• This record comes from PubMed

Pesticide residue exposure provides different responses of the microbiomes of distinct cultures of the stored product pest mite Acarus siro

. 2022 Oct 19 ; 22 (1) : 252. [epub] 20221019

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 36261789
PubMed Central PMC9580201
DOI 10.1186/s12866-022-02661-4
PII: 10.1186/s12866-022-02661-4
Knihovny.cz E-resources

BACKGROUND: The contribution of the microbiome to pesticide breakdown in agricultural pests remains unclear. We analyzed the effect of pirimiphos-methyl (PM) on four geographically different cultures of the stored product pest mite Acarus siro (6 L, 6Tu, 6Tk and 6Z) under laboratory experiments. The effect of PM on mite mortality in the impregnated filter paper test was compared. RESULTS: The mite sensitivity to PM decreased in the order of 6 L, 6Tu, 6Tk, and 6Z. Then, the mites were cultured on PM residues (0.0125 and 1.25 µg·g-1), and population growth was compared to the control after 21 days of exposure. The comparison showed two situations: (i) increasing population growth for the most sensitive cultures (6 L and 6Tu), and (ii) no effect on mite population growth for tolerant cultures (6Z and 6Tk). The microbiome of mites was analyzed by quantification of 16S DNA copies based on quantitative polymerase chain reaction (qPCR) and by barcode sequencing of the V4 fragment of 16S DNA on samples of 30 individuals from the control and PM residues. The microbiome comprised primarily Solitalea-like organisms in all cultures, except for 6Z, followed by Bacillus, Staphylococcus, and Lactobacillus. The microbiomes of mite cultures did not change with increasing population density. The microbiome of cultures without any differences in population density showed differences in the microbiome composition. A Sodalis-like symbiont replaced Solitalea in the 1.25 µg·g-1 PM in the 6Tk culture. Sodalis and Bacillus prevailed in the microbiomes of PM-treated mites of 6Z culture, while Solitalea was almost absent. CONCLUSION: The results showed that the microbiome of A. siro differs in composition and in response to PM residues in the diet. The results indicate that Sodalis-like symbionts can help recover mites from pesticide-induced stress.

See more in PubMed

Krantz GW. Some mites injurious to farm-stored grain. J Econ Entomol. 1955;48(6):754–755. doi: 10.1093/jee/48.6.754. DOI

Solomon ME. Tyroglyphid mites in stored products. Nature and amount of damage to wheat. Ann Appl Biol. 1946;33(3):280–9. doi: 10.1111/j.1744-7348.1946.tb06314.x. PubMed DOI

Hubert J, Stejskal V, Athanassiou CG, Throne JE. Health hazards associated with arthropod infestation of stored products. Annu Rev Entomol. 2018;63:553–573. doi: 10.1146/annurev-ento-020117-043218. PubMed DOI

Griffiths DA, Wilkin DR, Southgate BJ, Lynch SM. A survey of mites in bulk grain stored on farms in England and Wales. Ann Appl Biol. 1976;82(1):180–185.

Athanassiou CG, Kavallieratos NG, Palyvos NE, Sciarretta A, Trematerra P. Spatiotemporal distribution of insects and mites in horizontally stored wheat. J Econ Entomol. 2005;98(3):1058–1069. doi: 10.1603/0022-0493-98.3.1058. PubMed DOI

Thomas CM, Dicke RJ. Response of the grain mite, Acarus siro (Acarina: Acaridae), to fungi associated with stored-food commodities. Ann Entomol Soc Am. 1971;64(1):63–68. doi: 10.1093/aesa/64.1.63. DOI

Parkinson CL, Barron CA, Barker SM, Thomas AC, Armitage DM. Longevity and fecundity of Acarus siro on four field and eight storage fungi. Exp Appl Acarol. 1991;11(1):1–8. doi: 10.1007/BF01193724. DOI

Collins DA. A review of alternatives to organophosphorus compounds for the control of storage mites. J Stored Prod Res. 2006;42(4):395–426. doi: 10.1016/j.jspr.2005.08.001. DOI

Abbar S, Schilling MW, Whitworth RJ, Phillips TW. Efficacy of selected pesticides against Tyrophagus putrescentiae (Schrank): influences of applied concentration, application substrate, and residual activity over time. J Pest Sci. 2017;90(1):379–387. doi: 10.1007/s10340-016-0766-3. DOI

Sanchez-Ramos I, Castanera P. Laboratory evaluation of selective pesticides against the storage mite Tyrophagus putrescentiae (Acari: Acaridae) J Med Entomol. 2003;40(4):475–481. doi: 10.1603/0022-2585-40.4.475. PubMed DOI

Wilkin DR. The control of stored product mites by contact acaricides. In: Proceedings of the Eighth British Insecticide and Fungicide Conference, 17th to 20th November 1975, Hotel Metropole, Brighton, England. London: British Crop Protection Council; 1976. Vol. 1. p. 355–63.

