Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27462300
PubMed Central
PMC4940368
DOI
10.3389/fmicb.2016.01046
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rRNA, Blattabacterium, Tyrophagus putrescentiae, Wolbachia, bacteria, feeding, symbiont,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Tyrophagus putrescentiae colonizes different human-related habitats and feeds on various post-harvest foods. The microbiota acquired by these mites can influence the nutritional plasticity in different populations. We compared the bacterial communities of five populations of T. putrescentiae and one mixed population of T. putrescentiae and T. fanetzhangorum collected from different habitats. MATERIAL: The bacterial communities of the six mite populations from different habitats and diets were compared by Sanger sequencing of cloned 16S rRNA obtained from amplification with universal eubacterial primers and using bacterial taxon-specific primers on the samples of adults/juveniles or eggs. Microscopic techniques were used to localize bacteria in food boli and mite bodies. The morphological determination of the mite populations was confirmed by analyses of CO1 and ITS fragment genes. RESULTS: The following symbiotic bacteria were found in compared mite populations: Wolbachia (two populations), Cardinium (five populations), Bartonella-like (five populations), Blattabacterium-like symbiont (three populations), and Solitalea-like (six populations). From 35 identified OTUs97, only Solitalea was identified in all populations. The next most frequent and abundant sequences were Bacillus, Moraxella, Staphylococcus, Kocuria, and Microbacterium. We suggest that some bacterial species may occasionally be ingested with food. The bacteriocytes were observed in some individuals in all mite populations. Bacteria were not visualized in food boli by staining, but bacteria were found by histological means in ovaria of Wolbachia-infested populations. CONCLUSION: The presence of Blattabacterium-like, Cardinium, Wolbachia, and Solitalea-like in the eggs of T. putrescentiae indicates mother to offspring (vertical) transmission. RESULTS of this study indicate that diet and habitats influence not only the ingested bacteria but also the symbiotic bacteria of T. putrescentiae.
Biologically Active Substances in Crop Protection Crop Research Institute Prague Czech Republic
Department of Entomology Kansas State University Manhattan KS USA
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. PubMed DOI PMC
Ashelford K. E., Chuzhanova N. A., Fry J. C., Jones A. J., Weightman A. J. (2005). At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. PubMed DOI PMC
Ashelford K. E., Chuzhanova N. A., Fry J. C., Jones A. J., Weightman A. J. (2006). New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. PubMed DOI PMC
Augustinos A. A., Santos-Garcia D., Dionyssopoulou E., Moreira M., Papapanagiotou A., Scarvelakis M., et al. (2011). Detection and characterization of PubMed DOI PMC
Barbieri E., Paster B. J., Hughes D., Zurek L., Moser D. P., Teske A., et al. (2001). Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid PubMed DOI
Beroiz B., Couso-Ferrer F., Ortego F., Chamorro M. J., Arteaga C., Lombardero M., et al. (2014). Mite species identification in the production of allergenic extracts for clinical use and in environmental samples by ribosomal DNA amplification. PubMed DOI
Bochkov A. V., Klimov P. B., Hestvik G., Saveljev A. P. (2014). Integrated Bayesian species delimitation and morphological diagnostics of chorioptic mange mites (Acariformes: Psoroptidae: Chorioptes). PubMed DOI
Bowman C. E. (1984). “Comparative enzymology of economically important astigmatid mites,” in
Breeuwer J. A. J., Jacobs G. (1996). PubMed DOI
Brown A. N., Lloyd V. K. (2015). Evidence for horizontal transfer of PubMed DOI
Clark J. W., Kambhampati S. (2003). Phylogenetic analysis of PubMed DOI
