The Effect of Residual Pesticide Application on Microbiomes of the Storage Mite Tyrophagus putrescentiae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-337-J
Kansas State Research and Extension
LTAUSA19012
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
35840683
DOI
10.1007/s00248-022-02072-y
PII: 10.1007/s00248-022-02072-y
Knihovny.cz E-zdroje
- Klíčová slova
- Antibiotics, Microbiome, Mold mite, Pesticide, Wolbachia,
- MeSH
- Acaridae * mikrobiologie MeSH
- Bacillus * genetika MeSH
- Bartonella * MeSH
- mikrobiota * MeSH
- pesticidy * farmakologie MeSH
- pyrethriny * farmakologie MeSH
- rezidua pesticidů * farmakologie MeSH
- roztoči * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- decamethrin MeSH Prohlížeč
- pesticidy * MeSH
- pyrethriny * MeSH
- rezidua pesticidů * MeSH
Arthropods can host well-developed microbial communities, and such microbes can degrade pesticides and confer tolerance to most types of pests. Two cultures of the stored-product mite Tyrophagus putrescentiae, one with a symbiotic microbiome containing Wolbachia and the other without Wolbachia, were compared on pesticide residue (organophosphate: pirimiphos-methyl and pyrethroid: deltamethrin, deltamethrin + piperonyl butoxide)-containing diets. The microbiomes from mite bodies, mite feces and debris from the spent mite diet were analyzed using barcode sequencing. Pesticide tolerance was different among mite cultures and organophosphate and pyrethroid pesticides. The pesticide residues influenced the microbiome composition in both cultures but without any remarkable trend for mite cultures with and without Wolbachia. The most influenced bacterial taxa were Bartonella-like and Bacillus for both cultures and Wolbachia for the culture containing this symbiont. However, there was no direct evidence of any effect of Wolbachia on pesticide tolerance. The high pesticide concentration residues in diets reduced Wolbachia, Bartonella-like and Bacillus in mites of the symbiotic culture. This effect was low for Bartonella-like and Bacillus in the asymbiotic microbiome culture. The results showed that the microbiomes of mites are affected by pesticide residues in the diets, but the effect is not systemic. No actual detoxification effect by the microbiome was observed for the tested pesticides.
Crop Research Institute Drnovska 507 73 CZ 161 06 Prague 6 Ruzyne Czechia
Department of Entomology Kansas State University Manhattan KS 66506 USA
Genomics and Microbiome Core Facility Rush University Chicago IL 60612 USA
Zobrazit více v PubMed
Adair KL, Douglas AE (2017) Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol 35:23–29. https://doi.org/10.1016/j.mib.2016.11.002 PubMed DOI
Newton ILG, Rice DW (2020) The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist? J Bacteriol 202:e00589-e619. https://doi.org/10.1128/JB.00589-19 PubMed DOI PMC
Douglas AE (2014) The molecular basis of bacterial–insect symbiosis. J Mol Biol 426:3830–3837. https://doi.org/10.1016/j.jmb.2014.04.005 PubMed DOI PMC
Douglas AE (1998) Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37. https://doi.org/10.1146/annurev.ento.43.1.17 PubMed DOI
Ankrah NYD, Douglas AE (2018) Nutrient factories: metabolic function of beneficial microorganisms associated with insects. Environ Microbiol 20:2002–2011. https://doi.org/10.1111/1462-2920.14097 PubMed DOI
Gressel J (2018) Microbiome facilitated pest resistance: potential problems and uses. Pest Manag Sci 74:511–515. https://doi.org/10.1002/ps.4777 PubMed DOI
Shemshadian A, Vatandoost H, Oshaghi MA, Abai MR, Djadid ND, Karimian F (2021) Relationship between Wolbachia infection in Culex quinquefasciatus and its resistance to insecticide. Heliyon 7:e06749. https://doi.org/10.1016/j.heliyon.2021.e06749 PubMed DOI PMC
