Significant role of symbiotic bacteria in the blood digestion and reproduction of Dermanyssus gallinae mites

. 2024 Jan ; 4 (1) : ycae127. [epub] 20241030

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39526132

Endosymbiotic bacteria significantly impact the fitness of their arthropod hosts. Dermanyssus gallinae, the poultry red mite, is a blood-feeding ectoparasite that exclusively feeds on avian blood. While there is a relatively comprehensive understanding of its microbial community structures across developmental stages based on 16S rRNA sequencing, the functional integration of these microbes within the host's physiology remains elusive. This study aims to elucidate the role of symbiotic bacteria in D. gallinae biology. 16S rRNA amplicon sequencing and fluorescence in situ hybridization revealed a prominent midgut-confinement bacterial microbiota with considerable diversity, out of which Kocuria and Bartonella A acted as the predominant bacterial genera inhabiting D. gallinae. The relative abundance of Bartonella A increased rapidly after blood-sucking, suggesting its adaptation to a blood-based diet and its pivotal role in post-engorgement activities. Some of the isolated bacterial strains from D. gallinae display hemolytic activity on blood agar, potentially aiding blood digestion. To corroborate this in vivo, antibiotic-mediated clearance was exploited to generate dysbiosed cohorts of D. gallinae mites, lacking some of the key bacterial species. Phenotypic assessments revealed that dysbiosed mites experienced delayed blood digestion and diminished reproductive capacity. Whole-genome sequencing identified Bartonella A as a new species within the genus Bartonella, exhibiting characteristics of an obligate symbiont. These findings underscore the significance of microbiota in poultry red mites and suggest microbiota-targeted strategies for controlling mite populations in poultry farms.

Zobrazit více v PubMed

Sigognault Flochlay A, Thomas E, Sparagano O. Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasit Vectors 2017;10:357. 10.1186/s13071-017-2292-4 PubMed DOI PMC

Sleeckx N, Van Gorp S, Koopman Ret al. . Production losses in laying hens during infestation with the poultry red mite Dermanyssus gallinae. Avian Pathol 2019;48:S17–21. 10.1080/03079457.2019.1641179 PubMed DOI

Cocciolo G, Circella E, Pugliese Net al. . Evidence of vector borne transmission of Salmonella enterica enterica serovar Gallinarum and fowl typhoid disease mediated by the poultry red mite, Dermanyssus gallinae (De Geer, 1778). Parasit Vectors 2020;13:513. 10.1186/s13071-020-04393-8 PubMed DOI PMC

Hubert J, Erban T, Kopecky Jet al. . Comparison of microbiomes between red poultry mite populations (Dermanyssus gallinae): predominance of Bartonella-like bacteria. Microb Ecol 2017;74:947–60. 10.1007/s00248-017-0993-z PubMed DOI

Valiente Moro C, De Luna CJ, Tod Aet al. . The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Exp Appl Acarol 2009;48:93–104. 10.1007/s10493-009-9248-0 PubMed DOI

Valiente Moro C, Thioulouse J, Chauve Cet al. . Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Res Microbiol 2009;160:63–70. 10.1016/j.resmic.2008.10.006 PubMed DOI

Schiavone A, Pugliese N, Circella Eet al. . Association between the poultry red mite Dermanyssus gallinae and potential avian pathogenic Escherichia coli (APEC). Vet Parasitol 2020;284:109198. 10.1016/j.vetpar.2020.109198 PubMed DOI

Cheng D, Guo Z, Riegler Met al. . Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 2017;5:13. 10.1186/s40168-017-0236-z PubMed DOI PMC

Matos RC, Schwarzer M, Gervais Het al. . D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated growth during chronic undernutrition. Nat Microbiol 2017;2:1635–47. 10.1038/s41564-017-0038-x PubMed DOI PMC

Duron O, Bouchon D, Boutin Set al. . The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 2008;6:27. PubMed PMC

Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008;42:165–90. 10.1146/annurev.genet.41.110306.130119 PubMed DOI

Zhong Z, Wang K, Wang J. Tick symbiosis. Curr Opin Insect Sci 2024;62:101163. 10.1016/j.cois.2024.101163 PubMed DOI

Steven B, Hyde J, LaReau JCet al. . The axenic and gnotobiotic mosquito: emerging models for microbiome host interactions. Front Microbiol 2021;12:714222. 10.3389/fmicb.2021.714222 PubMed DOI PMC

Li M, Zhou Y, Cheng Jet al. . Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024;17:69. 10.1186/s13071-024-06161-4 PubMed DOI PMC

Wu-Chuang A, Hartmann D, Maitre Aet al. . Variation of bacterial community assembly over developmental stages and midgut of Dermanyssus gallinae. Microb Ecol 2023;86:2400–13. 10.1007/s00248-023-02244-4 PubMed DOI

Nishide Y, Sugimoto TN, Watanabe Ket al. . Genetic variations and microbiome of the poultry red mite Dermanyssus gallinae. Front Microbiol 2022;13:1031535. 10.3389/fmicb.2022.1031535 PubMed DOI PMC

Wang C, Ma Y, Huang Yet al. . An efficient rearing system rapidly producing large quantities of poultry red mites, Dermanyssus gallinae (Acari: Dermanyssidae), under laboratory conditions. Vet Parasitol 2018;258:38–45. 10.1016/j.vetpar.2018.06.003 PubMed DOI

Koga R, Tsuchida T, Fukatsu T. Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Appl Entomol Zool 2009;44:281–91. 10.1303/aez.2009.281 DOI

Chen S, Zhou Y, Chen Yet al. . Fastp: an ultra-fast all-in-one fastq preprocessor. Bioinformatics 2018;34:i884–90. 10.1093/bioinformatics/bty560 PubMed DOI PMC

Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011;27:2957–63. 10.1093/bioinformatics/btr507 PubMed DOI PMC

Wang Q, Garrity GM, Tiedje JMet al. . Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5261–7. 10.1128/AEM.00062-07 PubMed DOI PMC

Galkiewicz JP, Kellogg CA. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl Environ Microbiol 2008;74:7828–31. 10.1128/AEM.01303-08 PubMed DOI PMC

Alvarado WA, Agudelo SO, Velez IDet al. . Description of the ovarian microbiota of Aedes aegypti (L) Rockefeller strain. Acta Trop 2021;214:105765. 10.1016/j.actatropica.2020.105765 PubMed DOI

Dorrah M, Bensaoud C, Mohamed AAet al. . Comparison of the hemolysis machinery in two evolutionarily distant blood-feeding arthropod vectors of human diseases. PLoS Negl Trop Dis 2021;15:e0009151. PubMed PMC

Gaio Ade O, Gusmão DS, Santos AVet al. . Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasit Vectors 2011;4:105. 10.1186/1756-3305-4-105 PubMed DOI PMC

Dorn-In S, Bassitta R, Schwaiger Ket al. . Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. J Microbiol Methods 2015;113:50–6. 10.1016/j.mimet.2015.04.001 PubMed DOI

Kosoy M, Morway C, Sheff KWet al. . Bartonella tamiae sp. nov., a newly recognized pathogen isolated from three human patients from Thailand. J Clin Microbiol 2008;46:772–5. 10.1128/JCM.02120-07 PubMed DOI PMC

Koren S, Walenz BP, Berlin Ket al. . Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017;27:722–36. 10.1101/gr.215087.116 PubMed DOI PMC

Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10:2182. 10.1038/s41467-019-10210-3 PubMed DOI PMC

Liu D, Zhang Y, Fan Get al. . IPGA: a handy integrated prokaryotes genome and pan-genome analysis web service. iMeta 2022;1:e55. 10.1002/imt2.55 PubMed DOI PMC

Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RLet al. . TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022;50:D801–7. 10.1093/nar/gkab902 PubMed DOI PMC

Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001;29:2607–18. 10.1093/nar/29.12.2607 PubMed DOI PMC

Lagesen K, Hallin P, Rødland EAet al. . RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–8. 10.1093/nar/gkm160 PubMed DOI PMC

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–64. 10.1093/nar/25.5.955 PubMed DOI PMC

Gardner PP, Daub J, Tate JGet al. . Rfam: updates to the RNA families database. Nucleic Acids Res 2009;37:D136–40. 10.1093/nar/gkn766 PubMed DOI PMC

Kanehisa M, Goto S, Kawashima Set al. . The KEGG resource for deciphering the genome. Nucleic Acids Res 2004;32:277D–80. 10.1093/nar/gkh063 PubMed DOI PMC

Tatusov RL, Galperin MY, Natale DAet al. . The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000;28:33–6. 10.1093/nar/28.1.33 PubMed DOI PMC

Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–31. 10.1073/pnas.0906412106 PubMed DOI PMC

Goris J, Konstantinidis KT, Klappenbach JAet al. . DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91. 10.1099/ijs.0.64483-0 PubMed DOI

Leitão-Gonçalves R, Carvalho-Santos Z, Francisco APet al. . Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 2017;15:e2000862. 10.1371/journal.pbio.2000862 PubMed DOI PMC

Serrato-Salas J, Gendrin M. Involvement of microbiota in insect physiology: focus on B vitamins. MBio 2023;14:e0222522. 10.1128/mbio.02225-22 PubMed DOI PMC

Duron O, Gottlieb Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol 2020;36:816–25. 10.1016/j.pt.2020.07.007 PubMed DOI

Douglas AE. How multi-partner endosymbioses function. Nat Rev Microbiol 2016;14:731–43. 10.1038/nrmicro.2016.151 PubMed DOI

Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 2015;60:17–34. 10.1146/annurev-ento-010814-020822 PubMed DOI PMC

Cansado-Utrilla C, Zhao SY, McCall PJet al. . The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. Microbiome 2021;9:111. 10.1186/s40168-021-01073-2 PubMed DOI PMC

Narasimhan S, Swei A, Abouneameh Set al. . Grappling with the tick microbiome. Trends Parasitol 2021;37:722–33. 10.1016/j.pt.2021.04.004 PubMed DOI PMC

Attardo GM, Scolari F, Malacrida A. Bacterial symbionts of tsetse flies: relationships and functional interactions between tsetse flies and their symbionts. Results Probl Cell Differ 2020;69:497–536. 10.1007/978-3-030-51849-3_19 PubMed DOI

Douglas A.E., Beard C.B.. Microbial symbioses in the midgut of insects. In: Lehane, M.J., Billingsley, P.F. (eds). Biology of the Insect Midgut. 1st ed.Springer, Dordrecht, 1996. pp. 419–31, 10.1007/978-94-009-1519-0_15. DOI

Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev 2012; 70Suppl 1:S38–44, 10.1111/j.1753-4887.2012.00493.x. PubMed DOI PMC

Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 2013;37:699–735. 10.1111/1574-6976.12025 PubMed DOI

Guizzo MG, Neupane S, Kucera Met al. . Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front Cell Infect Microbiol 2020;10:211. 10.3389/fcimb.2020.00211 PubMed DOI PMC

Ross BD, Hayes B, Radey MCet al. . Ixodes scapularis does not harbor a stable midgut microbiome. ISME J 2018;12:2596–607. 10.1038/s41396-018-0161-6 PubMed DOI PMC

Guégan M, Zouache K, Démichel Cet al. . The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome. 2018;6:49. 10.1186/s40168-018-0435-2 PubMed DOI PMC

Li LH, Zhang Y, Zhu D. Effects of antibiotic treatment on the fecundity of Rhipicephalus haemaphysaloides ticks. Parasit Vectors 2018;11:242. 10.1186/s13071-018-2807-7 PubMed DOI PMC

Zhong J, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2007;2:e405. 10.1371/journal.pone.0000405 PubMed DOI PMC

Wilson AC, Duncan RP. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc Natl Acad Sci USA 2015;112:10255–61. 10.1073/pnas.1423305112 PubMed DOI PMC

Akman L, Yamashita A, Watanabe Het al. . Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 2002;32:402–7. 10.1038/ng986 PubMed DOI

El Karkouri K, Ghigo E, Raoult Det al. . Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 2022;12:3807. 10.1038/s41598-022-07725-z PubMed DOI PMC

Kaur R, Shropshire JD, Cross KLet al. . Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 2021;29:879–93. 10.1016/j.chom.2021.03.006 PubMed DOI PMC

Price DRG, Bartley K, Blake DPet al. . A Rickettsiella endosymbiont is a potential source of essential B-vitamins for the poultry red mite, Dermanyssus gallinae. Front Microbiol 2021;12:695346. 10.3389/fmicb.2021.695346 PubMed DOI PMC

Price DRG, Küster T, Øines Øet al. . Evaluation of vaccine delivery systems for inducing long-lived antibody responses to Dermanyssus gallinae antigen in laying hens. Avian Pathol 2019;48:S60–74. 10.1080/03079457.2019.1612514 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace