Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities

. 2016 ; 7 () : 1046. [epub] 20160712

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27462300

BACKGROUND: Tyrophagus putrescentiae colonizes different human-related habitats and feeds on various post-harvest foods. The microbiota acquired by these mites can influence the nutritional plasticity in different populations. We compared the bacterial communities of five populations of T. putrescentiae and one mixed population of T. putrescentiae and T. fanetzhangorum collected from different habitats. MATERIAL: The bacterial communities of the six mite populations from different habitats and diets were compared by Sanger sequencing of cloned 16S rRNA obtained from amplification with universal eubacterial primers and using bacterial taxon-specific primers on the samples of adults/juveniles or eggs. Microscopic techniques were used to localize bacteria in food boli and mite bodies. The morphological determination of the mite populations was confirmed by analyses of CO1 and ITS fragment genes. RESULTS: The following symbiotic bacteria were found in compared mite populations: Wolbachia (two populations), Cardinium (five populations), Bartonella-like (five populations), Blattabacterium-like symbiont (three populations), and Solitalea-like (six populations). From 35 identified OTUs97, only Solitalea was identified in all populations. The next most frequent and abundant sequences were Bacillus, Moraxella, Staphylococcus, Kocuria, and Microbacterium. We suggest that some bacterial species may occasionally be ingested with food. The bacteriocytes were observed in some individuals in all mite populations. Bacteria were not visualized in food boli by staining, but bacteria were found by histological means in ovaria of Wolbachia-infested populations. CONCLUSION: The presence of Blattabacterium-like, Cardinium, Wolbachia, and Solitalea-like in the eggs of T. putrescentiae indicates mother to offspring (vertical) transmission. RESULTS of this study indicate that diet and habitats influence not only the ingested bacteria but also the symbiotic bacteria of T. putrescentiae.

Zobrazit více v PubMed

Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC

Ashelford K. E., Chuzhanova N. A., Fry J. C., Jones A. J., Weightman A. J. (2005). At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl. Environ. Microbiol. 71 7724–7736. 10.1128/AEM.71.12.7724-7736.2005 PubMed DOI PMC

Ashelford K. E., Chuzhanova N. A., Fry J. C., Jones A. J., Weightman A. J. (2006). New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microbiol. 72 5734–5741. 10.1128/AEM.00556-06 PubMed DOI PMC

Augustinos A. A., Santos-Garcia D., Dionyssopoulou E., Moreira M., Papapanagiotou A., Scarvelakis M., et al. (2011). Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS ONE 6:e28695 10.1371/journal.pone.0028695 PubMed DOI PMC

Barbieri E., Paster B. J., Hughes D., Zurek L., Moser D. P., Teske A., et al. (2001). Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ. Microbiol. 3 151–167. 10.1046/j.1462-2920.2001.00172.x PubMed DOI

Beroiz B., Couso-Ferrer F., Ortego F., Chamorro M. J., Arteaga C., Lombardero M., et al. (2014). Mite species identification in the production of allergenic extracts for clinical use and in environmental samples by ribosomal DNA amplification. Med. Vet. Entomol. 28 287–296. 10.1111/mve.12052 PubMed DOI

Bochkov A. V., Klimov P. B., Hestvik G., Saveljev A. P. (2014). Integrated Bayesian species delimitation and morphological diagnostics of chorioptic mange mites (Acariformes: Psoroptidae: Chorioptes). Parasitol. Res. 113 2603–2627. 10.1007/s00436-014-3914-9 PubMed DOI

Bowman C. E. (1984). “Comparative enzymology of economically important astigmatid mites,” in Acarology VI Vol. 2 eds Griffiths D. A., Bowman C. E. (Chichester: Ellis Horwood; ) 993–1001.

