Comparison of the hemolysis machinery in two evolutionarily distant blood-feeding arthropod vectors of human diseases

. 2021 Feb ; 15 (2) : e0009151. [epub] 20210204

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33539385

Host blood protein digestion plays a pivotal role in the ontogeny and reproduction of hematophagous vectors. The gut of hematophagous arthropods stores and slowly digests host blood and represents the primary gateway for transmitted pathogens. The initial step in blood degradation is induced lysis of host red blood cells (hemolysis), which releases hemoglobin for subsequent processing by digestive proteolytic enzymes. The activity cycles and characteristics of hemolysis in vectors are poorly understood. Hence, we investigated hemolysis in two evolutionarily distant blood-feeding arthropods: The mosquito Culex pipiens and the soft tick Argas persicus, both of which are important human and veterinary disease vectors. Hemolysis in both species was cyclical after blood meal ingestion. Maximum digestion occurs under slightly alkaline conditions in females. Hemolytic activity appears to be of lipoid origin in C. pipiens and enzymatic activity (proteolytic) in A. persicus. We have assessed the effect of pH, incubation time, and temperature on hemolytic activity and the hemolysin. The susceptibility of red blood cells from different hosts to the hemolysin and the effect of metabolic inhibition of hemolytic activity were assessed. We conclude that in C. pipiens and A. persicus midgut hemolysins control the amplitude of blood lysis step to guarantee an efficient blood digestion.

Zobrazit více v PubMed

Mayer SV, Tesh RB, Vasilakis N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Tropica. 2017;166:155–163. 10.1016/j.actatropica.2016.11.020 PubMed DOI PMC

Mans BJ. Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods. J Innate Immun. 2011;3:41–51. 10.1159/000321599 PubMed DOI

Reidenbach KR, Cook S, Bertone MA, Harbach RE, Wiegmann BM, Besansky NJ. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. BMC Evol Biol. 2009;9:298 10.1186/1471-2148-9-298 PubMed DOI PMC

Hoogstraal H. Argasid and nuttalliellid ticks as parasites and vectors. Adv Parasitol. 1985;24: 135–238. 10.1016/s0065-308x(08)60563-1 PubMed DOI

Rehacek J, Urvolgyi J, Kovacova E. Massive occurrence of rickettsiae of the spotted fever group in fowl tampan, Argas persicus, in the Armenian S.S.R. Acta Virol. 1977;21:431–438. Available: https://pubmed.ncbi.nlm.nih.gov/22239/ PubMed

Farajollahi A, Fonseca DM, Kramer LD, Marm Kilpatrick A. "Bird biting" mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol. 2011;11:1577–1185. 10.1016/j.meegid.2011.08.013 PubMed DOI PMC

Brugman V, Hernández-Triana L, Medlock J, Fooks A, Carpenter S, Johnson N. The role of Culex pipiens L. (Diptera: Culicidae) in virus transmission in Europe. Int J Environ Res Public Health. 2018;15:389 10.3390/ijerph15020389 PubMed DOI PMC

Fawzy M, Helmy YA. The one health approach is necessary for the control of Rift Valley fever infections in Egypt: A Comprehensive Review. Viruses. 2019;11:139 10.3390/v11020139 PubMed DOI PMC

Pantaleoni RA, Baratti M, Barraco L, Contini C, Cossu CS, Filippelli MT, et al. Argas (Persicargas) persicus (Oken, 1818) (Ixodida: Argasidae) in Sicily with considerations about its Italian and West-Mediterranean distribution. Parasite. 2010;17: 349–355. 10.1051/parasite/2010174349 PubMed DOI

Lisbôa RS, Teixeira RC, Rangel CP, Santos HA, Massard CL, Fonseca AH. Avian spirochetosis in chickens following experimental transmission of Borrelia anserina by Argas (Persicargas) miniatus. Avian Dis. 2009;53:166–168. 10.1637/8377-061508-Reg.1 PubMed DOI

Parola P, Rovery C, Rolain JM, Brouqui P, Davoust B, Raoult D. Rickettsia slovaca and R. raoultii in tick-borne rickettsioses. Emerg Infect Dis. 2009;15:1105–1108. 10.3201/eid1507.081449 PubMed DOI PMC

Rehácek J, Urvölgyi J, Kovácová E. Massive occurrence of rickettsiae of the spotted fever group in fowl tampan, Argas persicus, in the Armenian S.S.R. Acta Virol. 1977;21: 431–438. PubMed

Zivcec M, Safronetz D, Feldmann H. Animal models of tick-borne hemorrhagic fever viruses. Pathogens. 2013;2:402–421. 10.3390/pathogens2020402 PubMed DOI PMC

