The effect of antibiotics on associated bacterial community of stored product mites
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25387104
PubMed Central
PMC4227874
DOI
10.1371/journal.pone.0112919
PII: PONE-D-14-32360
Knihovny.cz E-zdroje
- MeSH
- Acaridae účinky léků růst a vývoj mikrobiologie MeSH
- ampicilin farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria genetika MeSH
- hustota populace MeSH
- mikrobiální společenstva účinky léků MeSH
- neomycin farmakologie MeSH
- RNA ribozomální 16S MeSH
- streptomycin farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ampicilin MeSH
- antibakteriální látky MeSH
- neomycin MeSH
- RNA ribozomální 16S MeSH
- streptomycin MeSH
BACKGROUND: Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata). The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria. METHODOLOGY AND PRINCIPAL FINDINGS: Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mg g(-1) of diet) for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor. CONCLUSIONS/SIGNIFICANCE: The work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mg g(-1) antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.
Biologically Active Substances in Crop Protection Crop Research Institute Prague Czechia
Epidemiology and Ecology of Microorganisms Crop Research Institute Prague Czechia
Zobrazit více v PubMed
Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. U S A. 15 104 Suppl 1 8627–33. PubMed PMC
Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C (2012) Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol. 64: 268–78. PubMed
Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol. 36: 323–43. PubMed
Asselt- van L (1999) Interactions between domestic mites and fungi. Indoor and Built Env. 8: 216–220.
Douglas AE (2009) The microbial dimension in insect nutritional ecology. Functional Ecol. 23: 38–47.
Hay DB, Hart B J, Douglas AE (1993) Effects of the fungus Aspergillus penicillioides on the house dust mite Dermatophagoides pteronyssinus: an experimental re-evaluation. Med. Vet. Entomol. 7: 271–274. PubMed
Genta FA, Dillon RJ, Terra WR, Ferreira C (2006) Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiol. 52: 593–601. PubMed
Hughes AM 1976. The mites of stored food and houses. Technical Bulletin of the UK Ministry of Agriculture, Fisheries and Food, Her Majesty’s Stationery Office, London. 400 p.
Lundgren JG, Lehman RM (2010) Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS One 5: e10831. PubMed PMC
Smrz J (2003) Microanatomical and biological aspects of bacterial associations in Tyrophagus putrescentiae (Acari: Acaridida). Exp Appl Acarol 31: 105–113. PubMed
Smrz J, Catska V (2010) Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52: 33–40.
Zindel R, Ofek M, Minz D, Palevsky E, Zchori-Fein E, et al. (2013) The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae). FASEB J. 27: 1488–97. PubMed
Childs M, Bowman CE (1981) Lysozyme activity in 6 species of economically important astigmatid mites. Comp. Biochem. Physiol. 70B: 615–617.
Erban T, Hubert J (2008) Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp Appl Acarol 44: 199–212. PubMed
Geest-van LP, Elliot SL, Breeuwer JA, Beerling EA (2000) Diseases of mites. Exp. Appl. Acarol. 24: 497–560. PubMed
Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J (2010) Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microb. Ecol. 59: 199–211. PubMed PMC
Rosengaus RB, Zecher CN, Schultheis KF, Brucker RM, Bordenstein SR (2011) Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl Environ Microbiol. 77: 4303–12. PubMed PMC
Kafil M, Bandani AR, Kaltenpoth M, Goldansaz SH, Alavi SM (2013) Role of symbiotic bacteria in the growth and development of the Sunn pest, Eurygaster integriceps. J. Insect. Sci. 13: 99. PubMed PMC
Edlund A, Ek K, Breitholtz M, Gorokhova E (2012) Antibiotic-induced change of bacterial communities associated with the copepod Nitocra spinipes. PLoS One. 7(3): e33107. PubMed PMC
Greewood D, Whitley R (2003). Mode of action. In Finch R, Greenwood D, Norrby SR, Whitley RJ (ed), Antibiotic and Chemotherapy: Anti-infective Agents and Their Use in Therapy, 8th ed, Churchill Livingstone, Edinburgh, UK., p11–22.
Hubert J, Dolecková-Maresová L, Hýblová J, Kudlíková I, Stejskal V, et al. (2005) In vitro and in vivo inhibition of alpha-amylases of stored-product mite Acarus siro. Exp. Appl. Acarol. 35: 281–291. PubMed
Hubert J, Kopecký J, Perotti AM, Nesvorna M, Braig HR, et al. (2012) Detection and identification of species-specific bacteria associated with synanthropic mites. Microbial Ecol 63: 919–928. PubMed
Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, et al. (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda:Loliginidae). Environ. Microbiol 3: 151–67. PubMed
Wang Q, Garrity GM, Tiedje JM, Cole J R (2007) Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol 73: 5261–5267. PubMed PMC
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75: 7537–41. PubMed PMC
Sagova-Mareckova M, Omelka M, Cermak L, Kamenik Z, Olsovska J, et al. (2011) Microbial communities show parallels at sites with distinct litter and soil characteristics. Appl Environ Microbiol. 77: 7560–7. PubMed PMC
Boczek J (1965) Effect of antimicrobial agnets and antibiotics on some stored product mites. Boll. Zool. Agr. Bachic. 7: 299–300.