Breeuwer J. A. J., Jacobs G. (1996). Wolbachia: intracellular manipulators of mite reproduction. Exp. Appl. Acarol. 20 421–434. 10.1007/BF00053306 PubMed DOI

Brown A. N., Lloyd V. K. (2015). Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Exp. Appl. Acarol. 66 301–311. 10.1007/s10493-015-9918-z PubMed DOI

Clark J. W., Kambhampati S. (2003). Phylogenetic analysis of Blattabacterium, endosymbiotic bacteria from the wood roach, Cryptocercus (Blattodea: Cryptocercidae), including a description of three new species. Mol. Phylogenet. Evol. 26 82–88. 10.1016/S1055-7903(02)00330-5 PubMed DOI

Colloff M. J. (2009). Dust Mites. Dordrecht: Springer; 10.1007/978-90-481-2224-0 DOI

Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9 772–772. 10.1038/nmeth.2109 PubMed DOI PMC

Dermauw W., Van Leeuwen T., Vanholme B., Tirry L. (2009). The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods. BMC Genomics 10:107 10.1186/1471-2164-10-107 PubMed DOI PMC

Dillon R. J., Dillon V. M. (2004). The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49 71–92. 10.1146/annurev.ento.49.061802.123416 PubMed DOI

Douglas A. E. (2009). The microbial dimension in insect nutritional ecology. Funct. Ecol. 23 38–47. 10.1111/j.1365-2435.2008.01442.x DOI

Douglas A. E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60 17–34. 10.1146/annurev-ento-010814-020822 PubMed DOI PMC

Duek L., Kaufman G., Palevsky E., Berdicevsky I. (2001). Mites in fungal cultures. Mycoses 44 390–394. 10.1046/j.1439-0507.2001.00684.x PubMed DOI

Erban T., Erbanova M., Nesvorna M., Hubert J. (2009). The importance of starch and sucrose digestion in nutritive biology of synanthropic acaridid mites: alpha-amylases and alpha-glucosidases are suitable targets for inhibitor-based strategies of mite control. Arch. Insect Biochem. Physiol. 71 139–158. 10.1002/arch.20312 PubMed DOI

Erban T., Hubert J. (2008). Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp. Appl. Acarol. 44 199–212. 10.1007/s10493-008-9138-x PubMed DOI

Erban T., Hubert J. (2010). Comparative analyses of proteolytic activities in seven species of synanthropic acaridid mites. Arch. Insect Biochem. Physiol. 75 187–206. 10.1002/arch.20388 PubMed DOI

Erban T., Rybanska D., Harant K., Hortova B., Hubert J. (2016). Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases. Front. Physiol. 7:53 10.3389/fphys.2016.00053 PubMed DOI PMC

Erban T., Rybanska D., Hubert J. (2015). Population growth of the generalist mite Tyrophagus putrescentiae (Acari: Acaridida) following adaptation to high- or low-fat and high- or low-protein diets and the effect of dietary switch. Environ. Entomol. 44 1599–1604. 10.1093/ee/nvv129 PubMed DOI

Franz J.-T., Masuch G., Musken H., Bergmann K.-C. (1997). Mite fauna of German farms. Allergy 52 1233–1237. 10.1111/j.1398-9995.1997.tb02529.x PubMed DOI

Garcia N. (2004). Efforts to control mites on Iberian ham by physical methods. Exp. Appl. Acarol. 32 41–50. 10.1023/B:APPA.0000018165.80420.c9 PubMed DOI

Ge M.-K., Sun E.-T., Jia C.-N., Kong D.-D., Jiang Y.-X. (2014). Genetic diversity and differentiation of Lepidoglyphus destructor (Acari: Glycyphagidae) inferred from inter-simple sequence repeat (ISSR) fingerprinting. Syst. Appl. Acarol. 19 491–498. 10.11158/saa.19.4.12 DOI

Glowska E., Dragun-Damian A., Dabert M., Gerth M. (2015). New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect. Genet. Evol. 30 140–146. 10.1016/j.meegid.2014.12.019 PubMed DOI

Gruwell M. E., Hardy N. B., Gullan P. J., Dittmar K. (2010). Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Appl. Environ. Microbiol. 76 7521–7525. 10.1128/AEM.01354-10 PubMed DOI PMC

Gruwell M. E., Morse G. E., Normark B. B. (2007). Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Mol. Phylogenet. Evol. 44 267–280. 10.1016/j.ympev.2007.01.014 PubMed DOI

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59 307–321. 10.1093/sysbio/syq010 PubMed DOI

Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 696–704. 10.1080/10635150390235520 PubMed DOI

Haegeman A., Vanholme B., Jacob J., Vandekerckhove T. T., Claeys M., Borgonie G., et al. (2009). An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. Int. J. Parasitol. 39 1045–1054. 10.1016/j.ijpara.2009.01.006 PubMed DOI

Hammer O., Harper D. A. T., Ryan P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4:4. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm [accessed June 10, 2016].

