Proteomic Insight Into the Ontogeny of Blood-Meal Digestion in the Tick Ixodes ricinus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40840760
PubMed Central
PMC12466206
DOI
10.1016/j.mcpro.2025.101054
PII: S1535-9476(25)00153-7
Knihovny.cz E-zdroje
- Klíčová slova
- adult Ixodes ricinus, label-free proteomics, midgut proteome, proteolytic system, tick physiology,
- MeSH
- klíště * metabolismus fyziologie enzymologie MeSH
- proteasy metabolismus MeSH
- proteiny členovců * metabolismus MeSH
- proteom * metabolismus MeSH
- proteomika * metody MeSH
- stravovací zvyklosti MeSH
- trávení * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteasy MeSH
- proteiny členovců * MeSH
- proteom * MeSH
Ticks are important ectoparasites and vectors of a variety of pathogens in both animals and humans, and their increasing global distribution poses a growing health risk. Unlike other blood-feeding vectors, ticks feed for an extended period at each life stage and rely exclusively on blood for development and reproduction. Blood digestion in ticks is mediated by a complex multienzyme network within the endolysosomal system of the midgut (MG) epithelial cells. Previous studies have focused largely on protein digestion during the slow feeding phase. However, the processing of the blood meal after the mating-induced rapid engorgement ("big sip") remains unclear, although the rapid turnover of proteins from host blood proteins into yolk proteins in fully fed females is a crucial step for tick reproduction. In this study, we performed a label-free quantitative proteomic analysis of MG tissue extracts and MG contents of the hard tick Ixodes ricinus to characterize proteases and protease inhibitors expressed during selected timepoints of female feeding and off-host digestion. In addition, we analyzed the distribution of digestive enzymes by activity profiling in MG extracts and contents with specific diagnostic substrates. Our results show that the multienzyme network, mainly based on aspartic acid and cysteine cathepsins and complemented by specific types of serine proteases and metalloproteases, is involved in the intracellular and probably also in the luminal digestion of blood meal proteins in fully engorged female ticks. We also detected different types of protease inhibitors and proposed their regulatory role in controlling both endogenous (tick-derived) and host protease activities in the MG tissue and luminal contents storing ingested blood. These results provide comprehensive insights into the physiology of the tick MG and offer new opportunities for the development of future control strategies against ticks and tick-borne diseases.
Zobrazit více v PubMed
de la Fuente J., Estrada-Pena A., Venzal J.M., Kocan K.M., Sonenshine D.E. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008;13:6938–6946. PubMed
Franta Z., Frantova H., Konvickova J., Horn M., Sojka D., Mares M., et al. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasites Vectors. 2010;3:119. PubMed PMC
Sojka D., Franta Z., Horn M., Caffrey C.R., Mares M., Kopacek P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. PubMed
Sonenshine D.E., Roe R.M. Biology of Ticks. 2 Ed. Oxford University Press; Oxford: 2014.
Hanova I., Brynda J., Houstecka R., Alam N., Sojka D., Kopacek P., et al. Novel structural mechanism of allosteric regulation of aspartic peptidases via an evolutionarily conserved exosite. Cell Chem. Biol. 2018;25:318–329.e314. PubMed
Sojka D., Franta Z., Frantova H., Bartosova P., Horn M., Vachova J., et al. Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1) J. Biol. Chem. 2012;287:21152–21163. PubMed PMC
Franta Z., Sojka D., Frantova H., Dvorak J., Horn M., Srba J., et al. IrCL1 - the haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. Int. J. Parasitol. 2011;41:1253–1262. PubMed
Sojka D., Hajdusek O., Dvorak J., Sajid M., Franta Z., Schneider E.L., et al. IrAE - an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. PubMed PMC