Boczek J, Czajkowska B (1968) The effect of antimicrobial agents and antibiotics on some stored product mites (Acaroidea). Rocz. Nauk. Roln. 93: 579–612 (in Polish, English abstract)..
Hubert J, Münzbergová Z, Nesvorná M, Poltronieri P, Santino A (2008) Acaricidal effects of natural six-carbon and nine-carbon aldehydes on stored-product mites. Exp Appl Acarol. 44: 315–321. PubMed
Erban T, Nesvorna M, Erbanova M, Hubert J (2009) Bacillus thuringiensis var. tenebrionis control of synanthropic mites (Acari: Acaridida) under laboratory conditions. Exp. Appl. Acarol. 49: 339–346. PubMed
Saleh SM, Keladan NL, Shaker N (1991) Control of European house dust mite Dermatophagoides pteronyssinus (Trouessart) with Bacillus spp. Acarologia (Acarologia) 32: 257–260.
Palyvos NE, Emmanouel NG (2011) Reproduction, survival, and life table parameters of the predatory mite Cheyletus malaccensis (Acari: Cheyletidae) at various constant temperatures. Exp. Appl. Acarol. 54: 139–50. PubMed
Zdarkova E (1998) Biological control of storage mites by Cheyletus eruditus. Integrated Pest Manag. Rev. 3: 111–116.
Castagnoli M, Nannelli R, Tarchi F, Simoni S (2006) Screening of astigmatid mites for mass-rearing Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Redia 89: 55–58.
Xia B, Zou Z, P Lin (2012) Effect of temperature on development and reproduction of Neoseiulus barkeri (Acari: Phytoseiidae) fed on Aleuroglyphus ovatus. Exp. Appl. Acarol. 56: 33–41. PubMed
Hubert J, Nesvorná M, Ságová-Marečková M, Kopecký J (2012) Shift of bacterial community in synanthropic mite Tyrophagus putrescentiae induced by Fusarium fungal diet. PLoS One 7(10): e48429. PubMed PMC
Kopecky J, Perotti MA, Nesvorna M, Erban T, Hubert J (2013) Cardinium endosymbionts are widespread in synanthropic mite species (Acari: Astigmata). J. Invertebr. Pathol. 112: 20–3. PubMed
Kopecký J, Nesvorná M, Hubert J (2014) Bartonella-like bacteria carried by domestic mite species. Exp. Appl. Acarol. 64: 21–32. PubMed
Díaz A, Okabe K, Eckenrode CJ, Villani MG, Oconnor BM (2000) Biology, ecology, and management of the bulb mites of the genus Rhizoglyphus (Acari: Acaridae). Exp Appl Acarol. 24: 85–113. PubMed
Morimoto S, Kurtti TJ, Noda H (2006) In vitro cultivation and antibiotic susceptibility of a Cytophaga-like intracellular symbiote isolated from the tick Ixodes scapularis . Curr Microbiol 52: 324–9. PubMed
Koga R, Tsuchida T, Sakurai M, Fukatsu T (2007) Selective elimination of aphid endosymbionts: effects of antibiotic dose and host genotype, and fitness consequences. FEMS Microbiol Ecol. 60: 229–39. PubMed
Billeter SA, Levy MG, Chomel BB, Breitschwerdt EB (2008) Vector transmission of Bartonella species with emphasis on the potential for tick transmission. Med. Vet. Entomol. 22: 1–15. PubMed
Chigita A, Miura K (2005) Detection of ‘Candidatus Cardinium’ bacteria from the haploid host Brevipalpus californicus (Acari: Tenuipalpidae) and effect on the host. Exp Appl Acarol 37: 107–116. PubMed
Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98: 13–20. PubMed
Morag N, Mullens BA, Gottlieb Y (2013) Assessment of survival and body size variation of Culicoides imicola (Diptera: Ceratopogonidae) as functions of “Candidatus Cardinium” (Bacteroidetes) infection status. Appl Environ Microbiol. 79: 6260–3. PubMed PMC
Wang JJ, Dong P, Xiao LS, Dou W (2008) Effects of removal of Cardinium infection on fitness of the stored-product pest Liposcelis bostrychophila (Psocoptera: Liposcelididae). J. Econ. Entomol. 101: 1711–1717. PubMed
Oliwa-Stasiak K, Molnar CI, Arshak K, Bartoszcze M, Adley CC (2010) Development of a PCR assay for identification of the Bacillus cereus group species. J Appl Microbiol. 108: 266–73. PubMed
Wenzel M, Schönig I, Berchtold M, Kämpfer P, König H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol. 92: 32–40. PubMed
Tang VH, Chang BJ, Srinivasan A, Mathaba LT, Harnett GB, et al. (2013) Skin-associated Bacillus, staphylococcal and micrococcal species from the house dust mite, Dermatophagoides pteronyssinus and bacteriolytic enzymes. Exp. Appl. Acarol. 61: 431–47. PubMed
Fernández-Caldas E, Iraola V, Boquete M, Nieto A, Casanovas M (2006) Mite immunotherapy. Curr Allergy Asthma Rep 6: 413–9. PubMed
Arlian LG, Morgan MS (2011) Immunomodulation of skin cytokine secretion by house dust mite extracts. Int Arch Allergy Immunol. 156: 171–8. PubMed PMC
Microbial Communities of Stored Product Mites: Variation by Species and Population
Population and Culture Age Influence the Microbiome Profiles of House Dust Mites
Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities