Significant role of symbiotic bacteria in the blood digestion and reproduction of Dermanyssus gallinae mites

. 2024 Jan ; 4 (1) : ycae127. [epub] 20241030

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39526132

Endosymbiotic bacteria significantly impact the fitness of their arthropod hosts. Dermanyssus gallinae, the poultry red mite, is a blood-feeding ectoparasite that exclusively feeds on avian blood. While there is a relatively comprehensive understanding of its microbial community structures across developmental stages based on 16S rRNA sequencing, the functional integration of these microbes within the host's physiology remains elusive. This study aims to elucidate the role of symbiotic bacteria in D. gallinae biology. 16S rRNA amplicon sequencing and fluorescence in situ hybridization revealed a prominent midgut-confinement bacterial microbiota with considerable diversity, out of which Kocuria and Bartonella A acted as the predominant bacterial genera inhabiting D. gallinae. The relative abundance of Bartonella A increased rapidly after blood-sucking, suggesting its adaptation to a blood-based diet and its pivotal role in post-engorgement activities. Some of the isolated bacterial strains from D. gallinae display hemolytic activity on blood agar, potentially aiding blood digestion. To corroborate this in vivo, antibiotic-mediated clearance was exploited to generate dysbiosed cohorts of D. gallinae mites, lacking some of the key bacterial species. Phenotypic assessments revealed that dysbiosed mites experienced delayed blood digestion and diminished reproductive capacity. Whole-genome sequencing identified Bartonella A as a new species within the genus Bartonella, exhibiting characteristics of an obligate symbiont. These findings underscore the significance of microbiota in poultry red mites and suggest microbiota-targeted strategies for controlling mite populations in poultry farms.

Erratum v

PubMed

Zobrazit více v PubMed

Sigognault Flochlay  A, Thomas  E, Sparagano  O. Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasit Vectors  2017;10:357. 10.1186/s13071-017-2292-4 PubMed DOI PMC

Sleeckx  N, Van Gorp  S, Koopman  R  et al.  Production losses in laying hens during infestation with the poultry red mite Dermanyssus gallinae. Avian Pathol  2019;48:S17–21. 10.1080/03079457.2019.1641179 PubMed DOI

Cocciolo  G, Circella  E, Pugliese  N  et al.  Evidence of vector borne transmission of Salmonella enterica enterica serovar Gallinarum and fowl typhoid disease mediated by the poultry red mite, Dermanyssus gallinae (De Geer, 1778). Parasit Vectors  2020;13:513. 10.1186/s13071-020-04393-8 PubMed DOI PMC

Hubert  J, Erban  T, Kopecky  J  et al.  Comparison of microbiomes between red poultry mite populations (Dermanyssus gallinae): predominance of Bartonella-like bacteria. Microb Ecol  2017;74:947–60. 10.1007/s00248-017-0993-z PubMed DOI

Valiente Moro  C, De Luna  CJ, Tod  A  et al.  The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Exp Appl Acarol  2009;48:93–104. 10.1007/s10493-009-9248-0 PubMed DOI

Valiente Moro  C, Thioulouse  J, Chauve  C  et al.  Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Res Microbiol  2009;160:63–70. 10.1016/j.resmic.2008.10.006 PubMed DOI

Schiavone  A, Pugliese  N, Circella  E  et al.  Association between the poultry red mite Dermanyssus gallinae and potential avian pathogenic Escherichia coli (APEC). Vet Parasitol  2020;284:109198. 10.1016/j.vetpar.2020.109198 PubMed DOI

Cheng  D, Guo  Z, Riegler  M  et al.  Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome  2017;5:13. 10.1186/s40168-017-0236-z PubMed DOI PMC

Matos  RC, Schwarzer  M, Gervais  H  et al.  D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated growth during chronic undernutrition. Nat Microbiol  2017;2:1635–47. 10.1038/s41564-017-0038-x PubMed DOI PMC

Duron  O, Bouchon  D, Boutin  S  et al.  The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol  2008;6:27. PubMed PMC

Moran  NA, McCutcheon  JP, Nakabachi  A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet  2008;42:165–90. 10.1146/annurev.genet.41.110306.130119 PubMed DOI

Zhong  Z, Wang  K, Wang  J. Tick symbiosis. Curr Opin Insect Sci  2024;62:101163. 10.1016/j.cois.2024.101163 PubMed DOI

Steven  B, Hyde  J, LaReau  JC  et al.  The axenic and gnotobiotic mosquito: emerging models for microbiome host interactions. Front Microbiol  2021;12:714222. 10.3389/fmicb.2021.714222 PubMed DOI PMC

Li  M, Zhou  Y, Cheng  J  et al.  Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors  2024;17:69. 10.1186/s13071-024-06161-4 PubMed DOI PMC

Wu-Chuang  A, Hartmann  D, Maitre  A  et al.  Variation of bacterial community assembly over developmental stages and midgut of Dermanyssus gallinae. Microb Ecol  2023;86:2400–13. 10.1007/s00248-023-02244-4 PubMed DOI

Nishide  Y, Sugimoto  TN, Watanabe  K  et al.  Genetic variations and microbiome of the poultry red mite Dermanyssus gallinae. Front Microbiol  2022;13:1031535. 10.3389/fmicb.2022.1031535 PubMed DOI PMC

Wang  C, Ma  Y, Huang  Y  et al.  An efficient rearing system rapidly producing large quantities of poultry red mites, Dermanyssus gallinae (Acari: Dermanyssidae), under laboratory conditions. Vet Parasitol  2018;258:38–45. 10.1016/j.vetpar.2018.06.003 PubMed DOI

Koga  R, Tsuchida  T, Fukatsu  T. Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Appl Entomol Zool  2009;44:281–91. 10.1303/aez.2009.281 DOI

Chen  S, Zhou  Y, Chen  Y  et al.  Fastp: an ultra-fast all-in-one fastq preprocessor. Bioinformatics  2018;34:i884–90. 10.1093/bioinformatics/bty560 PubMed DOI PMC

Magoč  T, Salzberg  SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics  2011;27:2957–63. 10.1093/bioinformatics/btr507 PubMed DOI PMC

Wang  Q, Garrity  GM, Tiedje  JM  et al.  Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol  2007;73:5261–7. 10.1128/AEM.00062-07 PubMed DOI PMC

Galkiewicz  JP, Kellogg  CA. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl Environ Microbiol  2008;74:7828–31. 10.1128/AEM.01303-08 PubMed DOI PMC

Alvarado  WA, Agudelo  SO, Velez  ID  et al.  Description of the ovarian microbiota of Aedes aegypti (L) Rockefeller strain. Acta Trop  2021;214:105765. 10.1016/j.actatropica.2020.105765 PubMed DOI

Dorrah  M, Bensaoud  C, Mohamed  AA  et al.  Comparison of the hemolysis machinery in two evolutionarily distant blood-feeding arthropod vectors of human diseases. PLoS Negl Trop Dis  2021;15:e0009151. PubMed PMC

Gaio Ade  O, Gusmão  DS, Santos  AV  et al.  Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasit Vectors  2011;4:105. 10.1186/1756-3305-4-105 PubMed DOI PMC

Dorn-In  S, Bassitta  R, Schwaiger  K  et al.  Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. J Microbiol Methods  2015;113:50–6. 10.1016/j.mimet.2015.04.001 PubMed DOI

Kosoy  M, Morway  C, Sheff  KW  et al.  Bartonella tamiae sp. nov., a newly recognized pathogen isolated from three human patients from Thailand. J Clin Microbiol  2008;46:772–5. 10.1128/JCM.02120-07 PubMed DOI PMC

Koren  S, Walenz  BP, Berlin  K  et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res  2017;27:722–36. 10.1101/gr.215087.116 PubMed DOI PMC

Meier-Kolthoff  JP, Göker  M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun  2019;10:2182. 10.1038/s41467-019-10210-3 PubMed DOI PMC

Liu  D, Zhang  Y, Fan  G  et al.  IPGA: a handy integrated prokaryotes genome and pan-genome analysis web service. iMeta  2022;1:e55. 10.1002/imt2.55 PubMed DOI PMC

Meier-Kolthoff  JP, Carbasse  JS, Peinado-Olarte  RL  et al.  TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res  2022;50:D801–7. 10.1093/nar/gkab902 PubMed DOI PMC

Besemer  J, Lomsadze  A, Borodovsky  M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res  2001;29:2607–18. 10.1093/nar/29.12.2607 PubMed DOI PMC

Lagesen  K, Hallin  P, Rødland  EA  et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res  2007;35:3100–8. 10.1093/nar/gkm160 PubMed DOI PMC

Lowe  TM, Eddy  SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res  1997;25:955–64. 10.1093/nar/25.5.955 PubMed DOI PMC

Gardner  PP, Daub  J, Tate  JG  et al.  Rfam: updates to the RNA families database. Nucleic Acids Res  2009;37:D136–40. 10.1093/nar/gkn766 PubMed DOI PMC

Kanehisa  M, Goto  S, Kawashima  S  et al.  The KEGG resource for deciphering the genome. Nucleic Acids Res  2004;32:277D–80. 10.1093/nar/gkh063 PubMed DOI PMC

Tatusov  RL, Galperin  MY, Natale  DA  et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res  2000;28:33–6. 10.1093/nar/28.1.33 PubMed DOI PMC