Hoy M. A., Jeyaprakash A. (2005). Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol. Control 32 427–441. 10.1016/j.biocontrol.2004.12.012 DOI

Hubert J., Kopecky J., Perotti M. A., Nesvorna M., Braig H. R., Sagova-Mareckova M., et al. (2012a). Detection and identification of species-specific bacteria associated with synanthropic mites. Microb. Ecol. 63 919–928. 10.1007/s00248-011-9969-6 PubMed DOI

Hubert J., Nesvorna M., Kopecky J., Sagova-Mareckova M., Poltronieri P. (2015). Carpoglyphus lactis (Acari: Astigmata) from various dried fruits differed in associated micro-organisms. J. Appl. Microbiol. 118 470–484. 10.1111/jam.12714 PubMed DOI

Hubert J., Nesvorna M., Sagova-Mareckova M., Kopecky J. (2012b). Shift of bacterial community in synanthropic mite Tyrophagus putrescentiae induced by Fusarium fungal diet. PLoS ONE 7:e48429 10.1371/journal.pone.0048429 PubMed DOI PMC

Hubert J., Stejskal V., Munzbergova Z., Kubatova A., Vanova M., Zdarkova E. (2004). Mites and fungi in heavily infested stores in the Czech Republic. J. Econ. Entomol. 97 2144–2153. 10.1093/jee/97.6.2144 PubMed DOI

Hubert J., Sustr V., Smrz J. (1999). Feeding of the oribatid mite Scheloribates laevigatus (Acari: Oribatida) in laboratory experiments. Pedobiologia 43 328–339.

Hughes A. M. (1976). The Mites of Stored Food and Houses Volume 9 of Technical bulletin (Great Britain. Ministry of Agriculture, Fisheries and Food) 2nd Edn London: Her Majesty’s Stationery Office.

Klimov P. B., OConnor B. (2013). Is permanent parasitism reversible?—critical evidence from early evolution of house dust mites. Syst. Biol. 62 411–423. 10.1093/sysbio/syt008 PubMed DOI

Klimov P. B., OConnor B. M. (2008). Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): evidence from three nuclear genes. Mol. Phylogenet. Evol. 47 1135–1156. 10.1016/j.ympev.2007.12.025 PubMed DOI

Klimov P. B., OConnor B. M. (2009a). Conservation of the name Tyrophagus putrescentiae, a medically and economically important mite species (Acari: Acaridae). Int. J. Acarol. 35 95–114. 10.1080/01647950902902587 DOI

Klimov P. B., OConnor B. M. (2009b). Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genomics 10:598 10.1186/1471-2164-10-598 PubMed DOI PMC

Kopecky J., Nesvorna M., Hubert J. (2014a). Bartonella-like bacteria carried by domestic mite species. Exp. Appl. Acarol. 64 21–32. 10.1007/s10493-014-9811-1 PubMed DOI

Kopecky J., Nesvorna M., Mareckova-Sagova M., Hubert J. (2014b). The effect of antibiotics on associated bacterial community of stored product mites. PLoS ONE 9:e112919 10.1371/journal.pone.0112919 PubMed DOI PMC

Kopecky J., Perotti M. A., Nesvorna M., Erban T., Hubert J. (2013). Cardinium endosymbionts are widespread in synanthropic mite species (Acari: Astigmata). J. Invertebr. Pathol. 112 20–23. 10.1016/j.jip.2012.11.001 PubMed DOI

Kramar J. (1953). The contribution to microscopic preparation of Arthropods. [Prispevek k mikroskopicke preparaci clenovcu.]. Ceskoslov. Biol. 2 57–58.

Lane D. J. (1991). “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematics eds Stackebrandt E., Goodfellow M. (New York, NY, USA: John Wiley and Sons; ) 115–175.