Thind B, Muggleton J. A new bioassay method for the detection of resistance to pesticides in the stored product mite Acarus siro (Acari: Acaridae) Exp Appl Acarol. 1998;22(9):543–552. doi: 10.1023/A:1006037807498. DOI

Szlendak E, Conyers C, Muggleton J, Thind BB. Pirimiphos-methyl resistance in two stored product mites, Acarus siro and Acarus farris, as detected by impregnated paper bioassay and esterase activity assays. Exp Appl Acarol. 2000;24(1):45–54. doi: 10.1023/A:1006329317495. PubMed DOI

Wilkin DR. Resistance to lindane in Acarus siro from an English cheese store. J Stored Prod Res. 1973;2(9):101–4. doi: 10.1016/0022-474X(73)90016-7. DOI

Smrz J, Catska V. Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis. 2010;52(1):33–40. doi: 10.1007/s13199-010-0099-6. DOI

Smrz J. Enzyme activities and internal bacteria of saprophagous soil mites (Acari: Oribatida, Acaridida). In: Sabelis MW, Bruin J, editors. Trends in Acarology: Proceedings of the 12th International Congress. Dordrecht: Springer; 2010. p. 217–9. 10.1007/978-90-481-9837-5_35.

Boush MG, Matsumura F. Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J Econ Entomol. 1967;60(4):918–920. doi: 10.1093/jee/60.4.918. DOI

Gressel J. Microbiome facilitated pest resistance: potential problems and uses. Pest Manag Sci. 2018;74(3):511–515. doi: 10.1002/ps.4777. PubMed DOI

Lin Z, Pang S, Zhang W, Mishra S, Bhatt P, Chen S. Degradation of acephate and its intermediate methamidophos: mechanisms and biochemical pathways. Front Microbiol. 2020;11:2045. doi: 10.3389/fmicb.2020.02045. PubMed DOI PMC

Brownlie JC, Johnson KN. Symbiont-mediated protection in insect hosts. Trends Microbiol. 2009;17(8):348–354. doi: 10.1016/j.tim.2009.05.005. PubMed DOI

Hedges LM, Brownlie JC, O'Neill SL, Johnson KN. Wolbachia and virus protection in insects. Sci. 2008;322(5902):702. doi: 10.1126/science.1162418. PubMed DOI

Liu X-D, Guo H-F. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Curr Opin Insect Sci. 2019;33:84–90. doi: 10.1016/j.cois.2019.05.003. PubMed DOI

Kopecky J, Nesvorna M, Hubert J. Bartonella-like bacteria carried by domestic mite species. Exp Appl Acarol. 2014;64(1):21–32. doi: 10.1007/s10493-014-9811-1. PubMed DOI

Kopecky J, Perotti MA, Nesvorna M, Erban T, Hubert J. Cardinium endosymbionts are widespread in synanthropic mite species (Acari: Astigmata) J Invertebr Pathol. 2013;112(1):20–23. doi: 10.1016/j.jip.2012.11.001. PubMed DOI

Hubert J, Kopecky J, Perotti MA, Nesvorna M, Braig HR, Sagova-Mareckova M, et al. Detection and identification of species-specific bacteria associated with synanthropic mites. Microb Ecol. 2012;63(4):919–928. doi: 10.1007/s00248-011-9969-6. PubMed DOI

Hubert J, Nesvorna M, Green SJ, Klimov PB. Microbial communities of stored product mites: variation by species and population. Microb Ecol. 2021;81(2):506–522. doi: 10.1007/s00248-020-01581-y. PubMed DOI

Hubert J, Kopecky J, Sagova-Mareckova M, Nesvorna M, Zurek L, Erban T. Assessment of bacterial communities in thirteen species of laboratory-cultured domestic mites (Acari: Acaridida) J Econ Entomol. 2016;109(4):1887–1896. doi: 10.1093/jee/tow089. PubMed DOI

Zindel R, Ofek M, Minz D, Palevsky E, Zchori-Fein E, Aebi A. The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae) FASEB J. 2013;27(4):1488–1497. doi: 10.1096/fj.12-216242. PubMed DOI

Hubert J, Nesvorna M, Bostlova M, Sopko B, Green SJ, Phillips TW. The effect of residual pesticide application on microbiomes of the storage mite Tyrophagus putrescentiae. Microb Ecol. 2022;(in press). 10.1007/s00248-022-02072-y. PubMed

Hubert J, Kopecky J, Nesvorna M, Perotti MA, Erban T. Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae) Exp Appl Acarol. 2016;70(3):309–327. doi: 10.1007/s10493-016-0080-z. PubMed DOI

Luckey TD. Insecticide hormoligosis. J Econ Entomol. 1968;61(1):7–12. doi: 10.1093/jee/61.1.7. PubMed DOI

Saritas E, Ay R. The effects of some pesticides on fecundity and lifespan of Panonychus ulmi (Koch) and Neoseiulus californicus (Mc Gregor): hormoligosis. Turk J Entomol. 2016;40(1):97–106. doi: 10.16970/ted.01543. DOI

Barati R, Hejazi MJ. Reproductive parameters of Tetranychus urticae (Acari: Tetranychidae) affected by neonicotinoid insecticides. Exp Appl Acarol. 2015;66(4):481–489. doi: 10.1007/s10493-015-9910-7. PubMed DOI

Hubert J, Stejskal V, Munzbergova Z, Hajslova J, Arthur FH. Toxicity and efficacy of selected pesticides and new acaricides to stored product mites (Acari: Acaridida) Exp Appl Acarol. 2007;42(4):283–290. doi: 10.1007/s10493-007-9093-y. PubMed DOI

Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol. 2005;71(6):3302–3310. doi: 10.1128/AEM.71.6.3302-3310.2005. PubMed DOI PMC

Ghosh S, Sela N, Kontsedalov S, Lebedev G, Haines LR, Ghanim M. An intranuclear Sodalis-like symbiont and Spiroplasma coinfect the carrot psyllid, Bactericera trigonica (Hemiptera, Psylloidea) Microorganisms. 2020;8(5):692. doi: 10.3390/microorganisms8050692. PubMed DOI PMC

Koga R, Moran NA. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J. 2014;8(6):1237–1246. doi: 10.1038/ismej.2013.235. PubMed DOI PMC

Maire J, Vincent-Monegat C, Balmand S, Vallier A, Herve M, Masson F, et al. Weevil pgrp-lb prevents endosymbiont TCT dissemination and chronic host systemic immune activation. Proc Natl Acad Sci U S A. 2019;116(12):5623–5632. doi: 10.1073/pnas.1821806116. PubMed DOI PMC

Lopez-Madrigal S, Maire J, Balmand S, Zaidman-Remy A, Heddi A. Effects of symbiotic status on cellular immunity dynamics in Sitophilus oryzae. Dev Comp Immunol. 2017;77:259–269. doi: 10.1016/j.dci.2017.08.003. PubMed DOI

Novakova E, Husnik F, Sochova E, Hypsa V. Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol. 2015;81(18):6189–6199. doi: 10.1128/AEM.01487-15. PubMed DOI PMC

Michalik A, Jankowska W, Kot M, Golas A, Szklarzewicz T. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? Arthropod Struct Dev. 2014;43(6):579–87. doi: 10.1016/j.asd.2014.07.005. PubMed DOI

Koga R, Bennett GM, Cryan JR, Moran NA. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ Microbiol. 2013;15(7):2073–2081. doi: 10.1111/1462-2920.12121. PubMed DOI

Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol Evol. 2017;9(10):2893–2910. doi: 10.1093/gbe/evx202. PubMed DOI PMC

Ankrah NYD, Chouaia B, Douglas AE. The cost of metabolic interactions in symbioses between insects and bacteria with reduced genomes. mBio. 2018;9(5):e01433–01418. doi: 10.1128/mBio.01433-18. PubMed DOI PMC

Umina PA, Hoffmann AA. Tolerance of cryptic species of blue oat mites (Penthaleus spp.) and the redlegged earth mite (Halotydeus destructor) to pesticides. Aust J Exp Agric. 1999;39(5):621–8. doi: 10.1071/EA99028. DOI

Stara J, Nesvorna M, Hubert J. Comparison of the effect of insecticides on three strains of Tyrophagus putrescentiae (Acari: Astigmata) using an impregnated filter paper test and a growth test. Pest Manag Sci. 2014;70(7):1138–1144. doi: 10.1002/ps.3659. PubMed DOI

Syngenta. Actellic 50 EC. Fulbourn: Syngenta; 2022. https://www.syngenta.co.uk/product/crop-protection/actellic-50-ec Accessed Aug10 2022.

Syngenta. Actellic 25EC. Fulbourn: Syngenta; 2017. https://www.syngenta.co.ke/product/crop-protection/post-harverst-treatment/actellic-25ec Accessed Aug 10 2022.