Mehla R, Kumar SRP, Yadav P, Barde P V., Yergolkar PN, Erickson BR, et al. Recent ancestry of Kyasanur Forest disease virus. Emerg Infect Dis. 2009;15:1431–1437. 10.3201/eid1509.080759 PubMed DOI PMC

Labuda M, Elecková E, Licková M, Sabó A. Tick-borne encephalitis virus foci in Slovakia. Int J Med Microbiol. 2002;291 Suppl:43–47. PubMed

Lehane MJ. The biology of blood-sucking in insects, second edition The Biology of Blood-Sucking in Insects, Second Edition. Cambridge University Press; 2005. 10.1017/CBO9780511610493 DOI

Ribeiro JMC, Bruno A. From sialomes to the sialoverse: An insight into salivary potion of blood-feeding insects. Adv Insect Physiol. 2009;37:59–118. 10.1016/s0065-2806(09)37002-2. DOI

Freyvogel TA. Blood digestion in haematophagous insects. Acta Trop. 1975;32: 81–82. PubMed

Santiago PB, De Araújo CN, Motta FN, Praça YR, Charneau S, Bastos IMD, et al. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity—a review. Parasites Vectors. 2017; 10:1–20. 10.1186/s13071-016-1943-1 PubMed DOI PMC

Shao L, Devenport M, Jacobs-Lorena M. The peritrophic matrix of hematophagous insects. Arch Insect Biochem Physiol. 2001;47:119–125. 10.1002/arch.1042 PubMed DOI

Billingsley PF, Rudin W. The role of the mosquito peritrophic membrane in bloodmeal digestion and infectivity of Plasmodium species. J Parasitol. 1992;78: 430–440. 10.2307/3283640 PubMed DOI

Sojka D, Hajdušek O, Dvořák J, Sajid M, Franta Z, Schneider EL, et al. IrAE—An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int J Parasitol. 2007;37: 713–724. 10.1016/j.ijpara.2006.12.020 PubMed DOI PMC

Kariu T, Smith A, Yang X, Pal U. A chitin deacetylase-like protein is a predominant constituent of tick peritrophic membrane that influences the persistence of lyme disease pathogens within the vector. PLoS One. 2013;8:e78376 10.1371/journal.pone.0078376 PubMed DOI PMC

Sonenshine DE. Biology of Ticks, Volume 1. Vet Clin North Am Small Anim Pract. 1991;21: 1–26. 10.1016/S0195-5616(91)50001-2 PubMed DOI

Akov S. Blood Digestion in Ticks Physiology of Ticks. Elsevier; 1982. pp. 197–211. 10.1016/b978-0-08-024937-7.50011–1 DOI

Lara FA, Lins U, Bechara GH, Oliveira PL. Tracing heme in a living cell: Hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J Exp Biol. 2005;208: 3093–3101. 10.1242/jeb.01749 PubMed DOI

Graça-Souza AV., Maya-Monteiro C, Paiva-Silva GO, Braz GRC, Paes MC, Sorgine MHF, et al. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem Mol Biol. 2006;36:322–335. 10.1016/j.ibmb.2006.01.009 PubMed DOI

Sojka D, Pytelková J, Perner J, Horn M, Konvičková J, Schrenková J, et al. Multienzyme degradation of host serum albumin in ticks. Ticks Tick Borne Dis. 2016;7: 604–613. 10.1016/j.ttbdis.2015.12.014 PubMed DOI

Romano D, Stefanini C, Canale A, Benelli G. Artificial blood feeders for mosquito and ticks—Where from, where to? Acta Trop. 2018;183: 43–56. 10.1016/j.actatropica.2018.04.009 PubMed DOI

Dorrah MA, Mohamed AA, Shaurub EH. Immunosuppressive effects of the limonoid azadirachtin, insights on a nongenotoxic stress botanical, in flesh flies. Pestic Biochem Physiol. 2019;153:55–66. 10.1016/j.pestbp.2018.11.004 PubMed DOI

Gooding RH, Rolseth BM. Digestive processes of haematophagous insects. XI. Partial purification and some properties of six proteolytic enzymes from the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae). Can J Zool. 1976;54: 1950–1959. 10.1139/z76-226 PubMed DOI

Folch J, Lees M, Stanley SGH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509. 10.3989/scimar.2005.69n187 PubMed DOI

Matthews R. Methods of Enzymatic Analysis. Bergmeyer HU, editor. J Clin Pathol. 2nd ed. 1987;40:934–934. 10.1136/jcp.40.8.934-a DOI

Gray EM, Bradley TJ. Metabolic rate in Female Culex tarsalis (Diptera: Culicidae): age, size, activity, and feeding effects. J Med Entomol. 2003;40:903–911. 10.1603/0022-2585-40.6.903 PubMed DOI

El Shoura SM. Ultrastructural studies on the midgut epithelium and digestion in the female tick Argas (Persicargas) arboreus (Ixodoidea: Argasidae). Exp Appl Acarol. 1988;5:121–136. 10.1007/BF02053822 DOI

Perner J, Sobotka R, Sima R, Konvickova J, Sojka D, de Oliveira PL, et al. Acquisition of exogenous haem is essential for tick reproduction. Elife. 2016;5:e12318 10.7554/eLife.12318 PubMed DOI PMC

Sojka D, Francischetti IMB, Calvo E, Kotsyfakis M. Cysteine proteases from bloodfeeding arthropod ectoparasites. Adv Exp Med Biol. 2011;712:177–191. 10.1007/978-1-4419-8414-2_11 PubMed DOI PMC

Smit JDG, Grandjean O, Guggenheim R, Winterhalter KH. Haemoglobin crystals in the midgut of the tick Ornithodorus moubata Murray. Nature. 1977;266:536–538. 10.1038/266536a0 PubMed DOI

Coluzzi M, Concetti A, Ascoli F. Effect of cibarial armature of mosquitoes (Diptera, Culicidae) on blood-meal haemolysis. J Insect Physiol. 1982;28:885–888. 10.1016/0022-1910(82)90103-2 DOI

Ribeiro JM. The midgut hemolysin of Ixodes dammini (Acari:Ixodidae). J Parasitol. 1988;74: 532–537. 10.2307/3282168 PubMed DOI

Gooding RH. Digestive processes of haematophagous insects. XIV. Haemolytic activity in the midgut of Glossina morsitans morstians Westwood (Diptera: Glossinidae). Can J Zool. 1977;55:1899–1905. 10.1139/z77-243 PubMed DOI

Geering K. Haemolytic activity in the blood clot of Aedes aegypti. Acta Trop. 1975;32:145–151. PubMed

Spates GE, DeLoach JR, Chen AC. Ingestion, utilization and excretion of blood meal sterols by the stable fly, Stomoxys calcitrans. J Insect Physiol. 1988;34:1055–1061. 10.1016/0022-1910(88)90205-3 DOI

Kirch HJ, Spates G, Kloft WJ, Deloach JR. The relationship of membrane lipids to species specific hemolysis by hemolytic factors from Stomoxys calcitrans (l.) (Diptera: Muscidae). Insect Biochem. 1991;21:113–120.

Azambuja P de Guimarães JA, Garcia ES. Haemolytic factor from the crop of Rhodnius prolixus: Evidence and partial characterization. J Insect Physiol. 1983;29:833–837. 10.1016/0022-1910(83)90149-X DOI

Nepomuceno DB, Santos VC, Araújo RN, Pereira MH, Sant’Anna MR, Moreira LA, et al. PH control in the midgut of Aedes aegypti under different nutritional conditions. J Exp Biol. 2017;220:3355–3362. 10.1242/jeb.158956 PubMed DOI

Erban T, Hubert J. Determination of pH in regions of the midguts of acaridid mites. J Insect Sci. 2010;10:1–12. 10.1673/031.010.0101 PubMed DOI PMC

Miyoshi T, Tsuji N, Khyrul Islam M, Huang X, Motobu M, Abdul Alim M, et al. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. J Insect Physiol. 2007;53: 195–203. 10.1016/j.jinsphys.2006.12.001 PubMed DOI

Renault D, Yousef H, Mohamed AA. The multilevel antibiotic-induced perturbations to biological systems: Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies. Environ Pollut. 2018;241:821–833. 10.1016/j.envpol.2018.06.011 PubMed DOI

Tatchell RJ. Digestion in the tick, Argas persicus, Oken. Parasitology. 1964;54:423–440. 10.1017/s0031182000082470 PubMed DOI

Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735. 10.1111/1574-6976.12025 PubMed DOI

Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, et al. Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquito vectors. Front Microbiol. 2018;9:2160 10.3389/fmicb.2018.02160 PubMed DOI PMC

Gaio ADO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PFP, Lemos FJA. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (Diptera: Culicidae) (L.). Parasites Vectors. 2011;4:105 10.1186/1756-3305-4-105 PubMed DOI PMC

Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the Malaria Mosquito Anopheles gambiae in Kenya. PLoS One. 2011;6:e24767 10.1371/journal.pone.0024767 PubMed DOI PMC

Muturi EJ, Dunlap C, Ramirez JL, Rooney AP, Kim CH. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol Ecol. 2018;95:213 10.1093/femsec/fiy213 PubMed DOI

Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23:2727–2739. 10.1111/mec.12771 PubMed DOI PMC