Guo S-K, Gong Y-J, Chen J-C, Shi P, Cao L-J, Yang Q, Hoffmann AA, Wei S-J (2020) Increased density of endosymbiotic Buchnera related to pesticide resistance in yellow morph of melon aphid. J Pest Sci 93:1281–1294. https://doi.org/10.1007/s10340-020-01248-0 DOI
Wang H, Zhang C, Cheng P, Wang Y, Liu H, Wang H, Wang H, Gong M (2021) Differences in the intestinal microbiota between insecticide-resistant and -sensitive Aedes albopictus based on full-length 16S rRNA sequencing. MicrobiologyOpen 10:e1177. https://doi.org/10.1002/mbo3.1177 PubMed DOI PMC
Pelloquin B, Kristan M, Edi C, Meiwald A, Clark E, Jeffries CL, Walker T, Dada N, Messenger LA (2021) Overabundance of Asaia and Serratia bacteria is associated with deltamethrin insecticide susceptibility in Anopheles coluzzii from Agboville, Cote d’Ivoire. Microbiol Spectr 9:e0015721. https://doi.org/10.1128/Spectrum.00157-21
Wang Y-T, Shen R-X, Xing D, Zhao C-P, Gao H-T, Wu J-H, Zhang N, Zhang H-D, Chen Y, Zhao T-Y, Li C-X (2021) Metagenome sequencing reveals the midgut microbiota makeup of Culex pipiens quinquefasciatus and its possible relationship with insecticide resistance. Front Microbiol 12:625539. https://doi.org/10.3389/fmicb.2021.625539 PubMed DOI PMC
Li W, Jin D, Shi C, Li F (2017) Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci Rep 7:1947. https://doi.org/10.1038/s41598-017-02138-9 PubMed DOI PMC
Zhang F, Yang R (2019) Life history and functional capacity of the microbiome are altered in beta-cypermethrin-resistant cockroaches. Int J Parasitol 49:715–723. https://doi.org/10.1016/j.ijpara.2019.04.006 PubMed DOI
Wu Y, Zheng Y, Chen Y, Wang S, Chen Y, Hu F, Zheng H (2020) Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb Biotechnol 13:1201–1212. https://doi.org/10.1111/1751-7915.13579 PubMed DOI PMC
Wilkin DR (1973) Resistance to lindane in Acarus siro from an English cheese store. J Stored Prod Res 9:101–104. https://doi.org/10.1016/0022-474X(73)90016-7 DOI
Szlendak E, Conyers C, Muggleton J, Thind BB (2000) Pirimiphos-methyl resistance in two stored product mites, Acarus siro and Acarus farris, as detected by impregnated paper bioassay and esterase activity assays. Exp Appl Acarol 24:45–54. https://doi.org/10.1023/A:1006329317495 PubMed DOI
Stables LM, Wilkin DR (1981) Resistance to pirimiphos-methyl in cheese mites. Proc Brit Crop Prot Conf Pest Dis 2:617–624
Stables LM (1984) Effect of pesticides on three species of Tyrophagus and detection of resistance to pirimiphos-methyl in T. palmarum and T. putrescentiae. In: Griffiths DA, Bowman CE (eds) Acarology VI, vol 2. Ellis Horwood, Chichester, UK, pp 1026–1033
Stejskal V, Hubert J, Aulicky R, Kucerova Z (2015) Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J Stored Prod Res 64:122–132. https://doi.org/10.1016/j.jspr.2014.12.006 DOI
Hubert J, Stejskal V, Athanassiou CG, Throne JE (2018) Health hazards associated with arthropod infestation of stored products. Annu Rev Entomol 63:553–573. https://doi.org/10.1146/annurev-ento-020117-043218 PubMed DOI
Stara J, Nesvorna M, Hubert J (2011) Long-term pre-exposure of the pest mite Tyrophagus putrescentiae to sub-lethal residues of bifenthrin on rapeseed did not affect its susceptibility to bifenthrin. Crop Prot 30:1227–1232. https://doi.org/10.1016/j.cropro.2011.05.013 DOI
Klimov P, Molva V, Nesvorna M, Pekar S, Shcherbachenko E, Erban T, Hubert J (2019) Dynamics of the microbial community during growth of the house dust mite Dermatophagoides farinae in culture. FEMS Microbiol Ecol 95:fiz153. https://doi.org/10.1093/femsec/fiz153 PubMed DOI
Nesvorna M, Pekar S, Shcherbachenko E, Molva V, Erban T, Green SJ, Klimov PB, Hubert J (2021) Microbiome variation during culture growth of the European house dust mite Dermatophagoides pteronyssinus. FEMS Microbiol Ecol 97:fiab039. https://doi.org/10.1093/femsec/fiab039 PubMed DOI
Zindel R, Ofek M, Minz D, Palevsky E, Zchori-Fein E, Aebi A (2013) The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae). FASEB J 27:1488–1497. https://doi.org/10.1096/fj.12-216242 PubMed DOI
Erban T, Ledvinka O, Nesvorna M, Hubert J (2017) Experimental manipulation shows a greater influence of population than dietary perturbation on the microbiome of Tyrophagus putrescentiae. Appl Environ Microbiol 83:e00128-e117. https://doi.org/10.1128/AEM.00128-17 PubMed DOI PMC
Hubert J, Nesvorna M, Green SJ, Klimov PB (2021) Microbial communities of stored product mites: variation by species and population. Microb Ecol 81:506–522. https://doi.org/10.1007/s00248-020-01581-y PubMed DOI
Abbar S, Amoah B, Schilling MW, Phillips TW (2016) Efficacy of selected food-safe compounds to prevent infestation of the ham mite, Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae), on southern dry-cured hams. Pest Manag Sci 72:1604–1612. https://doi.org/10.1002/ps.4196 PubMed DOI
Nayak MK (2006) Management of mould mite Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae): a case study in stored animal feed. Int Pest Control 48:128–130
Abbar S, Schilling MW, Whitworth RJ, Phillips TW (2017) Efficacy of selected pesticides against Tyrophagus putrescentiae (Schrank): influences of applied concentration, application substrate, and residual activity over time. J Pest Sci 90:379–387. https://doi.org/10.1007/s10340-016-0766-3 DOI
Collins DA (2012) A review on the factors affecting mite growth in stored grain commodities. Exp Appl Acarol 56:191–208. https://doi.org/10.1007/s10493-012-9512-6 PubMed DOI
Erban T, Hubert J (2008) Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp Appl Acarol 44:199–212. https://doi.org/10.1007/s10493-008-9138-x PubMed DOI
Stara J, Nesvorna M, Hubert J (2014) Comparison of the effect of insecticides on three strains of Tyrophagus putrescentiae (Acari: Astigmata) using an impregnated filter paper test and a growth test. Pest Manag Sci 70:1138–1144. https://doi.org/10.1002/ps.3659 PubMed DOI
Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB (2021) Cardinium inhibits Wolbachia in its mite host, Tyrophagusputrescentiae, and affects host fitness. FEMS Microbiol Ecol 97:fiab123. https://doi.org/10.1093/femsec/fiab123 PubMed DOI
Naqib A, Poggi S, Wang W, Hyde M, Kunstman K, Green SJ (2018) Making and sequencing heavily multiplexed, high-throughput 16S ribosomal RNA gene amplicon libraries using a flexible, two-stage PCR protocol. In: Raghavachari N, Garcia-Reyero N (eds) Gene expression analysis: methods and protocols. Humana Press, New York, NY, USA, pp 149–169. https://doi.org/10.1007/978-1-4939-7834-2_7
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R (2016) Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009-00015. https://doi.org/10.1128/mSystems.00009-15 PubMed DOI
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/Aem.01541-09 PubMed DOI PMC
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/Aem.01043-13 PubMed DOI PMC
Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584 PubMed DOI PMC
Cole JR, Wang Q, Fish JA, Chai BL, McGarrell DM, Sun YN, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244 PubMed DOI
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604 PubMed DOI
Edgar RC (2018) Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6:e4652. https://doi.org/10.7717/peerj.4652 PubMed DOI PMC
Edgar R (2018) Taxonomy annotation and guide tree errors in 16S rRNA databases. PeerJ 6:e5030. https://doi.org/10.7717/peerj.5030 PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 PubMed DOI
Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:4. Available: https://palaeo-electronica.org/2001_1/past/issue1_01.htm . Accessed 6 August 2017
R Development Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: https://www.R-project.org . Accessed 4 March 2021
Muhametsafina A, Birceanu O, Hlina BL, Tessier LR, Wilkie MP (2019) Warmer waters increase the larval sea lamprey’s (Petromyzon marinus) tolerance to the lampricide 3-trifluoromethyl-4-nitrophenol (TFM). J Great Lakes Res 45:921–933. https://doi.org/10.1016/j.jglr.2019.07.011 DOI
Fox J, Weisberg S (2019) An R companion to applied regression, 3
Fox J (2003) Effect displays in R for generalised linear models. J Stat Softw 8:15. https://doi.org/10.18637/jss.v008.i15 DOI
Morey RD, Rouder JN, Jamil T, Urbanek S, Forner K, Ly A (2018) BayesFactor: computation of Bayes factors for common designs. R Package Version 0.9.12–4.2. CRAN - The Comprehensive R Archive Network. https://CRAN.R-project.org/package=BayesFactor . Accessed 4 March 2021
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Brendan Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Cunha ER, Smith T, Stier A, Braak CJFT, Weedon J (2022) Package ‘vegan’: community ecology package, version 2.6–2. CRAN - The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/vegan/vegan.pdf Accessed 4 June 2022
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol 8:2224. https://doi.org/10.3389/fmicb.2017.02224 PubMed DOI PMC
Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, Zengler K (2019) A novel sparse compositional technique reveals microbial perturbations. mSystems 4:e00016-00019. https://doi.org/10.1128/mSystems.00016-19 PubMed DOI PMC
Silverman JD, Washburne AD, Mukherjee S, David LA (2017) A phylogenetic transform enhances analysis of compositional microbiota data. eLife 6:e21887. https://doi.org/10.7554/eLife.21887 PubMed DOI PMC
Zeleny D (2018) Analysis of community ecology data in R. DavidZeleny.net. https://www.davidzeleny.net/anadat-r/doku.php/en:r . Accessed 4 March 2021
White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352. https://doi.org/10.1371/journal.pcbi.1000352 PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303 PubMed DOI PMC
Basu S, Duren W, Evans CR, Burant CF, Michailidis G, Karnovsky A (2017) Sparse network modeling and Metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics 33:1545–1553. https://doi.org/10.1093/bioinformatics/btx012 PubMed DOI PMC
Nesvorna M, Bittner V, Hubert J (2019) The mite Tyrophagus putrescentiae hosts population-specific microbiomes that respond weakly to starvation. Microb Ecol 77:488–501. https://doi.org/10.1007/s00248-018-1224-y PubMed DOI
Lei S, Zhang F, Yun Y, Zhou W, Peng Y (2020) Wolbachia bacteria affect rice striped stem borer (Chilo suppressalis) susceptibility to two insecticides. Bull Insectol 73:39–44
Erban T, Rybanska D, Harant K, Hortova B, Hubert J (2016) Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases. Front Physiol 7:53. https://doi.org/10.3389/fphys.2016.00053 PubMed DOI PMC
Saleh SM, Kelada NL, Shaker N (1991) Control of European house dust mite Dermatophagoides pteronyssinus (Trouessart) with Bacillus spp. Acarologia 32:257–260
Hubert J, Nesvorna M, Sopko B, Smrz J, Klimov P, Erban T (2018) Two populations of mites (Tyrophagus putrescentiae) differ in response to feeding on feces-containing diets. Front Microbiol 9:2590. https://doi.org/10.3389/fmicb.2018.02590 PubMed DOI PMC
Kesnerova L, Moritz R, Engel P (2016) Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Int J Syst Evol Microbiol 66:414–421. https://doi.org/10.1099/ijsem.0.000736 PubMed DOI
Segers FHID, Kesnerova L, Kosoy M, Engel P (2017) Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME J 11:1232–1244. https://doi.org/10.1038/ismej.2016.201 PubMed DOI PMC
Neuvonen M-M, Tamarit D, Naslund K, Liebig J, Feldhaar H, Moran NA, Guy L, Andersson SGE (2016) The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci Rep 6:39197. https://doi.org/10.1038/srep39197 PubMed DOI PMC
Kopecky J, Nesvorna M, Hubert J (2014) Bartonella-like bacteria carried by domestic mite species. Exp Appl Acarol 64:21–32. https://doi.org/10.1007/s10493-014-9811-1 PubMed DOI