Stara J, Nesvorna M, Hubert J. Long-term pre-exposure of the pest mite Tyrophagus putrescentiae to sub-lethal residues of bifenthrin on rapeseed did not affect its susceptibility to bifenthrin. Crop Prot. 2011;30(9):1227–1232. doi: 10.1016/j.cropro.2011.05.013. DOI

Thind BB, Ford HL. Assessment of susceptibility of the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae) to some acaricides using an adapted filter paper based bioassay. Vet Parasitol. 2007;144(3–4):344–348. doi: 10.1016/j.vetpar.2006.10.002. PubMed DOI

Hubert J, Doleckova-Maresova L, Hyblova J, Kudlikova I, Stejskal V, Mares M. In vitro and in vivo inhibition of alpha-amylases of stored-product mite Acarus siro. Exp Appl Acarol. 2005;35(4):281–291. doi: 10.1007/s10493-004-7834-8. PubMed DOI

Hughes AM. The Mites of Stored Food and Houses. Technical Bulletin 9 of the Ministry of Agriculture, Fisheries and Food. London: Her Majesty’s Stationery Office; 1976.

Sanchez-Ramos I, Castanera P. Effect of temperature on reproductive parameters and the longevity of Acarus farris (Acari: Acaridae) J Stored Prod Res. 2007;43(4):578–586. doi: 10.1016/j.jspr.2007.03.008. DOI

Nesvorna M, Bittner V, Hubert J. The mite Tyrophagus putrescentiae hosts population-specific microbiomes that respond weakly to starvation. Microb Ecol. 2019;77(2):488–501. doi: 10.1007/s00248-018-1224-y. PubMed DOI

Hubert J, Nesvorna M, Kopecky J, Erban T, Klimov P. Population and culture age influence the microbiome profiles of house dust mites. Microb Ecol. 2019;77(4):1048–1066. doi: 10.1007/s00248-018-1294-x. PubMed DOI

Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2016;1(1):e00009–00015. doi: 10.1128/mSystems.00009-15. PubMed DOI PMC

Green SJ, Venkatramanan R, Naqib A. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS ONE. 2015;10(5):e0128122. doi: 10.1371/journal.pone.0128122. PubMed DOI PMC

Lane DJ. 16s/23s rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester, UK and New York, NY: John Wiley and Sons; 1991. pp. 115–175.

Kopecky J, Nesvorna M, Mareckova-Sagova M, Hubert J. The effect of antibiotics on associated bacterial community of stored product mites. PLoS ONE. 2014;9(11):e112919. doi: 10.1371/journal.pone.0112919. PubMed DOI PMC

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–7541. doi: 10.1128/Aem.01541-09. PubMed DOI PMC

Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–5120. doi: 10.1128/Aem.01043-13. PubMed DOI PMC

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016. 10.1101/081257.

Edgar RC. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ. 2018;6:e4652. doi: 10.7717/peerj.4652. PubMed DOI PMC

Cole JR, Wang Q, Fish JA, Chai BL, McGarrell DM, Sun YN, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(D1):D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013;41(Database issue):D36–42. doi: 10.1093/nar/gks1195. PubMed DOI PMC

Hammer O, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4(1):4.http://palaeo-electronica.org/2001_1/past/issue1_01.htm Accessed Nov 23 2020.

Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI

Poirot O, O'Toole E, Notredame C. Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res. 2003;31(13):3503–3506. doi: 10.1093/nar/gkg522. PubMed DOI PMC

Guindon S, Lethiec F, Duroux P, Gascuel O. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 2005;33(Web server issue/Issue suppl_2):W557–9. doi: 10.1093/nar/gki352. PubMed DOI PMC

Rambaut A. FigTree, A Graphical Viewer of Phylogenetic Trees: 2014–07–09 - v1.4.2. Molecular evolution, phylogenetics and epidemiology: research, software and publications of Andrew Rambaut and members of his research group; 2014. http://tree.bio.ed.ac.uk/software/figtree/. Accessed Nov 23 2020.

R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2017. http://www.R-project.org. Accessed Nov 23 2020.

Pekar S, Brabec M. Modern Analysis of Biological Data 1: Generalized Linear Models in R. Brno: Masaryk University; 2016.

Throne JE, Weaver DK, Chew V, Baker JE. Probit analysis of correlated data: multiple observations over time at one concentration. J Econ Entomol. 1995;88(5):1510–1512. doi: 10.1093/jee/88.5.1510. DOI

Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D. Package ‘MASS’. CRAN - The Comprehensive R Archive Network; 2022. https://cran.r-project.org/web/packages/MASS/MASS.pdf. Accessed Aug 10 2022.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Package ‘vegan’: Community Ecology Package, Version 2.5–6. CRAN - The Comprehensive R Archive Network; 2019. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 23 Nov 2020.

White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5(4):e1000352. doi: 10.1371/journal.pcbi.1000352. PubMed DOI PMC

Morey RD, Rouder JN, Jamil T, Urbanek S, Forner K, Ly A. BayesFactor: Computation of Bayes Factors for Common Designs. R Package Version 0.9.12–4.2. CRAN - The Comprehensive R Archive Network; 2018. https://CRAN.R-project.org/package=BayesFactor. Accessed Nov 23 2020.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...