Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria

. 2017 Nov ; 74 (4) : 947-960. [epub] 20170522

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28534089
Odkazy

PubMed 28534089
DOI 10.1007/s00248-017-0993-z
PII: 10.1007/s00248-017-0993-z
Knihovny.cz E-zdroje

Blood feeding red poultry mites (RPM) serve as vectors of pathogenic bacteria and viruses among vertebrate hosts including wild birds, poultry hens, mammals, and humans. The microbiome of RPM has not yet been studied by high-throughput sequencing. RPM eggs, larvae, and engorged adult/nymph samples obtained in four poultry houses in Czechia were used for microbiome analyses by Illumina amplicon sequencing of the 16S ribosomal RNA (rRNA) gene V4 region. A laboratory RPM population was used as positive control for transcriptome analysis by pyrosequencing with identification of sequences originating from bacteria. The samples of engorged adult/nymph stages had 100-fold more copies of 16S rRNA gene copies than the samples of eggs and larvae. The microbiome composition showed differences among the four poultry houses and among observed developmental stadia. In the adults' microbiome 10 OTUs comprised 90 to 99% of all sequences. Bartonella-like bacteria covered between 30 and 70% of sequences in RPM microbiome and 25% bacterial sequences in transcriptome. The phylogenetic analyses of 16S rRNA gene sequences revealed two distinct groups of Bartonella-like bacteria forming sister groups: (i) symbionts of ants; (ii) Bartonella genus. Cardinium, Wolbachia, and Rickettsiella sp. were found in the microbiomes of all tested stadia, while Spiroplasma eriocheiris and Wolbachia were identified in the laboratory RPM transcriptome. The microbiomes from eggs, larvae, and engorged adults/nymphs differed. Bartonella-like symbionts were found in all stadia and sampling sites. Bartonella-like bacteria was the most diversified group within the RPM microbiome. The presence of identified putative pathogenic bacteria is relevant with respect to human and animal health issues while the identification of symbiontic bacteria can lead to new control methods targeting them to destabilize the arthropod host.

