Vancová M., Sojka D., Franta Z., Mares M., Kopáček P. Two secreted cystatins of the soft tick Ornithodoros moubata: Differential expression pattern and inhibitory specificity. Biol. Chem. 2006;387:1635–1644. doi: 10.1515/BC.2006.204. PubMed DOI

Salát J., Paesen G.C., Řezáčová P., Kotsyfakis M., Kovářová Z., Šanda M., Majtán J., Grunclová L., Horká H., Andersen J.F., et al. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem. J. 2010;429:103–112. doi: 10.1042/BJ20100280. PubMed DOI PMC

Zavašnik-Bergant T., Vidmar R., Sekirnik A., Fonović M., Salát J., Grunclová L., Kopáček P., Turk B. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells. Front. Cell. Infect. Microbiol. 2017;7:288. doi: 10.3389/fcimb.2017.00288. PubMed DOI PMC

Parizi L.F., Sabadin G.A., Alzugaray M.F., Seixas A., Logullo C., Konnai S., Ohashi K., Masuda A., da Sliva Vaz I., Jr. Rhipicephalus microplus and Ixodes ovatus cystatins in tick blood digestion and evasion of host immune response. Parasites Vectors. 2015;8:122. doi: 10.1186/s13071-015-0743-3. PubMed DOI PMC

Rangel C.K., Parizi L.F., Sabadin G.A., Costa E.P., Romeiro N.C., Isezaki M., Githaka N.W., Seixas A., Logullo C., Konnai S., et al. Molecular and structural characterization of novel cystatins from the taiga tick Ixodes persulcatus. Ticks Tick-Borne Dis. 2017;8:432–441. doi: 10.1016/j.ttbdis.2017.01.007. PubMed DOI

Charrier N.P., Couton M., Voordouw M.J., Rais O., Durand-Hermouet A., Hervet C., Plantard O., Rispe C. Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasites Vectors. 2018;11:1–15. doi: 10.1186/s13071-018-2932-3. PubMed DOI PMC

Kotsyfakis M., Schwarz A., Erhart J., Ribeiro J.M.C. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 2015;5:srep09103. doi: 10.1038/srep09103. PubMed DOI PMC

Cramaro W.J., Revets D., Hunewald O.E., Sinner R., Reye A.L., Muller C.P. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. BMC Genom. 2015;16:871. doi: 10.1186/s12864-015-1981-7. PubMed DOI PMC

Perner J., Provazník J., Schrenková J., Urbanová V., Ribeiro J.M.C., Kopáček P. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 2016;6:36695. doi: 10.1038/srep36695. PubMed DOI PMC

Kotál J., Stergiou N., Buša M., Chlastáková A., Beránková Z., Řezáčová P., Langhansová H., Schwarz A., Calvo E., Kopecký J., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell. Mol. Life Sci. 2019;76:2003–2013. doi: 10.1007/s00018-019-03034-3. PubMed DOI PMC

Kotsyfakis M., Horka H., Salat J., Andersen J.F. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol. Microbiol. 2010;77:456–470. doi: 10.1111/j.1365-2958.2010.07220.x. PubMed DOI PMC

Kotsyfakis M., Sá-Nunes A., Francischetti I.M.B., Mather T.N., Andersen J.F., Ribeiro J.M.C. Antiinflammatory and Immunosuppressive Activity of Sialostatin L, a Salivary Cystatin from the Tick Ixodes scapularis. J. Biol. Chem. 2006;281:26298–26307. doi: 10.1074/jbc.M513010200. PubMed DOI

Balbin M., Hall A., Grubb A., Mason R.W., Lopez-Otin C., Abrahamson M. Structural and functional characterization of two allelic variants of human cystatin D sharing a characteristic inhibition spectrum against mammalian cysteine proteinases. J. Biol. Chem. 1994;269:23156–23162. doi: 10.1016/S0021-9258(17)31633-2. PubMed DOI

Anastasi A., Brown M.A., Kembhavi A.A., Nicklin M.J.H., Sayers C.A., Sunter D.C., Barrett A.J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem. J. 1983;211:129–138. doi: 10.1042/bj2110129. PubMed DOI PMC

Vasiljeva O., Dolinar M., Turk V., Turk B. Recombinant Human Cathepsin H Lacking the Mini Chain Is an Endopeptidase. Biochemistry. 2003;42:13522–13528. doi: 10.1021/bi035355k. PubMed DOI

Pidugu L.S., Maity K., Ramaswamy K., Surolia N., Suguna K. Analysis of proteins with the ’Hot dog’ fold: Prediction of function and identification of catalytic residues of hypothetical proteins. BMC Struct. Biol. 2009;9:37. doi: 10.1186/1472-6807-9-37. PubMed DOI PMC

Alvarez-Fernandez M., Liang Y.-H., Abrahamson M., Su X.-D. Crystal Structure of Human Cystatin D, a Cysteine Peptidase Inhibitor with Restricted Inhibition Profile. J. Biol. Chem. 2005;280:18221–18228. doi: 10.1074/jbc.M411914200. PubMed DOI

Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., Brzin J., Kos J., Turk V. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988;7:2593–2599. doi: 10.1002/j.1460-2075.1988.tb03109.x. PubMed DOI PMC

Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., Turk D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta BBA Proteins Proteom. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC

Nandy S.K., Seal A. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes. PLoS ONE. 2016;11:e0164970. doi: 10.1371/journal.pone.0164970. PubMed DOI PMC

Wang Y., Yu X., Cao J., Zhou Y., Gong H., Zhang H., Li X., Zhou J. Characterization of a secreted cystatin from the tick Rhipicephalus haemaphysaloides. Exp. Appl. Acarol. 2015;67:289–298. doi: 10.1007/s10493-015-9946-8. PubMed DOI

Lu S., da Rocha L.A., Torquato R.J., Junior I.D.S.V., Florin-Christensen M., Tanaka A.S. A novel type 1 cystatin involved in the regulation of Rhipicephalus microplus midgut cysteine proteases. Ticks Tick-Borne Dis. 2020;11:101374. doi: 10.1016/j.ttbdis.2020.101374. PubMed DOI

Kordiš D., Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol. Biol. 2009;9:266. doi: 10.1186/1471-2148-9-266. PubMed DOI PMC

Kopáček P., Perner J., Sojka D., Šíma R., Hajdušek O. Ectoparasites. Volume 8. Wiley; New York, NY, USA: 2018. Molecular Targets to Impair Blood Meal Processing in Ticks; pp. 139–165.

Reyes J., Ayala-Chavez C., Sharma A., Pham M., Nuss A.B., Gulia-Nuss M. Blood Digestion by Trypsin-Like Serine Proteases in the Replete Lyme Disease Vector Tick, Ixodes scapularis. Insects. 2020;11:201. doi: 10.3390/insects11030201. PubMed DOI PMC

Cruz C.E., Fogaça A.C., Nakayasu E.S., Angeli C.B., Belmonte R., Almeida I.C., Miranda A., Miranda M.T.M., Tanaka A.S., Braz G.R., et al. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasites Vectors. 2010;3:63. doi: 10.1186/1756-3305-3-63. PubMed DOI PMC

Xavier M.A., Tirloni L., Torquato R., Tanaka A., Pinto A.F.M., Diedrich J.K., Yates J.R., 3rd, da Silva Vaz I., Jr., Seixas A., Termignoni C. Blood anticlotting activity of a Rhipicephalus microplus cathepsin L-like enzyme. Biochimie. 2019;163:12–20. doi: 10.1016/j.biochi.2019.04.025. PubMed DOI

Rodríguez-Mallon A. Developing Anti-tick Vaccines. Methods Mol. Biol. 2016;1404:243–259. doi: 10.1007/978-1-4939-3389-1_17. PubMed DOI

Nijhof A.M., Balk J.A., Postigo M., Jongejan F. Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus) microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86. BMC Mol. Biol. 2009;10:112. doi: 10.1186/1471-2199-10-112. PubMed DOI PMC

Urbanová V., Hartmann D., Grunclová L., Šíma R., Flemming T., Hajdušek O., Kopáček P. IrFC—An Ixodes ricinus injury-responsive molecule related to Limulus Factor C. Dev. Comp. Immunol. 2014;46:439–447. doi: 10.1016/j.dci.2014.05.016. PubMed DOI

Vechtova P., Fussy Z., Cegan R., Sterba J., Erhart J., Benes V., Grubhoffer L. Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasites Vectors. 2020;13:1–19. doi: 10.1186/s13071-020-04173-4. PubMed DOI PMC

Kopácek P., Zdychová J., Yoshiga T., Weise C., Rudenko N., Law J.H. Molecular cloning, expression and isolation of ferritins from two tick species--Ornithodoros moubata and Ixodes ricinus. Insect Biochem. Mol. Biol. 2003;33:103–113. doi: 10.1016/S0965-1748(02)00181-9. PubMed DOI

Hurrell J.G.R. Monoclonal Hybridoma Antibodies: Techniques and Applications. CRC Press; Boca Raton, FL, USA: 2017. p. 239.

Russo C., Callegaro L., Lanza E., Ferrone S. Purification of IgG monoclonal antibody by caprylic acid precipitation. J. Immunol. Methods. 1983;65:269–271. doi: 10.1016/0022-1759(83)90324-1. PubMed DOI

Hartmann D., Šíma R., Konvičková J., Perner J., Kopáček P., Sojka D. Multiple legumain isoenzymes in ticks. Int. J. Parasitol. 2018;48:167–178. doi: 10.1016/j.ijpara.2017.08.011. PubMed DOI

Hánová I., Brynda J., Houštecká R., Alam N., Sojka D., Kopáček P., Marešová L., Vondrášek J., Horn M., Schueler-Furman O., et al. Novel Structural Mechanism of Allosteric Regulation of Aspartic Peptidases via an Evolutionarily Conserved Exosite. Cell Chem. Biol. 2018;25:318–329.e4. doi: 10.1016/j.chembiol.2018.01.001. PubMed DOI

Schagger H. Tricine-SDS-PAGE. Nat. Protoc. 2006;1:16–22. doi: 10.1038/nprot.2006.4. PubMed DOI

Jones D.T., Taylor W.R., Thornton J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI

Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evol. Int. J. Org. Evol. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Mueller U., Darowski N., Fuchs M.R., Förster R., Hellmig M., Paithankar K.S., Pühringer S., Steffien M., Zocher G., Weiss M.S. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 2012;19:442–449. doi: 10.1107/S0909049512006395. PubMed DOI PMC

Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Cryst. Sect. D Biol. Cryst. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC

Vagin A., Teplyakov A. Molecular replacement with MOLREP. Int. Tables Crystallogr. 2012;66:364–366. doi: 10.1107/97809553602060000843. PubMed DOI

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G.W., McCoy A., et al. Overview of theCCP4 suite and current developments. Acta Cryst. Sect. D Biol. Cryst. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development ofCoot. Acta Cryst. Sect. D Biol. Cryst. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Chen V.B., Arendall W.B., 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Cryst. D Biol. Cryst. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...