The Mite Tyrophagus putrescentiae Hosts Population-Specific Microbiomes That Respond Weakly to Starvation

. 2019 Feb ; 77 (2) : 488-501. [epub] 20180702

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29967922

Grantová podpora
GA15-09038S Grantová Agentura České Republiky

Odkazy

PubMed 29967922
DOI 10.1007/s00248-018-1224-y
PII: 10.1007/s00248-018-1224-y
Knihovny.cz E-zdroje

The effect of short-term nutrient deprivation was studied in five populations of the mite Tyrophagus putrescentiae with different microbiomes. The fresh weight, nutrient status, respiration, and population growth of the mites were observed for the five mite population-scale samples. The starvation caused the larvae and nymphs to be eliminated, resulting in a significant increase in the fresh weight of starved adult specimens. Three populations were negatively influenced by starvation, and the starved specimens were characterized by a decrease in nutrient status, respiration, and population growth. One population was not influenced or was slightly influenced by starvation, which had no effect on population growth or nutrient contents but caused a significant decrease in respiration. One population was positively influenced by starvation; the population growth increased in starved specimens, and starvation had no effect on respiration. Although starvation altered the bacterial profiles of the microbiomes, these differences were much smaller than those between the populations. The bacterial profiles of Staphylococcus, Bacillus, Kocuria, Brevibacterium, and unidentified Micrococcaceae and Enterobacteriaceae increased in starved specimens, whereas those of Bartonella and Solitalea-like genera were reduced in the starved mite populations. The profiles of the intracellular symbiont Cardinium decreased in the starved specimens, and the Wolbachia profile changes were dependent on the mite population. In mite populations, when the symbionts were rare, their profiles varied stochastically. Correlations between changes in the profiles of the bacterial taxa and mite fitness parameters, including nutrient status (lipids, proteins, saccharides, and glycogen contents), mite population growth, and respiration, were observed. Although the microbiomes were resistant to the perturbations caused by nutrition deficiency, the responses of the mites differed in terms of their population growth, respiration, and nutrient status.

Zobrazit více v PubMed

J Insect Physiol. 2003 Mar;49(3):261-70 PubMed

Exp Appl Acarol. 2003;29(1-2):69-87 PubMed

Proc Biol Sci. 2007 Aug 22;274(1621):1979-84 PubMed

J Evol Biol. 2007 Sep;20(5):1655-64 PubMed

J Morphol. 2008 Jan;269(1):54-71 PubMed

Exp Appl Acarol. 2008 Mar;44(3):199-212 PubMed

FEMS Microbiol Lett. 2008 Sep;286(2):249-56 PubMed

Foodborne Pathog Dis. 2008 Aug;5(4):459-72 PubMed

J Econ Entomol. 2008 Oct;101(5):1711-7 PubMed

PLoS One. 2009;4(2):e4490 PubMed

PLoS Biol. 2009 Jul;7(7):e1000150 PubMed

Annu Rev Entomol. 2010;55:207-25 PubMed

Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed

Antonie Van Leeuwenhoek. 2010 Jan;97(1):69-77 PubMed

ISME J. 2011 Mar;5(3):446-60 PubMed

J Econ Entomol. 2010 Dec;103(6):2249-57 PubMed

BMC Bioinformatics. 2011 Sep 30;12:385 PubMed

Microb Ecol. 2012 May;63(4):919-28 PubMed

BMC Microbiol. 2012 Jan 18;12 Suppl 1:S13 PubMed

PLoS Genet. 2012;8(10):e1003012 PubMed

FASEB J. 2013 Apr;27(4):1488-97 PubMed

PLoS One. 2013;8(1):e54964 PubMed

FEMS Microbiol Ecol. 2013 Jun;84(3):433-50 PubMed

FEMS Microbiol Rev. 2013 Sep;37(5):699-735 PubMed

Appl Environ Microbiol. 2013 Sep;79(17):5112-20 PubMed

Appl Environ Microbiol. 2013 Oct;79(20):6260-3 PubMed

Nat Methods. 2013 Oct;10(10):996-8 PubMed

Biomed Res Int. 2013;2013:420287 PubMed

Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 PubMed

BMC Genomics. 2014 Apr 05;15:266 PubMed

Exp Appl Acarol. 2014;64(1):21-32 PubMed

J Insect Sci. 2014;14:111 PubMed

Insect Mol Biol. 2015 Feb;24(1):1-12 PubMed

PLoS One. 2014 Nov 11;9(11):e112919 PubMed

J Appl Microbiol. 2015 Feb;118(2):470-84 PubMed

PLoS Pathog. 2015 Mar 31;11(3):e1004777 PubMed

Mol Ecol. 2015 Jul;24(14):3766-78 PubMed

PLoS One. 2015 Jul 29;10(7):e0134382 PubMed

PLoS Biol. 2015 Aug 18;13(8):e1002226 PubMed

Environ Entomol. 2015 Dec;44(6):1599-604 PubMed

Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5179-88 PubMed

J Econ Entomol. 2016 Feb;109(1):454-60 PubMed

PLoS Negl Trop Dis. 2016 Jan 08;10(1):e0004320 PubMed

Gut Microbes. 2016;7(2):178-84 PubMed

Front Physiol. 2016 Feb 24;7:53 PubMed

Trends Ecol Evol. 2016 Jul;31(7):539-549 PubMed

J Econ Entomol. 2016 Aug;109(4):1887-96 PubMed

Bull Entomol Res. 2016 Oct;106(5):685-94 PubMed

Front Microbiol. 2016 Jul 12;7:1046 PubMed

Exp Appl Acarol. 2016 Nov;70(3):309-327 PubMed

Appl Environ Microbiol. 2016 Oct 27;82(22):6603-6610 PubMed

FEMS Microbiol Ecol. 2017 Jan;93(1): PubMed

PLoS Biol. 2016 Nov 18;14(11):e2000225 PubMed

Microb Biotechnol. 2017 May;10(3):531-540 PubMed

Sci Rep. 2017 Dec;7(1):2 PubMed

Microbiome. 2017 Feb 1;5(1):13 PubMed

Appl Environ Microbiol. 2017 Apr 17;83(9): PubMed

PLoS One. 2017 Mar 30;12(3):e0174754 PubMed

Biol Open. 2017 Jul 15;6(7):1074-1083 PubMed

J Morphol. 1989 May;200(2):215-230 PubMed

Microb Ecol. 1997 Apr;33(3):189-97 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...