Lartillot N., Lepage T., Blanquart S. (2009). PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25 2286–2288. 10.1093/bioinformatics/btp368 PubMed DOI

Levinson H. Z., Levinson A. R., Muller K. (1991a). Functional adaption of two nitrogenous waste products in evoking attraction and aggregation of flour mites (Acarus siro L.). Anz. Schadlingskd. Pfl. Umwelt. 64 55–60. 10.1007/bf01909743 DOI

Levinson H. Z., Levinson A. R., Muller K. (1991b). The adaptive function of ammonia and guanine in the biocoenotic association between Ascomycetes and flour mites (Acarus siro L.). Naturwissenschaften 78 174–176. 10.1007/bf01136207 DOI

Liu Y. C., Chang S. C., Chen W. H., Shu W. B. (2006). The application of single-step nested multiplex polymerase chain reaction for the identification of Rhizoglyphus echinopus, R. robini and R. setosus simultaneously. Plant Prot. Bull. 48 101–116.

Meeus I., Vercruysse V., Smagghe G. (2012). Molecular detection of Spiroplasma apis and Spiroplasma melliferum in bees. J. Invertebr. Pathol. 109 172–174. 10.1016/j.jip.2011.11.006 PubMed DOI

Moran N. A., Tran P., Gerardo N. M. (2005). Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71 8802–8810. 10.1128/AEM.71.12.8802-8810.2005 PubMed DOI PMC

Nesvorna M., Gabrielova L., Hubert J. (2012). Suitability of a range of Fusarium species to sustain populations of three stored product mite species (Acari: Astigmata). J. Stored Prod. Res. 48 37–45. 10.1016/j.jspr.2011.08.006 DOI

Noge K., Mori N., Tanaka C., Nishida R., Tsuda M., Kuwahara Y. (2005). Identification of astigmatid mites using the second internal transcribed spacer (ITS2) region and its application for phylogenetic study. Exp. Appl. Acarol. 35 29–46. 10.1007/s10493-004-1953-0 PubMed DOI

OConnor B. M. (1979). “Evolutionary origins of astigmatid mites inhabiting stored products,” in Proceedings of the V International Congress of Acarology: Recent Advances in Acarology, Volume 1, August 6–12, 1978 Michigan State University, East Lansing ed. Rodriguez G. J. (New York, NY: Academic Press; ) 273–278. 10.1016/b978-0-12-592201-2.50038-5 DOI

OConnor B. M. (1982). Evolutionary ecology of astigmatid mites. Annu. Rev. Entomol. 27 385–409. 10.1146/annurev.en.27.010182.002125 DOI

O’Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. (1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. U.S.A. 89 2699–2702. 10.1073/pnas.89.7.2699 PubMed DOI PMC

Palyvos N. E., Emmanouel N. G., Saitanis C. J. (2008). Mites associated with stored products in Greece. Exp. Appl. Acarol. 44 213–226. 10.1007/s10493-008-9145-y PubMed DOI

Pruesse E., Peplies J., Glockner F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28 1823–1829. 10.1093/bioinformatics/bts252 PubMed DOI PMC

Qu S.-X., Li H.-P., Ma L., Hou L.-J., Lin J.-S., Song J.-D., et al. (2015). Effects of different edible mushroom hosts on the development, reproduction and bacterial community of Tyrophagus putrescentiae (Schrank). J. Stored Prod. Res. 61 70–75. 10.1016/j.jspr.2014.12.003 DOI

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC

Robertson P. L. (1961). A morphological study of variation in Tyrophagus (Acarina), with particular reference to populations infesting cheese. Bull. Entomol. Res. 52 501–529. 10.1017/s0007485300055565 PubMed DOI

Rosenblueth M., Sayavedra L., Samano-Sanchez H., Roth A., Martinez-Romero E. (2012). Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). J. Evol. Biol. 25 2357–2368. 10.1111/j.1420-9101.2012.02611.x PubMed DOI

Rozej E., Witalinski W., Szentgyorgyi H., Wantuch M., Moron D., Woyciechowski M. (2012). Mite species inhabiting commercial bumblebee (Bombus terrestris) nests in Polish greenhouses. Exp. Appl. Acarol. 56 271–282. 10.1007/s10493-012-9510-8 PubMed DOI PMC

Russell J. A., Moreau C. S., Goldman-Huertas B., Fujiwara M., Lohman D. J., Pierce N. E. (2009). Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc. Natl. Acad. Sci. U.S.A. 106 21236–21241. 10.1073/pnas.0907926106 PubMed DOI PMC

Rybanska D., Hubert J., Markovic M., Erban T. (2015). Dry dog food integrity and mite strain influence the density-dependent growth of the stored-product mite Tyrophagus putrescentiae (Acari: Acaridida). J. Econ. Entomol. 109 454–460. 10.1093/jee/tov298 PubMed DOI

Sabree Z. L., Kambhampati S., Moran N. A. (2009). Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl. Acad. Sci. U.S.A. 106 19521–19526. 10.1073/pnas.0907504106 PubMed DOI PMC

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC

Smrz J. (1989). Internal anatomy of Hypochthonius rufulus (Acari: Oribatida). J. Morphol. 200 215–230. 10.1002/jmor.1052000210 PubMed DOI

Smrz J. (2003). Microanatomical and biological aspects of bacterial associations in Tyrophagus putrescentiae (Acari: Acaridida). Exp. Appl. Acarol. 31 105–113. 10.1023/b:appa.0000005111.05959.d6 PubMed DOI

Smrz J., Catska V. (1987). Food selection of the field population of Tyrophagus putrescentiae (Schrank) (Acari. Acarida). J. Appl. Entomol. 104 329–335. 10.1111/j.1439-0418.1987.tb00533.x DOI

Smrz J., Catska V. (1989). The effect of the consumption of some soil fungi on the internal microanatomy of the mite Tyrophagus putrescentiae (Schrank) (Acari. Acaridida). Acta Univ. Carol. Biol. 33 81–93.

Smrz J., Catska V. (2010). Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52 33–40. 10.1007/s13199-010-0099-6 DOI

Smrz J., Jungova E. (1989). The ecology of a field population of Tyrophagus putrescentiae (Acari. Acaridida). Pedobiologia 33 183–192.

Smrz J., Soukalova H. (2008). “Mycophagous mites (Acari: Oribatida and Acaridida) and their cooperation with chitinolytic bacteria,” in Proceedings of the Sixth European Congress: Integrative Acarology, 21-25 July 2008, Montpellier eds Bertrand M., Kreiter S., McCoy K. D., Migeon A., Navajas M., Tixier M.-S., et al. (Montpellier: European Association of Acarologists (EURAAC)) 374–377.

Smrz J., Svobodova J., Catska V. (1991). Synergetic participation of Tyrophagus putrescentiae (Schrank) (Acari; Acaridida) and its associated bacteria on the destruction of some soil micromycetes. J. Appl. Entomol. 111 206–210. 10.1111/j.1439-0418.1991.tb00312.x DOI

Smrz J., Trelova M. (1995). The association of bacteria and some soil mites (Acari: Oribatida and Acaridida). Acta Zool. Fenn. 196 120–123.

Solarz K., Senczuk L., Maniurka H., Cichecka E., Peszke M. (2007). Comparisons of the allergenic mite prevalence in dwellings and certain outdoor environments of the Upper Silesia (southwest Poland). Int. J. Hyg. Environ. Health 210 715–724. 10.1016/j.ijheh.2006.11.007 PubMed DOI

Solarz K., Szilman P., Szilman E. (1999). “Allergenic mites associated with bird nests in Poland (Astigmata: Pyroglyphidae, Acaridae, Glycyphagidae),” in Proceedings of the 3rd Symposium of the European Association of Acarologists: Ecology and Evolution of the Acari, Series Entomologica, Vol. 55, 1–5 July 1996, Amsterdam eds Bruin J., van der Geest L. P. S., Sabelis M. W. (Boston, MA: Kluwer Academic Publishers; ) 651–656. 10.1007/978-94-017-1343-6_56 DOI

Spieksma F. T. M. (1997). Domestic mites from an acarologic perspective. Allergy 52 360–368. 10.1111/j.1398-9995.1997.tb01012.x PubMed DOI