Richter  M, Rosselló-Móra  R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA  2009;106:19126–31. 10.1073/pnas.0906412106 PubMed DOI PMC

Goris  J, Konstantinidis  KT, Klappenbach  JA  et al.  DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol  2007;57:81–91. 10.1099/ijs.0.64483-0 PubMed DOI

Leitão-Gonçalves  R, Carvalho-Santos  Z, Francisco  AP  et al.  Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol  2017;15:e2000862. 10.1371/journal.pbio.2000862 PubMed DOI PMC

Serrato-Salas  J, Gendrin  M. Involvement of microbiota in insect physiology: focus on B vitamins. MBio  2023;14:e0222522. 10.1128/mbio.02225-22 PubMed DOI PMC

Duron  O, Gottlieb  Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol  2020;36:816–25. 10.1016/j.pt.2020.07.007 PubMed DOI

Douglas  AE. How multi-partner endosymbioses function. Nat Rev Microbiol  2016;14:731–43. 10.1038/nrmicro.2016.151 PubMed DOI

Douglas  AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol  2015;60:17–34. 10.1146/annurev-ento-010814-020822 PubMed DOI PMC

Cansado-Utrilla  C, Zhao  SY, McCall  PJ  et al.  The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. Microbiome  2021;9:111. 10.1186/s40168-021-01073-2 PubMed DOI PMC

Narasimhan  S, Swei  A, Abouneameh  S  et al.  Grappling with the tick microbiome. Trends Parasitol  2021;37:722–33. 10.1016/j.pt.2021.04.004 PubMed DOI PMC

Attardo  GM, Scolari  F, Malacrida  A. Bacterial symbionts of tsetse flies: relationships and functional interactions between tsetse flies and their symbionts. Results Probl Cell Differ  2020;69:497–536. 10.1007/978-3-030-51849-3_19 PubMed DOI

Douglas  A.E., Beard  C.B.  Microbial symbioses in the midgut of insects. In: Lehane, M.J., Billingsley, P.F. (eds). Biology of the Insect Midgut. 1st ed.  Springer, Dordrecht, 1996. pp. 419–31, 10.1007/978-94-009-1519-0_15. DOI

Ursell  LK, Metcalf  JL, Parfrey  LW, Knight  R. Defining the human microbiome. Nutr Rev  2012; 70  Suppl 1:S38–44, 10.1111/j.1753-4887.2012.00493.x. PubMed DOI PMC

Engel  P, Moran  NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev  2013;37:699–735. 10.1111/1574-6976.12025 PubMed DOI

Guizzo  MG, Neupane  S, Kucera  M  et al.  Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front Cell Infect Microbiol  2020;10:211. 10.3389/fcimb.2020.00211 PubMed DOI PMC

Ross  BD, Hayes  B, Radey  MC  et al.  Ixodes scapularis does not harbor a stable midgut microbiome. ISME J  2018;12:2596–607. 10.1038/s41396-018-0161-6 PubMed DOI PMC

Guégan  M, Zouache  K, Démichel  C  et al.  The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome.  2018;6:49. 10.1186/s40168-018-0435-2 PubMed DOI PMC

Li  LH, Zhang  Y, Zhu  D. Effects of antibiotic treatment on the fecundity of Rhipicephalus haemaphysaloides ticks. Parasit Vectors  2018;11:242. 10.1186/s13071-018-2807-7 PubMed DOI PMC

Zhong  J, Jasinskas  A, Barbour  AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One  2007;2:e405. 10.1371/journal.pone.0000405 PubMed DOI PMC

Wilson  AC, Duncan  RP. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc Natl Acad Sci USA  2015;112:10255–61. 10.1073/pnas.1423305112 PubMed DOI PMC

Akman  L, Yamashita  A, Watanabe  H  et al.  Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet  2002;32:402–7. 10.1038/ng986 PubMed DOI

El Karkouri  K, Ghigo  E, Raoult  D  et al.  Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep  2022;12:3807. 10.1038/s41598-022-07725-z PubMed DOI PMC

Kaur  R, Shropshire  JD, Cross  KL  et al.  Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe  2021;29:879–93. 10.1016/j.chom.2021.03.006 PubMed DOI PMC

Price  DRG, Bartley  K, Blake  DP  et al.  A Rickettsiella endosymbiont is a potential source of essential B-vitamins for the poultry red mite, Dermanyssus gallinae. Front Microbiol  2021;12:695346. 10.3389/fmicb.2021.695346 PubMed DOI PMC

Price  DRG, Küster  T, Øines  Ø  et al.  Evaluation of vaccine delivery systems for inducing long-lived antibody responses to Dermanyssus gallinae antigen in laying hens. Avian Pathol  2019;48:S60–74. 10.1080/03079457.2019.1612514 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...