Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities

. 2016 ; 7 () : 1046. [epub] 20160712

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27462300

BACKGROUND: Tyrophagus putrescentiae colonizes different human-related habitats and feeds on various post-harvest foods. The microbiota acquired by these mites can influence the nutritional plasticity in different populations. We compared the bacterial communities of five populations of T. putrescentiae and one mixed population of T. putrescentiae and T. fanetzhangorum collected from different habitats. MATERIAL: The bacterial communities of the six mite populations from different habitats and diets were compared by Sanger sequencing of cloned 16S rRNA obtained from amplification with universal eubacterial primers and using bacterial taxon-specific primers on the samples of adults/juveniles or eggs. Microscopic techniques were used to localize bacteria in food boli and mite bodies. The morphological determination of the mite populations was confirmed by analyses of CO1 and ITS fragment genes. RESULTS: The following symbiotic bacteria were found in compared mite populations: Wolbachia (two populations), Cardinium (five populations), Bartonella-like (five populations), Blattabacterium-like symbiont (three populations), and Solitalea-like (six populations). From 35 identified OTUs97, only Solitalea was identified in all populations. The next most frequent and abundant sequences were Bacillus, Moraxella, Staphylococcus, Kocuria, and Microbacterium. We suggest that some bacterial species may occasionally be ingested with food. The bacteriocytes were observed in some individuals in all mite populations. Bacteria were not visualized in food boli by staining, but bacteria were found by histological means in ovaria of Wolbachia-infested populations. CONCLUSION: The presence of Blattabacterium-like, Cardinium, Wolbachia, and Solitalea-like in the eggs of T. putrescentiae indicates mother to offspring (vertical) transmission. RESULTS of this study indicate that diet and habitats influence not only the ingested bacteria but also the symbiotic bacteria of T. putrescentiae.

Zobrazit více v PubMed

Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. PubMed DOI PMC

Ashelford K. E., Chuzhanova N. A., Fry J. C., Jones A. J., Weightman A. J. (2005). At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. PubMed DOI PMC

Ashelford K. E., Chuzhanova N. A., Fry J. C., Jones A. J., Weightman A. J. (2006). New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. PubMed DOI PMC

Augustinos A. A., Santos-Garcia D., Dionyssopoulou E., Moreira M., Papapanagiotou A., Scarvelakis M., et al. (2011). Detection and characterization of PubMed DOI PMC

Barbieri E., Paster B. J., Hughes D., Zurek L., Moser D. P., Teske A., et al. (2001). Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid PubMed DOI

Beroiz B., Couso-Ferrer F., Ortego F., Chamorro M. J., Arteaga C., Lombardero M., et al. (2014). Mite species identification in the production of allergenic extracts for clinical use and in environmental samples by ribosomal DNA amplification. PubMed DOI

Bochkov A. V., Klimov P. B., Hestvik G., Saveljev A. P. (2014). Integrated Bayesian species delimitation and morphological diagnostics of chorioptic mange mites (Acariformes: Psoroptidae: Chorioptes). PubMed DOI

Bowman C. E. (1984). “Comparative enzymology of economically important astigmatid mites,” in

Breeuwer J. A. J., Jacobs G. (1996). PubMed DOI

Brown A. N., Lloyd V. K. (2015). Evidence for horizontal transfer of PubMed DOI

Clark J. W., Kambhampati S. (2003). Phylogenetic analysis of PubMed DOI

Colloff M. J. (2009). DOI

Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. PubMed DOI PMC

Dermauw W., Van Leeuwen T., Vanholme B., Tirry L. (2009). The complete mitochondrial genome of the house dust mite PubMed DOI PMC

Dillon R. J., Dillon V. M. (2004). The gut bacteria of insects: nonpathogenic interactions. PubMed DOI

Douglas A. E. (2009). The microbial dimension in insect nutritional ecology. DOI

Douglas A. E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. PubMed DOI PMC

Duek L., Kaufman G., Palevsky E., Berdicevsky I. (2001). Mites in fungal cultures. PubMed DOI

Erban T., Erbanova M., Nesvorna M., Hubert J. (2009). The importance of starch and sucrose digestion in nutritive biology of synanthropic acaridid mites: alpha-amylases and alpha-glucosidases are suitable targets for inhibitor-based strategies of mite control. PubMed DOI

Erban T., Hubert J. (2008). Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. PubMed DOI

Erban T., Hubert J. (2010). Comparative analyses of proteolytic activities in seven species of synanthropic acaridid mites. PubMed DOI

Erban T., Rybanska D., Harant K., Hortova B., Hubert J. (2016). Feces derived allergens of PubMed DOI PMC

Erban T., Rybanska D., Hubert J. (2015). Population growth of the generalist mite PubMed DOI

Franz J.-T., Masuch G., Musken H., Bergmann K.-C. (1997). Mite fauna of German farms. PubMed DOI

Garcia N. (2004). Efforts to control mites on Iberian ham by physical methods. PubMed DOI

Ge M.-K., Sun E.-T., Jia C.-N., Kong D.-D., Jiang Y.-X. (2014). Genetic diversity and differentiation of DOI

Glowska E., Dragun-Damian A., Dabert M., Gerth M. (2015). New PubMed DOI

Gruwell M. E., Hardy N. B., Gullan P. J., Dittmar K. (2010). Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). PubMed DOI PMC

Gruwell M. E., Morse G. E., Normark B. B. (2007). Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. PubMed DOI

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. PubMed DOI

Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. PubMed DOI

Haegeman A., Vanholme B., Jacob J., Vandekerckhove T. T., Claeys M., Borgonie G., et al. (2009). An endosymbiotic bacterium in a plant-parasitic nematode: member of a new PubMed DOI

Hammer O., Harper D. A. T., Ryan P. D. (2001).

Hoy M. A., Jeyaprakash A. (2005). Microbial diversity in the predatory mite DOI

Hubert J., Kopecky J., Perotti M. A., Nesvorna M., Braig H. R., Sagova-Mareckova M., et al. (2012a). Detection and identification of species-specific bacteria associated with synanthropic mites. PubMed DOI

Hubert J., Nesvorna M., Kopecky J., Sagova-Mareckova M., Poltronieri P. (2015). PubMed DOI

Hubert J., Nesvorna M., Sagova-Mareckova M., Kopecky J. (2012b). Shift of bacterial community in synanthropic mite PubMed DOI PMC

Hubert J., Stejskal V., Munzbergova Z., Kubatova A., Vanova M., Zdarkova E. (2004). Mites and fungi in heavily infested stores in the Czech Republic. PubMed DOI

Hubert J., Sustr V., Smrz J. (1999). Feeding of the oribatid mite

Hughes A. M. (1976).

Klimov P. B., OConnor B. (2013). Is permanent parasitism reversible?—critical evidence from early evolution of house dust mites. PubMed DOI

Klimov P. B., OConnor B. M. (2008). Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): evidence from three nuclear genes. PubMed DOI

Klimov P. B., OConnor B. M. (2009a). Conservation of the name DOI

Klimov P. B., OConnor B. M. (2009b). Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. PubMed DOI PMC

Kopecky J., Nesvorna M., Hubert J. (2014a). PubMed DOI

Kopecky J., Nesvorna M., Mareckova-Sagova M., Hubert J. (2014b). The effect of antibiotics on associated bacterial community of stored product mites. PubMed DOI PMC

Kopecky J., Perotti M. A., Nesvorna M., Erban T., Hubert J. (2013). PubMed DOI

Kramar J. (1953). The contribution to microscopic preparation of Arthropods. [Prispevek k mikroskopicke preparaci clenovcu.].