Minard G, Tran FH, Dubost A, Tran-Van V, Mavingui P, Valiente Moro C. Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito Aedes albopictus: A pilot study. Front Cell Infect Microbiol. 2014;4:59 10.3389/fcimb.2014.00059 PubMed DOI PMC

Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol. 2012;21:5138–5150. 10.1111/j.1365-294X.2012.05759.x PubMed DOI

Duguma D, Hall MW, Rugman-Jones P, Stouthamer R, Terenius O, Neufeld JD, et al. Developmental succession of the microbiome of Culex mosquitoes Ecological and evolutionary microbiology. BMC Microbiol. 2015;15:140 10.1186/s12866-015-0475-8 PubMed DOI PMC

Muturi EJ, Kim CH, Bara J, Bach EM, Siddappaji MH. Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasites Vectors. 2016;9:18 10.1186/s13071-016-1299-6 PubMed DOI PMC

Gonçalves CM, Melo FF, Bezerra JMT, Chaves BA, Silva BM, Silva LD, et al. Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasites Vectors. 2014;7:320 10.1186/1756-3305-7-320 PubMed DOI PMC

Strand MR. Composition and functional roles of the gut microbiota in mosquitoes. Curr Opin Insect Sci. 2018;28:59–65. 10.1016/j.cois.2018.05.008 PubMed DOI PMC

Spates GE, Stipanovic RD, Williams H, Holman GM. Mechanism of haemolysis in a blood-sucking dipteran, Stomoxys calcitrans. Insect Biochem. 1982;12: 707–712. 10.1016/0020-1790(82)90060-9 DOI

Spates GE, Mayer RT. Midgut Hemolytic Activity of the Horn Fly, Haematobia Irritans (Diptera: Muscidae). J Med Entomol. 1984;21: 58–62. 10.1093/jmedent/21.1.58 DOI

Zavodnik IB, Zaborowski A, Niekurzak A, Bryszewska M. Effect of free fatty acids on erythrocyte morphology and membrane fluidity. Biochem Mol Biol Int. 1997;42:123–133. 10.1080/15216549700202501 PubMed DOI

Deuticke B. Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. BBA—Biomembr. 1968;163: 494–500. 10.1016/0005-2736(68)90078-3 PubMed DOI

Roelofsen B, Zwaal RFA, Comfurius P, Woodward CB, Van Deenen LLM. Action of pure phospholipase A2 and phospholipase C on human erythrocytes and ghosts. BBA—Biomembr. 1971;241:925–929. 10.1016/0005-2736(71)90024-1 PubMed DOI

Ribeiro JM, Makoul GT RD. Ixodes dammini: evidence for salivary prostacyclin secretion. J Parasitol. 1988;74:1068–1069. PubMed

Howard SP, Buckley JT. Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin. Biochemistry. 1982;21:1662–1667. 10.1021/bi00536a029 PubMed DOI

Hachimori Y, Wells MA, Hanahan DJ. Observations on the phospholipase A 2 of Crotalus atrox. Molecular weight and other properties. Biochemistry. 1971;10:4084–4089. 10.1021/bi00798a012 PubMed DOI

Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. 10.1016/j.pt.2013.04.002 PubMed DOI

Kopácek P, Hajdusek O, Buresová V, Daffre S. Tick innate immunity. Adv Exp Med Biol. 2010;708:137–162. . PubMed

Toh SQ, Glanfield A, Gobert GN, Jones MK. Heme and blood-feeding parasites: Friends or foes? Parasites Vectors. 2010;3:108 10.1186/1756-3305-3-108 PubMed DOI PMC

Lee WS, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ. Mosquito antiviral defense mechanisms: A delicate balance between innate immunity and persistent viral infection. Parasites Vectors. 2019;12:165 10.1186/s13071-019-3433-8 PubMed DOI PMC

Kořený L, Oborník M, Lukeš J. Make it, take it, or leave it: Heme metabolism of parasites. PLoS Pathog. 2013;9:e1003088 10.1371/journal.ppat.1003088 PubMed DOI PMC

Braz GRC, Coelho HSL, Masuda H, Oliveira PL. A missing metabolic pathway in the cattle tick Boophilus microplus. Curr Biol. 1999;9:703–706. 10.1016/s0960-9822(99)80312-1 PubMed DOI

Hajdusek O, Sojka D, Kopacek P, Buresova V, Franta Z, Sauman I, et al. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc Natl Acad Sci U S A. 2009;106:1033–1038. 10.1073/pnas.0807961106 PubMed DOI PMC

Oliveira GDA, Lieberman J, Barillas-Mury C. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science. 2012;335:856–859. 10.1126/science.1209678 PubMed DOI PMC

Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. 2010;327:1644–1648. 10.1126/science.1184008 PubMed DOI PMC

Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: An annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics. 2008;9:552 10.1186/1471-2164-9-552 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...