Colloff M. J. (2009). DOI
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. PubMed DOI PMC
Dermauw W., Van Leeuwen T., Vanholme B., Tirry L. (2009). The complete mitochondrial genome of the house dust mite PubMed DOI PMC
Dillon R. J., Dillon V. M. (2004). The gut bacteria of insects: nonpathogenic interactions. PubMed DOI
Douglas A. E. (2009). The microbial dimension in insect nutritional ecology. DOI
Douglas A. E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. PubMed DOI PMC
Duek L., Kaufman G., Palevsky E., Berdicevsky I. (2001). Mites in fungal cultures. PubMed DOI
Erban T., Erbanova M., Nesvorna M., Hubert J. (2009). The importance of starch and sucrose digestion in nutritive biology of synanthropic acaridid mites: alpha-amylases and alpha-glucosidases are suitable targets for inhibitor-based strategies of mite control. PubMed DOI
Erban T., Hubert J. (2008). Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. PubMed DOI
Erban T., Hubert J. (2010). Comparative analyses of proteolytic activities in seven species of synanthropic acaridid mites. PubMed DOI
Erban T., Rybanska D., Harant K., Hortova B., Hubert J. (2016). Feces derived allergens of PubMed DOI PMC
Erban T., Rybanska D., Hubert J. (2015). Population growth of the generalist mite PubMed DOI
Franz J.-T., Masuch G., Musken H., Bergmann K.-C. (1997). Mite fauna of German farms. PubMed DOI
Garcia N. (2004). Efforts to control mites on Iberian ham by physical methods. PubMed DOI
Ge M.-K., Sun E.-T., Jia C.-N., Kong D.-D., Jiang Y.-X. (2014). Genetic diversity and differentiation of DOI
Glowska E., Dragun-Damian A., Dabert M., Gerth M. (2015). New PubMed DOI
Gruwell M. E., Hardy N. B., Gullan P. J., Dittmar K. (2010). Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). PubMed DOI PMC
Gruwell M. E., Morse G. E., Normark B. B. (2007). Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. PubMed DOI
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. PubMed DOI
Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. PubMed DOI
Haegeman A., Vanholme B., Jacob J., Vandekerckhove T. T., Claeys M., Borgonie G., et al. (2009). An endosymbiotic bacterium in a plant-parasitic nematode: member of a new PubMed DOI
Hammer O., Harper D. A. T., Ryan P. D. (2001).
Hoy M. A., Jeyaprakash A. (2005). Microbial diversity in the predatory mite DOI
Hubert J., Kopecky J., Perotti M. A., Nesvorna M., Braig H. R., Sagova-Mareckova M., et al. (2012a). Detection and identification of species-specific bacteria associated with synanthropic mites. PubMed DOI
Hubert J., Nesvorna M., Kopecky J., Sagova-Mareckova M., Poltronieri P. (2015). PubMed DOI
Hubert J., Nesvorna M., Sagova-Mareckova M., Kopecky J. (2012b). Shift of bacterial community in synanthropic mite PubMed DOI PMC
Hubert J., Stejskal V., Munzbergova Z., Kubatova A., Vanova M., Zdarkova E. (2004). Mites and fungi in heavily infested stores in the Czech Republic. PubMed DOI
Hubert J., Sustr V., Smrz J. (1999). Feeding of the oribatid mite
Hughes A. M. (1976).
Klimov P. B., OConnor B. (2013). Is permanent parasitism reversible?—critical evidence from early evolution of house dust mites. PubMed DOI
Klimov P. B., OConnor B. M. (2008). Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): evidence from three nuclear genes. PubMed DOI
Klimov P. B., OConnor B. M. (2009a). Conservation of the name DOI
Klimov P. B., OConnor B. M. (2009b). Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. PubMed DOI PMC
Kopecky J., Nesvorna M., Hubert J. (2014a). PubMed DOI
Kopecky J., Nesvorna M., Mareckova-Sagova M., Hubert J. (2014b). The effect of antibiotics on associated bacterial community of stored product mites. PubMed DOI PMC
Kopecky J., Perotti M. A., Nesvorna M., Erban T., Hubert J. (2013). PubMed DOI
Kramar J. (1953). The contribution to microscopic preparation of Arthropods. [Prispevek k mikroskopicke preparaci clenovcu.].