Zobrazit více v PubMed

Bioinformatics. 2012 Jul 15;28(14):1823-9 PubMed

Appl Environ Microbiol. 2006 Sep;72(9):5734-41 PubMed

Parasitology. 2014 Mar;141(3):336-46 PubMed

Int J Syst Evol Microbiol. 2016 Jan;66(1):414-21 PubMed

PLoS Comput Biol. 2009 Apr;5(4):e1000352 PubMed

PLoS One. 2015 Oct 20;10(10):e0140856 PubMed

J Appl Microbiol. 2015 Feb;118(2):470-84 PubMed

Appl Environ Microbiol. 2005 Dec;71(12):7724-36 PubMed

Arch Dermatol. 2001 Feb;137(2):167-70 PubMed

Mol Ecol. 2012 May;21(9):2282-96 PubMed

J Eur Acad Dermatol Venereol. 2008 Nov;22(11):1382-3 PubMed

Nat Methods. 2013 Oct;10(10):996-8 PubMed

PLoS One. 2010 Jul 13;5(7):e11478 PubMed

Adv Wound Care (New Rochelle). 2015 Jan 1;4(1):50-58 PubMed

J Vet Med Sci. 2014 Dec;76(12):1583-7 PubMed

Parasit Vectors. 2016 May 10;9(1):261 PubMed

Exp Appl Acarol. 2009 Nov;49(3):173-83 PubMed

Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21236-41 PubMed

Sci Rep. 2015 Jun 30;5:11536 PubMed

Infect Genet Evol. 2012 Jul;12(5):894-904 PubMed

PLoS One. 2015 Jul 08;10(7):e0129996 PubMed

Exp Appl Acarol. 2009 Jun;48(1-2):93-104 PubMed

Ecol Lett. 2013 Feb;16(2):214-8 PubMed

Genome Res. 2012 May;22(5):850-9 PubMed

ISME J. 2012 Aug;6(8):1621-4 PubMed

Exp Appl Acarol. 2014;64(1):21-32 PubMed

Exp Appl Acarol. 2011 Dec;55(4):329-38 PubMed

Avian Pathol. 2015;44(3):143-53 PubMed

J Allergy Clin Immunol. 2005 Dec;116(6):1296-300 PubMed

Ecol Lett. 2006 Jun;9(6):683-93 PubMed

Naturwissenschaften. 2014 May;101(5):397-406 PubMed

Comp Immunol Microbiol Infect Dis. 2011 Jul;34(4):299-314 PubMed

Bioinformatics. 2005 Sep 15;21(18):3674-6 PubMed

Appl Environ Microbiol. 2007 Aug;73(16):5261-7 PubMed

Bioinformatics. 2014 Apr 1;30(7):1020-1 PubMed

Clin Microbiol Infect. 2016 Jan;22(1):22-27 PubMed

Emerg Infect Dis. 2012 Jan;18(1):163-5 PubMed

Appl Environ Microbiol. 2013 Sep;79(17):5112-20 PubMed

Microb Ecol. 2012 May;63(4):919-28 PubMed

J Econ Entomol. 2016 Aug;109 (4):1887-96 PubMed

Exp Appl Acarol. 2009 Jun;48(1-2):105-13 PubMed

Mol Ecol. 2014 Mar;23(6):1284-300 PubMed

Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 PubMed

Syst Biol. 2003 Oct;52(5):696-704 PubMed

J Appl Microbiol. 2015 Sep;119(3):640-54 PubMed

BMC Bioinformatics. 2011 Sep 30;12:385 PubMed

Science. 2010 Aug 27;329(5995):1068-71 PubMed

Ann N Y Acad Sci. 2008 Dec;1149:255-8 PubMed

Avian Pathol. 2010 Dec;39(6):505-9 PubMed

J Clin Microbiol. 2001 Apr;39(4):1467-76 PubMed

Heredity (Edinb). 2013 Oct;111(4):330-7 PubMed

Avian Pathol. 2007 Aug;36(4):307-11 PubMed

Med Vet Entomol. 2003 Jun;17(2):232-4 PubMed

W V Med J. 2004 Sep-Oct;100(5):185-6 PubMed

Exp Appl Acarol. 2016 Nov;70(3):309-327 PubMed

Nat Biotechnol. 2008 Oct;26(10):1135-45 PubMed

Front Microbiol. 2016 Jul 12;7:1046 PubMed

Microbiologyopen. 2016 Dec;5(6):923-936 PubMed

Mol Ecol. 2011 Feb;20(3):619-28 PubMed

J Microbiol Methods. 2015 Jun;113:50-6 PubMed

J Invertebr Pathol. 2013 Jan;112(1):20-3 PubMed

Annu Rev Entomol. 2014;59:447-66 PubMed

Sex Dev. 2014;8(1-3):59-73 PubMed

Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed

Bioinformatics. 2009 Sep 1;25(17):2286-8 PubMed

Exp Appl Acarol. 2006;38(2-3):181-8 PubMed

Syst Biol. 2010 May;59(3):307-21 PubMed

Nat Methods. 2012 Jul 30;9(8):772 PubMed

J Med Entomol. 2011 Jul;48(4):788-96 PubMed

Appl Environ Microbiol. 2014 Jan;80(2):525-33 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

Appl Environ Microbiol. 2012 Jun;78(12):4149-56 PubMed

Res Microbiol. 2009 Jan-Feb;160(1):63-70 PubMed

Appl Environ Microbiol. 2017 Apr 17;83(9): PubMed

Mol Biol Evol. 2002 Sep;19(9):1591-601 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

One health approach to study human health risks associated with Dermanyssus gallinae mites

. 2024 May 15 ; 10 (9) : e30539. [epub] 20240501

A novel Bartonella-like bacterium forms an interdependent mutualistic symbiosis with its host, the stored-product mite Tyrophagus putrescentiae

. 2024 Mar 19 ; 9 (3) : e0082923. [epub] 20240221

Significant role of symbiotic bacteria in the blood digestion and reproduction of Dermanyssus gallinae mites

. 2024 Jan ; 4 (1) : ycae127. [epub] 20241030

Variation of bacterial community assembly over developmental stages and midgut of Dermanyssus gallinae

. 2023 Nov ; 86 (4) : 2400-2413. [epub] 20230530

Interactions of the Intracellular Bacterium Cardinium with Its Host, the House Dust Mite Dermatophagoides farinae, Based on Gene Expression Data

. 2021 Dec 21 ; 6 (6) : e0091621. [epub] 20211102

Microbial Communities of Stored Product Mites: Variation by Species and Population

. 2021 Feb ; 81 (2) : 506-522. [epub] 20200827

Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae

. 2020 Mar ; 80 (3) : 363-380. [epub] 20200218

Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria

. 2019 Sep ; 13 (9) : 2363-2376. [epub] 20190524

Population and Culture Age Influence the Microbiome Profiles of House Dust Mites

. 2019 May ; 77 (4) : 1048-1066. [epub] 20181121

Two Populations of Mites (Tyrophagus putrescentiae) Differ in Response to Feeding on Feces-Containing Diets

. 2018 ; 9 () : 2590. [epub] 20181030

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace