Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae)
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27502113
DOI
10.1007/s10493-016-0080-z
PII: 10.1007/s10493-016-0080-z
Knihovny.cz E-zdroje
- Klíčová slova
- Antibiotic treatment, Stored product mites, Symbiont, Transmission of bacteria,
- MeSH
- Acaridae růst a vývoj mikrobiologie MeSH
- antibakteriální látky farmakologie MeSH
- Bacteroidetes klasifikace genetika fyziologie MeSH
- DNA bakterií genetika MeSH
- genetická zdatnost * MeSH
- hybridizace in situ fluorescenční MeSH
- krmivo pro zvířata analýza MeSH
- larva růst a vývoj mikrobiologie MeSH
- nymfa růst a vývoj mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
Bacteria associated with mites influence their fitness, nutrition and reproduction. Previously, we found Solitalea-like (Sphingobacteriales) and Candidatus Cardinium (Cytophagales) bacteria in the stored product mite Acarus siro L. by cloning and using pyrosequencing. In this study, taxon-specific primers targeting 16S rRNA gene were used to detect and quantify the bacteria in mites and eggs of three A. siro populations. The specific probes for fluorescent in situ hybridization (FISH) were used to localize Solitalea-like and Cardinium bacteria in mite bodies. The population growth as an indirect estimator of fitness was used to describe the mite-bacteria interactions on (1) control diet; (2) rifampicin supplemented diet; (3) tetracycline supplemented diet; (4) rifampicin pretreated mites; (5) tetracycline pretreated mites. Solitalea-like 16S rRNA gene sequences from A. siro formed a separate cluster together with sequences from Tyrophagus putrescentiae. qPCR analysis indicated that number of Solitalea-like bacteria 16S rRNA gene copies was ca. 100× higher than that of Cardinium and the numbers differed between populations. FISH analysis localized Solitalea-like bacteria in the parenchymal tissues, mesodeum and food bolus of larvae, nymphs and adults. Solitalea-like, but not Cardinium bacteria were detected by taxon-specific primers in mites and eggs of all three investigated populations. None of the antibiotic treatments eliminated Solitalea-like bacteria in the A. siro populations tested. Rifampicin pretreatment significantly decreased the population growth. The numbers of Solitalea-like bacteria did not correlate with the population growth as a fitness indicator. This study demonstrated that A. siro can host Solitalea-like bacteria either alone or together with Cardinium. We suggest that Solitalea-like bacteria are shared by vertical transfer in A. siro populations.
Zobrazit více v PubMed
Bioinformatics. 2012 Jul 15;28(14):1823-9 PubMed
Exp Appl Acarol. 2014 Oct;64(2):207-21 PubMed
Int J Syst Evol Microbiol. 2004 May;54(Pt 3):961-8 PubMed
J Invertebr Pathol. 2012 Jul;110(3):359-65 PubMed
Glycoconj J. 2016 Apr;33(2):159-68 PubMed
J Econ Entomol. 2004 Dec;97(6):2144-53 PubMed
PLoS One. 2014 Nov 11;9(11):e112919 PubMed
Am Rev Respir Dis. 1993 Feb;147(2):354-8 PubMed
Exp Appl Acarol. 2008 Mar;44(3):199-212 PubMed
Mol Ecol. 2004 Jul;13(7):2009-16 PubMed
Exp Appl Acarol. 2012 Sep;58(1):43-50 PubMed
FASEB J. 2007 Apr;21(4):1058-66 PubMed
Science. 2001 Jun 29;292(5526):2479-82 PubMed
J Investig Allergol Clin Immunol. 2000 Nov-Dec;10(6):346-51 PubMed
BMC Microbiol. 2012 Jan 18;12 Suppl 1:S13 PubMed
Arch Insect Biochem Physiol. 2009 Jul;71(3):139-58 PubMed
Proc Biol Sci. 2003 Sep 7;270(1526):1857-65 PubMed
Exp Appl Acarol. 2008 Mar;44(3):213-26 PubMed
Tissue Cell. 2008 Aug;40(4):231-42 PubMed
Appl Environ Microbiol. 2007 Aug;73(16):5261-7 PubMed
Bioinformatics. 2014 Apr 1;30(7):1020-1 PubMed
PLoS One. 2013;8(1):e54964 PubMed
Environ Microbiol. 2001 Mar;3(3):151-67 PubMed
Microb Ecol. 2012 May;63(4):919-28 PubMed
J Econ Entomol. 2016 Aug;109 (4):1887-96 PubMed
J Invertebr Pathol. 2012 Jan;109(1):20-6 PubMed
Int J Syst Evol Microbiol. 2009 Aug;59(Pt 8):1969-75 PubMed
Tissue Cell. 2011 Jun;43(3):151-6 PubMed
J Allergy Clin Immunol. 2013 Jan;131(1):31-5 PubMed
Appl Microbiol Biotechnol. 2009 Nov;85(2):323-33 PubMed
Syst Biol. 2003 Oct;52(5):696-704 PubMed
J Dairy Sci. 2010 Aug;93(8):3461-8 PubMed
Curr Microbiol. 2012 Nov;65(5):516-23 PubMed
Allergol Immunopathol (Madr). 1994 Jul-Aug;22(4):152-4 PubMed
J Evol Biol. 2012 Aug;25(8):1521-30 PubMed
Environ Microbiol. 2006 Feb;8(2):258-72 PubMed
Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699-702 PubMed
Heredity (Edinb). 2013 Oct;111(4):330-7 PubMed
Genome Biol Evol. 2014 Apr;6(4):1013-30 PubMed
Mol Ecol. 2008 Mar;17(6):1427-37 PubMed
Appl Environ Microbiol. 2009 Nov;75(22):7097-106 PubMed
Tissue Cell. 2006 Aug;38(4):257-61 PubMed
Dev Comp Immunol. 2008;32(6):716-25 PubMed
Exp Appl Acarol. 2006;39(3-4):257-71 PubMed
J Invertebr Pathol. 1996 May;67(3):318-21 PubMed
Front Microbiol. 2016 Jul 12;7:1046 PubMed
Heredity (Edinb). 2007 Jan;98(1):13-20 PubMed
J Microbiol Methods. 2015 Jun;113:50-6 PubMed
J Invertebr Pathol. 2013 Jan;112(1):20-3 PubMed
J Asthma. 1997;34(5):369-78 PubMed
Front Physiol. 2016 Feb 24;7:53 PubMed
Microb Ecol. 2010 Feb;59(2):199-211 PubMed
Exp Appl Acarol. 2005;35(4):281-91 PubMed
Bioinformatics. 2009 Sep 1;25(17):2286-8 PubMed
J Invertebr Pathol. 2007 Oct;96(2):106-8 PubMed
Exp Appl Acarol. 2007;42(4):263-71 PubMed
J Invertebr Pathol. 2010 Nov;105(3):220-7 PubMed
World Allergy Organ J. 2009 May;2(5):91-6 PubMed
J Econ Entomol. 2011 Oct;104(5):1752-64 PubMed
PLoS Genet. 2012;8(10):e1003012 PubMed
Syst Biol. 2010 May;59(3):307-21 PubMed
Nat Methods. 2012 Jul 30;9(8):772 PubMed
Mol Biol Evol. 2002 Sep;19(9):1591-601 PubMed
J Invertebr Pathol. 2010 Mar;103(3):150-5 PubMed
Microbial Communities of Stored Product Mites: Variation by Species and Population
Population and Culture Age Influence the Microbiome Profiles of House Dust Mites