Horn M., Nussbaumerova M., Sanda M., Kovarova Z., Srba J., Franta Z., et al. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 2009;16:1053–1063. PubMed PMC
Kozelkova T., Dycka F., Lu S., Urbanova V., Frantova H., Sojka D., et al. Insight into the dynamics of the Ixodes ricinus nymphal Midgut proteome. Mol. Cell Proteomics. 2023;22 PubMed PMC
Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. PubMed
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed
Kotsyfakis M., Schwarz A., Erhart J., Ribeiro J.M. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 2015;5:9103. PubMed PMC
Perner J., Provaznik J., Schrenkova J., Urbanova V., Ribeiro J.M., Kopacek P. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 2016;6 PubMed PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. PubMed
Sojka D., Pytelkova J., Perner J., Horn M., Konvickova J., Schrenkova J., et al. Multienzyme degradation of host serum albumin in ticks. Ticks Tick Borne Dis. 2016;7:604–613. PubMed
Sorgine M.H., Logullo C., Zingali R.B., Paiva-Silva G.O., Juliano L., Oliveira P.L. A heme-binding aspartic proteinase from the eggs of the hard tick Boophilus microplus. J. Biol. Chem. 2000;275:28659–28665. PubMed
Rawlings N.D., Bateman A. How to use the MEROPS database and website to help understand peptidase specificity. Protein Sci. 2021;30:83–92. PubMed PMC
Urbanova V., Lu S., Kalinova E., Martins L., Kozelkova T., Dycka F., et al. From the fat body to the hemolymph: profiling tick immune and storage proteins through transcriptomics and proteomics. Insect Biochem. Mol. Biol. 2024;165 PubMed
Cerqueira de Araujo A., Noël B., Bretaudeau A., Labadie K., Boudet M., Tadrent N., et al. Genome sequences of four Ixodes species expands understanding of tick evolution. BMC Biology. 2025;23:17. PubMed PMC
Tsuji N., Miyoshi T., Battsetseg B., Matsuo T., Xuan X., Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. Plos Pathog. 2008;4 PubMed PMC
Krowarsch D., Cierpicki T., Jelen F., Otlewski J. Canonical protein inhibitors of serine proteases. Cell Mol. Life Sci. 2003;60:2427–2444. PubMed PMC
Kotal J., Busa M., Urbanova V., Rezacova P., Chmelar J., Langhansova H., et al. Mialostatin, a novel midgut cystatin from Ixodes ricinus ticks: crystal structure and regulation of host blood digestion. Int. J. Mol. Sci. 2021;22:5371. PubMed PMC
Kotal J., Stergiou N., Busa M., Chlastakova A., Berankova Z., Rezacova P., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol. Life Sci. 2019;76:2003–2013. PubMed PMC
Lu S., Martins L.A., Kotal J., Ribeiro J.M.C., Tirloni L. A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female Ixodes scapularis. Sci. Rep. 2023;13 PubMed PMC
Reyes J.B., McVicar M., Beniwal S., Sharma A., Tillett R., Petereit J., et al. A multi-omics approach for understanding blood digestion dynamics in Ixodes scapularis and identification of anti-tick vaccine targets. Ticks Tick Borne Dis. 2024;15 PubMed PMC
Schwarz A., Tenzer S., Hackenberg M., Erhart J., Gerhold-Ay A., Mazur J., et al. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Mol. Cell Proteomics. 2014;13:2725–2735. PubMed PMC
Perner J., Kropackova S., Kopacek P., Ribeiro J.M.C. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. Plos Negl. Trop. Dis. 2018;12 PubMed PMC
Medina J.M., Jmel M.A., Cuveele B., Gomez-Martin C., Aparicio-Puerta E., Mekki I., et al. Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Front. Cell Infect. Microbiol. 2022;12 PubMed PMC
Charrier N.P., Couton M., Voordouw M.J., Rais O., Durand-Hermouet A., Hervet C., et al. Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasites Vectors. 2018;11:364. PubMed PMC
Vechtova P., Fussy Z., Cegan R., Sterba J., Erhart J., Benes V., et al. Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasites Vectors. 2020;13:311. PubMed PMC
Cruz C.E., Fogaca A.C., Nakayasu E.S., Angeli C.B., Belmonte R., Almeida I.C., et al. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasites Vectors. 2010;3:63. PubMed PMC
Sojka D., Franta Z., Horn M., Hajdusek O., Caffrey C.R., Mares M., et al. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasites Vectors. 2008;1:7. PubMed PMC