Lane D. J. (1991). “16S/23S rRNA sequencing,” in
Lartillot N., Lepage T., Blanquart S. (2009). PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. PubMed DOI
Levinson H. Z., Levinson A. R., Muller K. (1991a). Functional adaption of two nitrogenous waste products in evoking attraction and aggregation of flour mites ( DOI
Levinson H. Z., Levinson A. R., Muller K. (1991b). The adaptive function of ammonia and guanine in the biocoenotic association between Ascomycetes and flour mites ( DOI
Liu Y. C., Chang S. C., Chen W. H., Shu W. B. (2006). The application of single-step nested multiplex polymerase chain reaction for the identification of
Meeus I., Vercruysse V., Smagghe G. (2012). Molecular detection of PubMed DOI
Moran N. A., Tran P., Gerardo N. M. (2005). Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. PubMed DOI PMC
Nesvorna M., Gabrielova L., Hubert J. (2012). Suitability of a range of DOI
Noge K., Mori N., Tanaka C., Nishida R., Tsuda M., Kuwahara Y. (2005). Identification of astigmatid mites using the second internal transcribed spacer (ITS2) region and its application for phylogenetic study. PubMed DOI
OConnor B. M. (1979). “Evolutionary origins of astigmatid mites inhabiting stored products,” in DOI
OConnor B. M. (1982). Evolutionary ecology of astigmatid mites. DOI
O’Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. (1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. PubMed DOI PMC
Palyvos N. E., Emmanouel N. G., Saitanis C. J. (2008). Mites associated with stored products in Greece. PubMed DOI
Pruesse E., Peplies J., Glockner F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. PubMed DOI PMC
Qu S.-X., Li H.-P., Ma L., Hou L.-J., Lin J.-S., Song J.-D., et al. (2015). Effects of different edible mushroom hosts on the development, reproduction and bacterial community of DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. PubMed DOI PMC
Robertson P. L. (1961). A morphological study of variation in PubMed DOI
Rosenblueth M., Sayavedra L., Samano-Sanchez H., Roth A., Martinez-Romero E. (2012). Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). PubMed DOI
Rozej E., Witalinski W., Szentgyorgyi H., Wantuch M., Moron D., Woyciechowski M. (2012). Mite species inhabiting commercial bumblebee ( PubMed DOI PMC
Russell J. A., Moreau C. S., Goldman-Huertas B., Fujiwara M., Lohman D. J., Pierce N. E. (2009). Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. PubMed DOI PMC
Rybanska D., Hubert J., Markovic M., Erban T. (2015). Dry dog food integrity and mite strain influence the density-dependent growth of the stored-product mite PubMed DOI
Sabree Z. L., Kambhampati S., Moran N. A. (2009). Nitrogen recycling and nutritional provisioning by PubMed DOI PMC
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. PubMed DOI PMC
Smrz J. (1989). Internal anatomy of PubMed DOI
Smrz J. (2003). Microanatomical and biological aspects of bacterial associations in PubMed DOI
Smrz J., Catska V. (1987). Food selection of the field population of DOI
Smrz J., Catska V. (1989). The effect of the consumption of some soil fungi on the internal microanatomy of the mite
Smrz J., Catska V. (2010). Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. DOI
Smrz J., Jungova E. (1989). The ecology of a field population of
Smrz J., Soukalova H. (2008). “Mycophagous mites (Acari: Oribatida and Acaridida) and their cooperation with chitinolytic bacteria,” in
Smrz J., Svobodova J., Catska V. (1991). Synergetic participation of DOI
Smrz J., Trelova M. (1995). The association of bacteria and some soil mites (Acari: Oribatida and Acaridida).
Solarz K., Senczuk L., Maniurka H., Cichecka E., Peszke M. (2007). Comparisons of the allergenic mite prevalence in dwellings and certain outdoor environments of the Upper Silesia (southwest Poland). PubMed DOI
Solarz K., Szilman P., Szilman E. (1999). “Allergenic mites associated with bird nests in Poland (Astigmata: Pyroglyphidae, Acaridae, Glycyphagidae),” in DOI
Spieksma F. T. M. (1997). Domestic mites from an acarologic perspective. PubMed DOI
Stepien Z., Rodriguez J. G. (1973). Collecting large quantities of acarid mites. DOI
Sun E.-T., Li C.-P., Nie L.-W., Jiang Y.-X. (2014). The complete mitochondrial genome of the brown leg mite, PubMed DOI
Tamura K., Dudley J., Nei M., Kumar S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. PubMed DOI
Van Asselt L. (1999). Interactions between domestic mites and fungi. DOI
van Borm S., Buschinger A., Boomsma J. J., Billen J. (2002). PubMed DOI PMC
Vandekerckhove T. T. M., Watteyne S., Willems A., Swings J. G., Mertens J., Gillis M. (1999). Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium PubMed DOI
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. PubMed DOI PMC
Webster L. M. I., Thomas R. H., McCormack G. P. (2004). Molecular systematics of PubMed DOI
Yang B., Cai J., Cheng X. (2011). Identification of astigmatid mites using ITS2 and COI regions. PubMed DOI
Zakhvatkin A. A. (1959).
Zindel R., Ofek M., Minz D., Palevsky E., Zchori-Fein E., Aebi A. (2013). The role of the bacterial community in the nutritional ecology of the bulb mite PubMed DOI
Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered?
Microbial Communities of Stored Product Mites: Variation by Species and Population
Population and Culture Age Influence the Microbiome Profiles of House Dust Mites