Stepien Z., Rodriguez J. G. (1973). Collecting large quantities of acarid mites. Ann. Entomol. Soc. Am. 66 478–480. 10.1093/aesa/66.2.478 DOI

Sun E.-T., Li C.-P., Nie L.-W., Jiang Y.-X. (2014). The complete mitochondrial genome of the brown leg mite, Aleuroglyphus ovatus (Acari: Sarcoptiformes): evaluation of largest non-coding region and unique tRNAs. Exp. Appl. Acarol. 64 141–157. 10.1007/s10493-014-9816-9 PubMed DOI

Tamura K., Dudley J., Nei M., Kumar S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 1596–1599. 10.1093/molbev/msm092 PubMed DOI

Van Asselt L. (1999). Interactions between domestic mites and fungi. Indoor Built Environ. 8 216–220. 10.1159/000024644 DOI

van Borm S., Buschinger A., Boomsma J. J., Billen J. (2002). Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc. Biol. Sci. 269 2023–2027. 10.1098/rspb.2002.2101 PubMed DOI PMC

Vandekerckhove T. T. M., Watteyne S., Willems A., Swings J. G., Mertens J., Gillis M. (1999). Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy. FEMS Microbiol. Lett. 180 279–286. 10.1111/j.1574-6968.1999.tb08807.x PubMed DOI

Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 5261–5267. 10.1128/AEM.00062-07 PubMed DOI PMC

Webster L. M. I., Thomas R. H., McCormack G. P. (2004). Molecular systematics of Acarus siro s. lat., a complex of stored food pests. Mol. Phylogenet. Evol. 32 817–822. 10.1016/j.ympev.2004.04.005 PubMed DOI

Yang B., Cai J., Cheng X. (2011). Identification of astigmatid mites using ITS2 and COI regions. Parasitol. Res. 108 497–503. 10.1007/s00436-010-2153-y PubMed DOI

Zakhvatkin A. A. (1959). A Translation of Fauna of U.S.S.R. Arachnoidea Tyroglyphoidea (Acari) Vol. VI, No. 1 eds trans. Ratcliffe A., Hughes A. M. (Washington, DC: The American Institute of Biological Sciences; ).

Zindel R., Ofek M., Minz D., Palevsky E., Zchori-Fein E., Aebi A. (2013). The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae). FASEB J. 27 1488–1497. 10.1096/fj.12-216242 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered?

. 2024 Dec ; 16 (6) : e70040.

Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis

. 2024 Feb ; 92 (2) : 161-181. [epub] 20240116

The Negative Effects of Feces-Associated Microorganisms on the Fitness of the Stored Product Mite Tyrophagus putrescentiae

. 2022 ; 13 () : 756286. [epub] 20220310

Microbial Communities of Stored Product Mites: Variation by Species and Population

. 2021 Feb ; 81 (2) : 506-522. [epub] 20200827

Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae

. 2020 Mar ; 80 (3) : 363-380. [epub] 20200218

Population and Culture Age Influence the Microbiome Profiles of House Dust Mites

. 2019 May ; 77 (4) : 1048-1066. [epub] 20181121

The Mite Tyrophagus putrescentiae Hosts Population-Specific Microbiomes That Respond Weakly to Starvation

. 2019 Feb ; 77 (2) : 488-501. [epub] 20180702

Two Populations of Mites (Tyrophagus putrescentiae) Differ in Response to Feeding on Feces-Containing Diets

. 2018 ; 9 () : 2590. [epub] 20181030

Investigating species boundaries using DNA and morphology in the mite Tyrophagus curvipenis (Acari: Acaridae), an emerging invasive pest, with a molecular phylogeny of the genus Tyrophagus

. 2018 Jun ; 75 (2) : 167-189. [epub] 20180426

Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria

. 2017 Nov ; 74 (4) : 947-960. [epub] 20170522

Experimental Manipulation Shows a Greater Influence of Population than Dietary Perturbation on the Microbiome of Tyrophagus putrescentiae

. 2017 May 01 ; 83 (9) : . [epub] 20170417

Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae)

. 2017 Jan 31 ; 7 (1) : 2. [epub] 20170131

Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae)

. 2016 Nov ; 70 (3) : 309-327. [epub] 20160808

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...