Xavier M.A., Tirloni L., Torquato R., Tanaka A., Pinto A.F.M., Diedrich J.K., et al. Blood anticlotting activity of a Rhipicephalus microplus cathepsin L-like enzyme. Biochimie. 2019;163:12–20. PubMed
Reyes J., Ayala-Chavez C., Sharma A., Pham M., Nuss A.B., Gulia-Nuss M. Blood digestion by trypsin-like serine proteases in the replete Lyme Disease Vector tick, Ixodes Scapularis. Insects. 2020;11:201. PubMed PMC
Noriega F.G., Wells M.A. A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J. Insect Physiol. 1999;45:613–620. PubMed
Ouali R., Bousbata S. Unveiling the peptidase network orchestrating hemoglobin catabolism in Rhodnius prolixus. Mol. Cell Proteomics. 2024;23 PubMed PMC
Dorrah M., Bensaoud C., Mohamed A.A., Sojka D., Bassal T.T.M., Kotsyfakis M. Comparison of the hemolysis machinery in two evolutionarily distant blood-feeding arthropod vectors of human diseases. Plos Negl. Trop. Dis. 2021;15 PubMed PMC
Miyoshi T., Tsuji N., Islam M.K., Huang X., Motobu M., Alim M.A., et al. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. J. Insect Physiol. 2007;53:195–203. PubMed
Guizzo M.G., Frantova H., Lu S., Kozelkova T., Cihalova K., Dycka F., et al. The immune factors involved in the rapid clearance of bacteria from the midgut of the tick Ixodes ricinus. Front. Cell Infect. Microbiol. 2024;14 PubMed PMC
Aguado M.E., Carvalho S., Valdes-Tresanco M.E., Lin D., Padilla-Mejia N., Corpas-Lopez V., et al. Identification and validation of compounds targeting Leishmania major leucyl-aminopeptidase M17. ACS Infect. Dis. 2024;10:2002–2017. PubMed PMC
Acosta D., Cancela M., Piacenza L., Roche L., Carmona C., Tort J.F. Fasciola hepatica leucine aminopeptidase, a promising candidate for vaccination against ruminant fasciolosis. Mol. Biochem. Parasitol. 2008;158:52–64. PubMed
Edgar R.C.S., Malcolm T.R., Siddiqui G., Giannangelo C., Counihan N.A., Challis M., et al. On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity. mBio. 2024;15 PubMed PMC
Checa J., Salazar C., Goyeche A., Rivera M., Silveira F., Maggioli G. A promising new target to control fasciolosis: Fasciola hepatica leucine aminopeptidase 2. Vet. Parasitol. 2023;320 PubMed
McCarthy E., Stack C., Donnelly S.M., Doyle S., Mann V.H., Brindley P.J., et al. Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum. Int. J. Parasitol. 2004;34:703–714. PubMed
McGowan S., Oellig C.A., Birru W.A., Caradoc-Davies T.T., Stack C.M., Lowther J., et al. Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proc. Natl. Acad. Sci. U. S. A. 2010;107:2449–2454. PubMed PMC
Hatta T., Kazama K., Miyoshi T., Umemiya R., Liao M., Inoue N., et al. Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int. J. Parasitol. 2006;36:1123–1132. PubMed
Hatta T., Tsuji N., Miyoshi T., Islam M.K., Alim M.A., Yamaji K., et al. Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes. Parasitol. Int. 2010;59:286–289. PubMed
Jmel M.A., Aounallah H., Bensaoud C., Mekki I., Chmelar J., Faria F., et al. Insights into the role of tick salivary protease inhibitors during ectoparasite-host crosstalk. Int. J. Mol. Sci. 2021;22:892. PubMed PMC
Davie E.W., Fujikawa K., Kurachi K., Kisiel W. The role of serine proteases in the blood coagulation cascade. Adv. Enzymol. Relat. Areas Mol. Biol. 1979;48:277–318. PubMed
Fogaca A.C., Almeida I.C., Eberlin M.N., Tanaka A.S., Bulet P., Daffre S. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides. 2006;27:667–674. PubMed
Sasaki S.D., de Lima C.A., Lovato D.V., Juliano M.A., Torquato R.J., Tanaka A.S. BmSI-7, a novel subtilisin inhibitor from Boophilus microplus, with activity toward Pr1 proteases from the fungus Metarhizium anisopliae. Exp. Parasitol. 2008;118:214–220. PubMed
Perez-Riverol Y., Bai J., Bandla C., Garcia-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. PubMed PMC
Baker P.R., Chalkley R.J. MS-viewer: a web-based spectral viewer for proteomics results. Mol. Cell Proteomics. 2014;13:1392–1396. PubMed PMC