Lane D. J. (1991). “16S/23S rRNA sequencing,” in

Lartillot N., Lepage T., Blanquart S. (2009). PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. PubMed DOI

Levinson H. Z., Levinson A. R., Muller K. (1991a). Functional adaption of two nitrogenous waste products in evoking attraction and aggregation of flour mites ( DOI

Levinson H. Z., Levinson A. R., Muller K. (1991b). The adaptive function of ammonia and guanine in the biocoenotic association between Ascomycetes and flour mites ( DOI

Liu Y. C., Chang S. C., Chen W. H., Shu W. B. (2006). The application of single-step nested multiplex polymerase chain reaction for the identification of

Meeus I., Vercruysse V., Smagghe G. (2012). Molecular detection of PubMed DOI

Moran N. A., Tran P., Gerardo N. M. (2005). Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. PubMed DOI PMC

Nesvorna M., Gabrielova L., Hubert J. (2012). Suitability of a range of DOI

Noge K., Mori N., Tanaka C., Nishida R., Tsuda M., Kuwahara Y. (2005). Identification of astigmatid mites using the second internal transcribed spacer (ITS2) region and its application for phylogenetic study. PubMed DOI

OConnor B. M. (1979). “Evolutionary origins of astigmatid mites inhabiting stored products,” in DOI

OConnor B. M. (1982). Evolutionary ecology of astigmatid mites. DOI

O’Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. (1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. PubMed DOI PMC

Palyvos N. E., Emmanouel N. G., Saitanis C. J. (2008). Mites associated with stored products in Greece. PubMed DOI

Pruesse E., Peplies J., Glockner F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. PubMed DOI PMC

Qu S.-X., Li H.-P., Ma L., Hou L.-J., Lin J.-S., Song J.-D., et al. (2015). Effects of different edible mushroom hosts on the development, reproduction and bacterial community of DOI

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. PubMed DOI PMC

Robertson P. L. (1961). A morphological study of variation in PubMed DOI

Rosenblueth M., Sayavedra L., Samano-Sanchez H., Roth A., Martinez-Romero E. (2012). Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). PubMed DOI

Rozej E., Witalinski W., Szentgyorgyi H., Wantuch M., Moron D., Woyciechowski M. (2012). Mite species inhabiting commercial bumblebee ( PubMed DOI PMC

Russell J. A., Moreau C. S., Goldman-Huertas B., Fujiwara M., Lohman D. J., Pierce N. E. (2009). Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. PubMed DOI PMC

Rybanska D., Hubert J., Markovic M., Erban T. (2015). Dry dog food integrity and mite strain influence the density-dependent growth of the stored-product mite PubMed DOI

Sabree Z. L., Kambhampati S., Moran N. A. (2009). Nitrogen recycling and nutritional provisioning by PubMed DOI PMC

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. PubMed DOI PMC

Smrz J. (1989). Internal anatomy of PubMed DOI

Smrz J. (2003). Microanatomical and biological aspects of bacterial associations in PubMed DOI

Smrz J., Catska V. (1987). Food selection of the field population of DOI

Smrz J., Catska V. (1989). The effect of the consumption of some soil fungi on the internal microanatomy of the mite

Smrz J., Catska V. (2010). Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. DOI

Smrz J., Jungova E. (1989). The ecology of a field population of

Smrz J., Soukalova H. (2008). “Mycophagous mites (Acari: Oribatida and Acaridida) and their cooperation with chitinolytic bacteria,” in

Smrz J., Svobodova J., Catska V. (1991). Synergetic participation of DOI

Smrz J., Trelova M. (1995). The association of bacteria and some soil mites (Acari: Oribatida and Acaridida).

Solarz K., Senczuk L., Maniurka H., Cichecka E., Peszke M. (2007). Comparisons of the allergenic mite prevalence in dwellings and certain outdoor environments of the Upper Silesia (southwest Poland). PubMed DOI

Solarz K., Szilman P., Szilman E. (1999). “Allergenic mites associated with bird nests in Poland (Astigmata: Pyroglyphidae, Acaridae, Glycyphagidae),” in DOI

Spieksma F. T. M. (1997). Domestic mites from an acarologic perspective. PubMed DOI

Stepien Z., Rodriguez J. G. (1973). Collecting large quantities of acarid mites. DOI

Sun E.-T., Li C.-P., Nie L.-W., Jiang Y.-X. (2014). The complete mitochondrial genome of the brown leg mite, PubMed DOI

Tamura K., Dudley J., Nei M., Kumar S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. PubMed DOI

Van Asselt L. (1999). Interactions between domestic mites and fungi. DOI

van Borm S., Buschinger A., Boomsma J. J., Billen J. (2002). PubMed DOI PMC

Vandekerckhove T. T. M., Watteyne S., Willems A., Swings J. G., Mertens J., Gillis M. (1999). Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium PubMed DOI

Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. PubMed DOI PMC

Webster L. M. I., Thomas R. H., McCormack G. P. (2004). Molecular systematics of PubMed DOI

Yang B., Cai J., Cheng X. (2011). Identification of astigmatid mites using ITS2 and COI regions. PubMed DOI

Zakhvatkin A. A. (1959).

Zindel R., Ofek M., Minz D., Palevsky E., Zchori-Fein E., Aebi A. (2013). The role of the bacterial community in the nutritional ecology of the bulb mite PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Environmental Microbiome of Tyrophagus Putrescentiae Culture and Its Changes in Manipulative Experiments

. 2025 Aug ; 17 (4) : e70142.

Cardinium disrupts Wolbachia-host dynamics in the domestic mite Tyrophagus putrescentiae: evidence from manipulative experiments

. 2025 May 20 ; 10 (5) : e0176924. [epub] 20250418

A novel Erwiniaceae gut symbiont modulates gene expression of the intracellular bacterium Cardinium in the stored product mite Tyrophagus putrescentiae

. 2025 Apr 29 ; 10 (4) : e0087924. [epub] 20250324

Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered?

. 2024 Dec ; 16 (6) : e70040.

Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis

. 2024 Feb ; 92 (2) : 161-181. [epub] 20240116

The Negative Effects of Feces-Associated Microorganisms on the Fitness of the Stored Product Mite Tyrophagus putrescentiae

. 2022 ; 13 () : 756286. [epub] 20220310

Microbial Communities of Stored Product Mites: Variation by Species and Population

. 2021 Feb ; 81 (2) : 506-522. [epub] 20200827

Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae

. 2020 Mar ; 80 (3) : 363-380. [epub] 20200218

Population and Culture Age Influence the Microbiome Profiles of House Dust Mites

. 2019 May ; 77 (4) : 1048-1066. [epub] 20181121

The Mite Tyrophagus putrescentiae Hosts Population-Specific Microbiomes That Respond Weakly to Starvation

. 2019 Feb ; 77 (2) : 488-501. [epub] 20180702

Two Populations of Mites (Tyrophagus putrescentiae) Differ in Response to Feeding on Feces-Containing Diets

. 2018 ; 9 () : 2590. [epub] 20181030

Investigating species boundaries using DNA and morphology in the mite Tyrophagus curvipenis (Acari: Acaridae), an emerging invasive pest, with a molecular phylogeny of the genus Tyrophagus

. 2018 Jun ; 75 (2) : 167-189. [epub] 20180426

Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria

. 2017 Nov ; 74 (4) : 947-960. [epub] 20170522

Experimental Manipulation Shows a Greater Influence of Population than Dietary Perturbation on the Microbiome of Tyrophagus putrescentiae

. 2017 May 01 ; 83 (9) : . [epub] 20170417

Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae)

. 2017 Jan 31 ; 7 (1) : 2. [epub] 20170131

Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae)

. 2016 Nov ; 70 (3) : 309-327. [epub] 20160808

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...