The Mite Tyrophagus putrescentiae Hosts Population-Specific Microbiomes That Respond Weakly to Starvation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GA15-09038S
Grantová Agentura České Republiky
PubMed
29967922
DOI
10.1007/s00248-018-1224-y
PII: 10.1007/s00248-018-1224-y
Knihovny.cz E-zdroje
- Klíčová slova
- Coprophagy, Fitness, Gut, Mites, Starvation, Symbionts,
- MeSH
- Acaridae mikrobiologie fyziologie MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- fyziologie bakterií MeSH
- hostitelská specificita MeSH
- mikrobiota * MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The effect of short-term nutrient deprivation was studied in five populations of the mite Tyrophagus putrescentiae with different microbiomes. The fresh weight, nutrient status, respiration, and population growth of the mites were observed for the five mite population-scale samples. The starvation caused the larvae and nymphs to be eliminated, resulting in a significant increase in the fresh weight of starved adult specimens. Three populations were negatively influenced by starvation, and the starved specimens were characterized by a decrease in nutrient status, respiration, and population growth. One population was not influenced or was slightly influenced by starvation, which had no effect on population growth or nutrient contents but caused a significant decrease in respiration. One population was positively influenced by starvation; the population growth increased in starved specimens, and starvation had no effect on respiration. Although starvation altered the bacterial profiles of the microbiomes, these differences were much smaller than those between the populations. The bacterial profiles of Staphylococcus, Bacillus, Kocuria, Brevibacterium, and unidentified Micrococcaceae and Enterobacteriaceae increased in starved specimens, whereas those of Bartonella and Solitalea-like genera were reduced in the starved mite populations. The profiles of the intracellular symbiont Cardinium decreased in the starved specimens, and the Wolbachia profile changes were dependent on the mite population. In mite populations, when the symbionts were rare, their profiles varied stochastically. Correlations between changes in the profiles of the bacterial taxa and mite fitness parameters, including nutrient status (lipids, proteins, saccharides, and glycogen contents), mite population growth, and respiration, were observed. Although the microbiomes were resistant to the perturbations caused by nutrition deficiency, the responses of the mites differed in terms of their population growth, respiration, and nutrient status.
Zobrazit více v PubMed
J Insect Physiol. 2003 Mar;49(3):261-70 PubMed
Exp Appl Acarol. 2003;29(1-2):69-87 PubMed
Proc Biol Sci. 2007 Aug 22;274(1621):1979-84 PubMed
J Evol Biol. 2007 Sep;20(5):1655-64 PubMed
J Morphol. 2008 Jan;269(1):54-71 PubMed
Exp Appl Acarol. 2008 Mar;44(3):199-212 PubMed
FEMS Microbiol Lett. 2008 Sep;286(2):249-56 PubMed
Foodborne Pathog Dis. 2008 Aug;5(4):459-72 PubMed
J Econ Entomol. 2008 Oct;101(5):1711-7 PubMed
PLoS One. 2009;4(2):e4490 PubMed
PLoS Biol. 2009 Jul;7(7):e1000150 PubMed
Annu Rev Entomol. 2010;55:207-25 PubMed
Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed
Antonie Van Leeuwenhoek. 2010 Jan;97(1):69-77 PubMed
ISME J. 2011 Mar;5(3):446-60 PubMed
J Econ Entomol. 2010 Dec;103(6):2249-57 PubMed
BMC Bioinformatics. 2011 Sep 30;12:385 PubMed
Microb Ecol. 2012 May;63(4):919-28 PubMed
BMC Microbiol. 2012 Jan 18;12 Suppl 1:S13 PubMed
PLoS Genet. 2012;8(10):e1003012 PubMed
FASEB J. 2013 Apr;27(4):1488-97 PubMed
PLoS One. 2013;8(1):e54964 PubMed
FEMS Microbiol Ecol. 2013 Jun;84(3):433-50 PubMed
FEMS Microbiol Rev. 2013 Sep;37(5):699-735 PubMed
Appl Environ Microbiol. 2013 Sep;79(17):5112-20 PubMed
Appl Environ Microbiol. 2013 Oct;79(20):6260-3 PubMed
Nat Methods. 2013 Oct;10(10):996-8 PubMed
Biomed Res Int. 2013;2013:420287 PubMed
Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 PubMed
BMC Genomics. 2014 Apr 05;15:266 PubMed
Exp Appl Acarol. 2014;64(1):21-32 PubMed
J Insect Sci. 2014;14:111 PubMed
Insect Mol Biol. 2015 Feb;24(1):1-12 PubMed
PLoS One. 2014 Nov 11;9(11):e112919 PubMed
J Appl Microbiol. 2015 Feb;118(2):470-84 PubMed
PLoS Pathog. 2015 Mar 31;11(3):e1004777 PubMed
Mol Ecol. 2015 Jul;24(14):3766-78 PubMed
PLoS One. 2015 Jul 29;10(7):e0134382 PubMed
PLoS Biol. 2015 Aug 18;13(8):e1002226 PubMed
Environ Entomol. 2015 Dec;44(6):1599-604 PubMed
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5179-88 PubMed
J Econ Entomol. 2016 Feb;109(1):454-60 PubMed
PLoS Negl Trop Dis. 2016 Jan 08;10(1):e0004320 PubMed
Gut Microbes. 2016;7(2):178-84 PubMed
Front Physiol. 2016 Feb 24;7:53 PubMed
Trends Ecol Evol. 2016 Jul;31(7):539-549 PubMed
J Econ Entomol. 2016 Aug;109(4):1887-96 PubMed
Bull Entomol Res. 2016 Oct;106(5):685-94 PubMed
Front Microbiol. 2016 Jul 12;7:1046 PubMed
Exp Appl Acarol. 2016 Nov;70(3):309-327 PubMed
Appl Environ Microbiol. 2016 Oct 27;82(22):6603-6610 PubMed
FEMS Microbiol Ecol. 2017 Jan;93(1): PubMed
PLoS Biol. 2016 Nov 18;14(11):e2000225 PubMed
Microb Biotechnol. 2017 May;10(3):531-540 PubMed
Sci Rep. 2017 Dec;7(1):2 PubMed
Microbiome. 2017 Feb 1;5(1):13 PubMed
Appl Environ Microbiol. 2017 Apr 17;83(9): PubMed
PLoS One. 2017 Mar 30;12(3):e0174754 PubMed
Biol Open. 2017 Jul 15;6(7):1074-1083 PubMed
J Morphol. 1989 May;200(2):215-230 PubMed
Microb Ecol. 1997 Apr;33(3):189-97 PubMed
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed
Microbial Communities of Stored Product Mites: Variation by Species and Population